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Abstract. In electrical power networks nowadays more and more customers are becoming power-
producers, mainly because of the development of novel components for decentral power generation
(solar panels, small wind turbines and heat pumps). This gives rise to the question how many units
of each type (solar panel, small wind turbine or central heating power units) can be inserted into
any transmission line in the network, such that under given distributions on the typical production
and consumption over time, the maximum loads on the lines and components will not be exceeded.

In this paper, we present a linear programming model for maximizing the amount of decentral
power generation while respecting the load limitations of the network. We describe a prototype
showing that for an example network the maximization problem can be solved efficiently. We also
modeled the case were the power consumption and decentral power generation are considered as
stochastic variables, which is inherently more complex.

1. Introduction
Electrical power grids are becoming increasingly complex. The customer used

to be solely a power-consumer, whereas nowadays more and more customers are be-
coming power-producers. Decentralized Power Generation (DPG) refers to an electric
power source such as solar, wind or combined heat power (CHP) connected directly
to the distribution network or on the customer side of the meter (Pepermans, G. et
al., [8]; Chicco and Mancarella, [2]). It has emerged as a key option for promoting
energy efficiency and use of renewable sources as an alternative to the traditional
generation. Moreover in the near future, decentral energy buffering is expected to
become important, e.g. due to a growth of the electric car market.

These developments pose many questions to grid operators and electricity pro-
ducers. To what extent is the current power infrastructure suited for the addition
of this kind of energy-producing components? Or, at which locations should the
infrastructure be extended to handle placements of additional components?

This question is complicated by the fact that the power production of the com-
ponents strongly varies over time. Different types of components will produce peak
power at different points in time, which most likely will differ from the peaks in con-
sumption. Moreover, there are correlations between the yields of multiple components
of the same type, which are installed at nearby geographical locations. For example,
if the sun is shining in a particular street, then it is likely that the sun shines in all
streets in the neighborhood.

In many cases, distributed generators can provide lower-cost electricity and higher
power reliability and security with fewer environmental consequences than traditional
power generators. In contrast to the use of a few large-scale generating stations located
far from load centers (the approach used in the traditional electric power paradigm),
DPG systems employ numerous, but small plants and can provide power on-site.
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Nevertheless, the high complexity of the issues regarding the planning and man-
agement of the electric power system and infrastructure for the decentralized power
generation calls for powerful analysis tools. One of the most critical factors limiting
large scale DPG in an existing network is the possible over-current on connections and
over-voltage on nodes. A very large power generation at a moment of low consump-
tion in the grid will usually violate voltage profile constraints. Transmission lines
between the low voltage grids may become overloaded due to altered flow patterns
resulting from the DPG current contribution. This may require a network reconfigu-
ration or generation limitations on DPG. However, network reconfiguration requires
a huge investment for which the distribution network has no incentive as a natural
monopoly. Hence, it is important that regulators impose limits on DPG to allow them
to participate in the electricity market. In this respect, few papers have addressed
the optimal sizing and placement of DPG in an existing distribution network.

Niemi and Lund [7] develop a fast tool to assess and visualize the voltage ef-
fects of DPG in an existing distribution network. Using their method, they find that
over-voltages with large amount of DPG can be avoided through a proper placement
strategy; placing closer to the transformer side will reduce the voltage increase. How-
ever, there are quite a few limitations in their method such that it cannot be applied
generally. Their static method assumes known load pattern and DPG production
over time to predict a modified steady-state voltage profile when introducing DPG,
and they believe the dynamic behavior of the electric system can be accessed through
a point by point calculation over time. However, in reality, there are high uncer-
tainties in both load and DPG production which makes the net power/consumption
more volatile. They restrict their method to a loopless network, because in a loopless
network, the cables between adjacent nodes have an unambiguous orientation: the
upstream node looks always toward the transformer and downstream node toward
the end of the line, so the loopless branched network can be approximated with a sin-
gle line network by matching downstream consumption and impedance at each node.
Nevertheless, it is quite usual that a power distribution network has loops. Moreover,
they assume an evenly distributed load along the line and some sort of even distribu-
tion of DPG units along the line. This approximation takes into account the voltage
differences occurring over transmission line, but not over the individual loads.

Other papers (Gozel and Hocaoglui [3]; Acharya, Mahat and Mithulananthan
[1]) propose analytical approaches to calculate the optimal sizing and placement of
DPG for minimizing the total power losses in a power distribution system. They
document the exact loss formula or loss sensitivity factor for the distribution system.
They examine the effect of size and placement of DPG with respect to loss in the
network. However, they only considered voltage constraints and their analyses are
based on the power injection or equivalent current injection which they assume to be
deterministic. Kuhn and Schultz [6] developed models and algorithms for risk neutral
and risk averse power optimization under uncertainty, including a stochastic integer
programming model.

KEMA BV addresses many types of questions related to energy networks, and
advises grid operators and energy producers. For the SWI we have focused on the
following question. Given an existing power grid, we would like to have a method that
can quickly determine how many units of each type (solar panel, small wind turbine or
central heating power units) can be inserted into any transmission line in the network,
such that under given distributions on the typical production and consumption, the
maximum loads on the lines and components will not be exceeded. As input, we have
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used the operating characteristics and statistics of the three types of components and
typical usage data.

The transmission of power in each segment of an electrical power network can be
determined through a load flow analysis according to Ohm’s and Kirchhoff’s laws. For
this analysis there is standard software available such as Vision Network Analysis1

for the medium voltage network and Gaia2 for the low voltage network. This analysis
results in a linear relation between the amount of decentralized power generation
and the load in the network. We first considered the situation in which the power
usage of consumers and the power generated by the decentral units is assumed to
be deterministic, although it can vary over time. We derived a linear programming
model for maximizing the amount of decentral power generation while respecting
the load limitations of the network. Linear programming models can be solved quite
efficiently by modern solvers, for example CPLEX3. We have implemented a prototype
for a small example network.

We also modeled the case were the power consumption and decentral power gen-
eration are considered as stochastic variables. This case is inherently more complex,
since we have to deal with probabilities of overloads.

The remainder of this paper is organized as follows. In Section 2 we study the
network model and the load flow analysis. In Sections 4.1, 4.3, and 4.4 we describe
the models for the deterministic and stochastic case respectively. Then is Section 5
we present numerical experiments for our prototype. Finally, Section 6 concludes the
paper.

2. Network model and load flow
We model the electrical power network as an undirected graph (N,E), where N

is the set of nodes and E is the set of edges. A node corresponds to a site of electricity
consumption and/or production (e.g. a house with solar panels) or to a connection
point. There is an edge between two nodes i and j if there is a cable between the
nodes. We assume that the network is connected, i.e., there is a path between each
pair of points in the graph. For the network we define the following entities:

• H set of electricity consumption and/or production points.
• C set of connection points.
• Pi = net power production at node i∈H. Pi<0 implies that the power con-

sumption is larger than the power production, Pi>0 implies that production
is larger than consumption.

• Vi = voltage at node i
• Qi = current flowing into or out of the network due to production at i. Qi>0

means power generation and Qi<0 means power consumption i∈H. For a
connection point i∈C we have Qi= 0

• Rij = resistance of cable corresponding to the edge between i and j. If there is
no edge between i and j, Rij =∞. Resistance is independent of the direction
of current flow Rij =Rji.

• Iij = current flowing from nodes i to node j (Iij>0: flow i→ j, Iij<0: j→ i).
Because of this definition, Iij =−Iji.

We assume the power at node i is generated at voltage Vi, such that

Pi(t) =ViQi(t).

1www.phasetophase.nl
2www.phasetophase.nl
3http://www-01.ibm.com/software/integration/optimization/cplex/
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We are interested in the behaviour of the local flow Iij given the production and
consumption pattern Qi. The flow of current in the network is governed by the laws
of Ohm and Kirchhoff. The voltage drop along network edge (i,j) is given by Ohm’s
law

Vj−Vi=RijIij . (2.1)

Kirchhoff’s current law states that the total current entering a node equals the
total current leaving it. For node i with net production Qi this becomes∑

j

Iij =Qi (2.2)

Kirchhoff’s voltage law states that the total voltage drop around a closed loop in
the network must be zero. Let L={(k1,k2),(k2,k3),. ..,(kn,k1)} be a closed loop of n
nodes. Then we have ∑

(ki,ki+1)∈L

Rki,ki+1Iki,ki+1 = 0, (2.3)

where kn+1 =k1.
In 1847 Kirchhhoff [5] already showed that to determine the current I, it is not

necessary to consider equation (2.3) for all cycles, but only for a set of independent
cycles. For example if the equation holds for a cycle {A,B,C} and a cycle {C,B,D},
then it also holds for the ”sum” {A,B,D,C}. A well-known method to construct this
set of independent cycles in as follows (see also Harary [4]). A tree is a graph without
cycles. A spanning tree of a graph is a subgraph which is a tree and contains all
nodes. For a connected graph with n nodes a spanning tree has n−1 edges.

We take a spanning tree T of the graph. If we extend T by one edge outside T we
obtain a cycle. From the set of edges outside T , we now obtain a set of cycles, where
each cycle is obtained by extending T with a single edge. This set of cycles forms a
set of independent cycles. In fact it forms a cycle base, i.e. a family of cycles which
spans all cycles of the graph. Now it is easy to see that the size of a cycle base equals

|E|−(|N |−1).

In general, Kirchhoff’s voltage law on the elements of a cycle base, implies Kirchhoff’s
voltage law on all loops. Hence, Kirchhoff’s voltage law can be described by |E|−
(|N |−1) equations of type (2.3).

We assume that the local network is connected to an infinite power reservoir and
modelled by one node, say ∞, connected to the outside world. This reservoir can
provide (or absorb) any amount of net power produced by the local network. For
simplicity, we will disregard the voltages and equations (2.1), by assuming that the
power at the nodes is produced approximately at a constant voltage. As a result, we
can analyse the load flow entirely in terms of currents and resistances. Thus, given
the resistance R and the local production Q, we can use (2.2) and (2.3) to calculate
I.

For the local flow, we do have to worry about equation (2.2) for the point∞. We
conclude that Kirchhoff’s current law can be described by |N |−1 equations of type
(2.2). Since Kirchhoff’s voltage law can be described by |E|−(|N |−1) equations of
type (2.3), the local flow I on the edges can be expressed in terms of R and Q by |E|
equations. From this we can easily show that there is a matrix A such that

I=AQ. (2.4)
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We illustrate this by the following example.

Example. To work with a concrete example, we consider the simple example
network of Figure 2.1. This network has five houses indexed 1,. ..,5 with two houses
in a closed loop, and three more houses in a radial network. The points with indices
a, b and c are connection nodes, that have no generation or usage.

Inf
a

b c

2

1 3

4 5

Fig. 2.1. Example network

Kirchhoff’s current laws for the respective nodes are:

I∞a−Ia1−Ia2 = 0 (a)

Ia1−I1b+Q1 = 0 (1)

Ia2−I2b+Q2 = 0 (2)

I1b+I2b−Ibc= 0 (b)

Ibc−Ic3−Ic4 = 0 (c)

Ic3 +Q3 = 0 (3)

Ic4−I45 +Q4 = 0 (4)

I45 +Q5 = 0 (5)

For the loop, Kirchhoff’s voltage law gives

Ra1Ia1 +R1bI1b−R2bI2b−Ra2Ia2 = 0.

For ease of exposition, we assume Ra1 =R1b=R2b=Ra2, so that Kirchhoff’s voltage
law results in Ia1 +I1b−I2b−Ia2 = 0.

The above equations can be written in matrix form

1 −1 −1 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 −1 0 0 0 0
0 0 0 1 1 −1 0 0 0
0 0 0 0 0 1 −1 −1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 1
0 1 −1 1 −1 0 0 0 0





I∞a
Ia1
Ia2
I1b
I2b
Ibc
Ic3
Ic4
I45


=



0
−Q1

−Q2

0
0
−Q3

−Q4

−Q5
0


(2.5)

The matrix on the left, which we denote by B is nonsingular. We also define the
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injection matrix

J =



0 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
0 0 0 0 0


and the vectors I= (I∞a,Ia1,Ia2,I1b,I2b,Ibc,Ic3,Ic4,I45)T of loads and Q=
(Q1,Q2,Q3,Q4,Q5)T of net productions. With this notation, equation (2.5) takes
the form

BI=JQ.

Recall from the above that B is a square nonsingular |E|×|E| matrix, and we can
define A=B−1J , cf. (2.4), with

A=
1
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−4 −4 −4 −4 −4
−3 −1 −2 −2 −2
−1 −3 −2 −2 −2
1 −1 −2 −2 −2
−1 1 −2 −2 −2
0 0 −4 −4 −4
0 0 −4 0 0
0 0 0 −4 −4
0 0 0 0 −4


(2.6)

3. Local power production and consumption
We write the net production of power at node i as

Pi(t) =−Ui(t)+
∑
k

Sik(t) (3.1)

where Ui is the power consumption and Sik is the generation by a device of type k
(e.g. solar panel of given type, wind turbine, CHP unit, ...). Assume we can specify
a distribution of local energy sources by choosing constants σik such that

Sik(t) =σikS̃ik(t) (3.2)

where S̃ik(t) are unit production rates (possibly random), e.g. for solar production
at a given node. S̃ represents the solar insolation per m2, multiplied by a (possibly
time-dependent) efficiency parameter that incorporates the angle of orientation of the
solar panel and its efficiency factor (W/lux). Thus, σik determines the size of the
production unit (e.g. m2 solar panels) of type k at node i.

As mentioned earlier, we assume that the power at each node in the local network
is produced at a given voltage Vi. We will also assume that these voltages are all
approximately equal, i.e. Vi≈Vj . This implies that Qi depends on σik in much the
same way as Pi:

Qi(t) = qi0(t)+
∑
k

σikqik(t) (3.3)
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4. Objective: maximal local energy production under load constraints

4.1. Deterministic case
The overall objective is to maximize the collective yearly energy production E

by the local energy production units, while obeying constraints on the loads in the
local network. In the deterministic setting, these are hard constraints, of the form
|Iij |≤ Imij with given maximal loads Imij . For simplicity, we will not take into account
constraints on the voltages (recall that we had assumed the voltages to be given).

We denote the yearly energy production of a unit size device of type k at node i
as

Σik =

∫
year

dtS̃ik(t)

The total energy production E is determined by the σik and Σik. In this section, all
Σik, and thereby E, are considered to be non-random. The objective is to maximize
E under variation of σ. Thus:

σ̂= argmax
σ

E(σ)

= argmax
σ

∑
i

∑
k

σikΣik (4.1)

= argmax
σ

σTΣ (4.2)

under the constraints

∀ i,j,t : |Iij |≤ Imij (4.3)

∀ i,k : σik≥0 (4.4)

Because of (2.4) we can write

Iij(t) =
∑
j′

Aijj′Qj′(t) . (4.5)

By substituting this expression in (3.3) the current constraints (4.3) can be recast as

∀ i,j,t : −Imij ≤A0
ij(t)+

∑
j′,k

Ãijj′k(t)σj′k≤ Imij (4.6)

or

−Im≤A0(t)+Ã(t)σ≤ Im (4.7)

with

A0
ij(t) =

∑
j′

Aijj′qj′0(t) (4.8)

Ãijj′k(t) =Aijj′qj′k(t) (4.9)

Although the objective function does not depend on time, the constraints do:
we need −Im≤A0(t)+Ã(t)σ≤ Im for all t. Can we find t1,...,tN such that if the
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constraints are satisfied at t1,...,tN then they are satisfied for all t? If so, we extend
the number of linear constraints (one set for every tn) and solve the resulting LP.

Summarizing: if we check the constraints (4.6) only at a finite number of points
in time (t1,...,tN ), we have to solve the following linear program (LP):

σ̂= argmax
σ

E(σ) (4.10)

E=σTΣ (4.11)

σ≥0 (4.12)

Ã(t1)σ≤ Im−A0(t1) (4.13)

−Ã(t1)σ≤ Im+A0(t1) (4.14)

... (4.15)

Ã(tN )σ≤ Im−A0(tN ) (4.16)

−Ã(tN )σ≤ Im+A0(tN ) (4.17)

4.2. Benefits of increasing the maximum loads

From the theory of linear programming it is known that each linear program

max{cTx|Ax≤ b, x≥0}

has a corresponding dual problem

min{bTu|ATu≥ c, u≥0}.

The optimal values of the dual variables u are called the shadow prices of the con-
straints Ax≤ b (i.e., the constraints (4.13) – (4.17) for the network problem considered
here). These optimal values can be calculated from the solution of the original (pri-
mal) LP. Let x̂ and û denote the solutions of the primal and dual LP. Assuming these
solutions exist, they satisfy cT x̂= bT û. Thus, the shadow prices û can be seen as the
gradient of the maximum cT x̂ of the (primal) objective function with respect to the
constraints b.

Let the shadow prices associated with the constraints (4.13), (4.16), etc. for edge
(i,j) be denoted by ûij(t1) and ûij(tN ). Similarly, ŵij(t1) and ŵij(tN ) denote the
shadow prices associated with (4.14), (4.17), etc. If the Imij is increased by a small
value ε, the value of the maximum yearly energy production E(σ̂) will increase by

∆ij(ε) = ε

N∑
n=1

(ûij(tn)+ ŵij(tn)).

Edges (i,j) for which this value is largest represent connections for which investment
in additional load capacity is most beneficial.

4.3. Stationary stochastic case

In this section we assume that usage and generation at nodes are stationary
random variables, i.e. all Ui and S̃ik are characterized by probability distributions
that are independent of time. For the objective function we take the expectation of
the energy production (which, due to the assumption of stationarity, is proportional
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to the expectation of the power production). That is,

EE(σ) =E
∑
i,k

σik

∫
year

dtS̃ik (4.18)

∝
∑
i,k

σikES̃ik (4.19)

Thus, the objective function is (again) linear in σ.
The constraints must be reformulated. Rather than imposing a hard constraint

|Iij |≤ Imij , we want the probability that currents exceed their threshold to be below a
certain level. Thus, we require

Prob(|Iij |>Imij )<εij (4.20)

Alternatively, we can use a single constraint:

Prob(∃(i,j,) |Iij |>Imij )<ε (4.21)

An interesting, related question is: given a set of constants σik, what is the prob-
ability distribution for any Iij? That distribution tells us e.g. what the probabilities
are for small and large overloads.

Because of the linearity of the system (I depends linearly on Q, Q depends linearly
on σ, U and S̃), the random variable Iij is a linear combination of the random variables

Ui and S̃ik. We cannot assume that the Ui and S̃ik are all independent. In fact, for
some types of production devices (e.g. solar panels) we expect S̃ik≈ cijS̃jk for any
i,j (unless the network is well spread out geographically). In other words, two solar
panels of the same size but at different (nearby) locations produce nearly the same
power at equal times.

Constructing the probability distributions for the I from those for U and S̃ will
be difficult, partly because the dependence discussed above. Another complication
stems from the type of distributions for U and S̃: it is questionable that those are
close to known distributions (such as Gaussian). Monte-Carlo simulation can provide
a way out (but may be time-consuming).

4.4. Time-dependent stochastic case
Clearly, it is more realistic to consider Ui and S̃ik as non-stationary stochastic

processes, rather than as stationary random variables. The non-stationarity stems
from the dependence of Ui and S̃ik on seasonality and on the day/night cycle. The
objective function, the expected yearly energy production, is still linear in σ:

EE(σ) =E
∑
i,k

σik

∫
year

dtS̃ik (4.22)

=
∑
i,k

σik

∫
year

dtES̃ik , (4.23)

where we have used E
∫
dtS̃=

∫
dtES̃ because all S̃ik are non-negative. Formulating

(or estimating) suitable stochastic processes will be a major challenge. In fact, a
hybrid approach (consisting of deterministic signals incorporating the daily, weekly
and seasonal cycles, and supplemented by a stationary noise) may be plausible.
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5. Computational experiments

For this paper we conducted numerical experiments for the deterministic case of
Section 4.1 only. There was insufficient data for testing the stochastic model.

For the SWI, typical solar production and household usage data were provided by
KEMA in the following form: 1) a database containing the instantaneous power flow
in Watts for 27 households at 10 minute intervals for one week and 2) solar insolation
data in lux at 10 minute intervals for one year.

Making use of the network of Figure 2.1 and corresponding matrix A (2.6) we
solved the deterministic LP (4.10)–(4.17) on a one week interval with time constraint
period ∆t= tn+1− tn= 10 minutes. The usage data Ui(t) was taken from the first 5
households of the provided data.

We took all power line maximum load constraints to be Imij = 70A. We assume
only a single type of decentral generation, namely solar energy. To this end we ignore
the second index k on source terms and denote them simply by Si(t), etc. We chose

Si(t) = (100 W/m
2
)S̃i(t)σi, so that σi can be interpreted as the surface area of solar

panels in m2 at node i. Solar insolation S̃i was taken from the first week of the given
datafile, and assumed to be uniform over the model neighborhood.

The solution of the optimization problem is shown in Figure 5.1. For the optimal
configuration, Figure 5.1a shows the loads in Amperes on all edges. Loads a1 and
a2 are approximately equal. The critical load is reached on edges a1 and a2 after
approximately 6.5 days.
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Fig. 5.1. Optimal configuration of solar panels: (top) current flow through each network edge
for the optimal configuration (negative flow is upstream, consistent with a net surplus in decentral
generation); (bottom) total solar generation at each household node for the optimal configuration.
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The optimal configuration of solar panels is

σ1 = 122 m2

σ2 = 121 m2

σ3 = 31 m2

σ4 = 24 m2

σ5 = 8 m2

For this arrangement, the production in kW at each household is shown in Figure
5.1b. Productions at nodes 1 and 2 are nearly equal and significantly greater than
nodes 3–5. The total optimal production is 1340 kWh/yr, with a net positive energy
production of 1070 kWh/yr.

This fact hints at a possible problem with the simple optimization model used
here. In particular, the benefit to a consumer of placing solar panels is dependent
on that consumer’s node in the network topology. For an optimal production, some
consumers will gain a much more significant advantage than others. We also computed
an alternative configuration for a strict ‘fair play’ scenario in which we assume all
households are allowed an equal maximum solar production, enforced by taking σi=
σ= const . We manually iterated to obtain an approximate best value of σ of 50 m2.
Figure 5.2a shows the loads on each network edge. The critical load again occurs on
edges a1 and a2 after 6.5 days. In Figure 5.2b the production of all households is
equal by assumption. Under the ’fair play’ scenario, the total production is reduced
to 1100 kWh/yr and net production to 830 kWh/yr.

6. Conclusion
In this paper, we developed a method that can quickly determine how many

units of each type (solar panel, small wind turbine or central heating power units)
can be inserted into any transmission line in the network, such that under given
distributions on the typical production and consumption, the maximum loads on the
lines and components will not be exceeded.

We first considered the situation were the power production and consumption are
considered deterministic but vary over time. We derived a linear programming model
for maximizing the amount of decentral power generation while respecting the load
limitations of the network. Since linear programming problems can be solved effi-
ciently this is a promising result from the viewpoint of the application. We presented
an initial model for the case where power consumption and production are considered
as stochastic variables.

For the deterministic case we implemented a prototype in Matlab for a small
example. The results are promising since we could quickly compute the optimal
allocation of power generation units with a 10 minute time granularity. The results
revealed that the optimal allocation is unbalanced in the sense that houses closer to
the connection point to the high voltage network are allowed to generate much more
power that house located further from this connection, consistent with the findings
of Niemi and Lund [7]. To achieve complete fairness, we tested the situation were
each house generates the same amount of power. Then the financial benefits are more
uniformly distributed among the consumers. However, this provides a significantly
lower power production Consequently, the development of intelligent fairness criteria,
which for example can be achieved by adding additional constraints to the linear
programming model, is an interesting issue for further research.
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Fig. 5.2. Optimal ‘fair play’ configuration of solar panels: (top) current flow through each
network edge for this configuration; (bottom) total solar generation at each household node is equal.
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