The immune system is a distributed complex system

Rob | de Boer, Utrecht University

Explain to you how the adaptive immune system works:
to highlight its complexity features.
Whenever possible | will use equations.

Ask the question how one should model such a system.
Show an example of host-pathogen co-evolution
(that is typically studied with ODEs).

For that | even need some epidemiology.
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Lymphocyte dynamics (modeling deuterium labeling)
life spans of naive and memory T cells

Lymphocyte migration (quantifying 2PM videos)
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Epitope identification (NetMHCpan)
predict pMHC complexes of HIV and cancers

T cell repertoire sequencing (diversity): RTCR
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The immune system is a distributed complex system
taking decisions on how to respond to molecular
patterns in its environment (mango vs cholera).

It memorizes these decisions specifically.
It uses a large array of random detectors.

It protects its host to rapidly evolving pathogens.

During immune responses we see rapid biological
evolution on a time scale of weeks



Immune systems samples a few peptides and stores
contextual information in memory cells
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Diversity of TCR repertoire and polymorphism of MHC

Lymphocyte receptors are made by randomly assorting gene segments

and deliberate random mutations:

diversity of potential receptors (102°) >> number of genes (104

Each circulating T cell is a random detector expressing a unique
receptor.

After stimulation lymphocytes adopt a particular memory phenotype.

MHC molecules presenting the peptides to these receptors are
polymorphic:

thousands of alleles in the population.
We all sample different peptides from the same pathogen.

Due to a rare allele advantage: its is good to be different



Immune systems samples a few peptides and stores
contextual information in memory cells

naive T cell ~ educated T cells
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Immune responses develop in draining lymph nodes

Dendritic cells (DC) scan
peripheral tissues, and migrate to

draining lymph nodes to present
their antigens.

Millions of different naive T cells

migrate through lymph nodes, and
bind these DC.

Only 1:100000 T cells will
become activated, expand, and
emigrate as effector cells that

move back to the inflamed tissues.
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Lymphocyte receptors are made randomly by
(VD)) recombination and mutation
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Receptors have to specific to avoid massive deletion [pe Boer, Perelson, Borghans, 1993, 1999]



Let me introduce the pathogen: HIV
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Viral dynamics during chronic phase inferred by modeling
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Rapid turnover of plasma virions and CD4
lymphocytes in HIV-1 infection
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Determine life span of infected cells from treatment data
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Epidemiology: HIV-1 set-points vary orders of magnitude
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Partly due to host factors (MHC) & A-32 deletion in CCR5
Partly due viral factors: heritability & crippling mutations

Major unresolved problem in HIV research



Is the HIV-1| set-point optimized for transmission!?
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Set-point viral load is heritable

Heritability

Study (reference)
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Adaptation at the epidemic level is unexpected
Transmission events are separated by
hundreds of generations where HIV-1 is
evolving within a single host.

Within each host strains compete and evolve

Indeed HIV transmits quite poorly



Immunology: HIV rapidly accumulates
Immune escape mutations
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Immunology brings host heterogeneity
to epidemiology

Not only phenotypic heterogeneity (immunity)
but importantly also genetic heterogeneity

Major factor is the extremely polymorphic MHC (HLA)
|. we are all different,
2. almost everyone is heterozygous,

3. most SNP correlations with disease in MHC region.

Major strategy of the host is to be different

18
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Epidemiology: the SIR model

for Susceptible, Infected and Recovered
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Pathogens are expected to optimize Ro:

trade-off between infectiousness and virulence
(K is steady state of N in the absence of infection)



Transmission 3
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Is the HIV-1| set-point optimized for transmission!?
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Complexity features

Two levels of evolution: within and between hosts

Hundreds of generations within a host separate the
transmission events.

Host mounts unique immune responses
HIV rapidly evolves in every new host: escapes & reversions

Can virus evolve optimal transmission if that selection
occurs just once every hundreds of generations?

22



So what next: how do we model such
a system combining immunology,
epidemiology, host heterogeneity, and
virus evolution!?

23



Agent based model with two levels of selection

Virus contains n=300 potential epitopes (bitstring), which
can be wild-type or mutated (23% viruses).

Agents randomly select approximately k=15 epitopes.
With e escapes they will k-e immune responses.

Mutated sites that are not selected do confer a fithess
cost and are “deleterious mutations” (f).

Within the host the virus stochastically mutates epitopes
to escape immune responses and reverts deleterious
mutations to increase its fitness:

Ao (k=€) A

se+1, f—l yp g

Van Dorp,Van Boven & De Boer, PLoS Comp Biol, 2014.



Host A: v‘/ff;—@

2 CTL responses

infected cell The virus load in a host is
determined by

! the number of remaining
ﬁ%@&&\ \f\&\\ immune responses (k-e),

f=2 deleterious and by the total fitness cost of
mutations pMHC ,
all mutations (e+f)
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Vmax=7, escape rate A=l y!' V=6, escape rate A=10 y-'
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Modeling the epidemic level
Simulate a population of infected individuals ($+/=25000)

Each transmission event happens with a virus having
accumulated e escapes and f deleterious mutations:
a virus with e+f = m mutations in the n sites.

In the next random host we draw a new random binding
repertoire of k immune responses, and draw the expected
number of escaped epitopes €.

The remaining m-e’ form the new f’ deleterious mutations.

Parameters of Fraser et al. for infection and death: V*=10%>

Van Dorp,Van Boven & De Boer, PLoS Comp Biol, 2014.



Epidemics with two different mutation rates do not approach
same set-point
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Evolved mean set-point virus load

V=4.5 is the “optimal” viral load (heavy line)
«—  realistic range
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Evolved mean set-point virus load

V=45 is the “optimal” viral load (heavy line)
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Measure heritability during simulations
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Structural equation model
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Heritability of spVL is the sum of viral fitness and the
breadth of the immune response of the transmitting host

For realistic parameter values, half of the observed
heritability is due to the footprint effect
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Conclusions

For realistic mutation rates we do not expect the virus to
adapt much on the population level.

Evolution indeed dominated by the hundreds of
generations within heterogeneous hosts.

High heritability partly due to immunological footprint in
heterogeneous populations.

These variable “viral factors’” are not identifiable.

Agent based models required to answer this question



Extensions: immune responses:
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Total number of immune effector cells:

Scheme to allow for immune responses:

trivial (R€ = 0) escaped (R¢ = 0)
C \ Anaive T "ﬂ j

viable (R > 1) —> active <—— viable memory (R® >

sub-dominant (R¢ < 1) / & out-competed (R® < 1)



Extensions: rugged fitness landscape

J. theor. Biol. (1989) 141, 211-245

The NK Model of Rugged Fitness Landscapes And Its
Application to Maturation of the Immune Response

STUART A. KAUFFMAN AND EDWARD D. WEINBERGER
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Extensions: viral mutants & interference

point mutants
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stochastic —> sub-dominant —> dominant

(purged)

Probability that mutant survives initial stochastic phase:

| BT
1 —1/R*, where Rt = r P
Rate at which they leave this phase:
)\subd .= qﬁc]T(l — 1/RI) .

Subsequent exponential growth phase:
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One epidemic
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