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• Introductions 

• Complexity and Complex Systems Science:  Hype and Hope 

• The Course 

• What is a Complex System? 

• An Example 

• Chaos and Lyapunov exponents

Agenda



• Me: 

• Jason Frank 

• Mathematical Institute, Numerical Analysis 

• NWO Complexity (program board), UU Focus Area (steering 
committee) 

• Hans Freudenthal Building (HFG 612), j.e.frank@uu.nl, Tues-Thurs. 
http://www.staff.science.uu.nl/~frank011/Classes/complexity_intro/ 

• You: 

• “What’s your major?”, year? 

• Specialties? 

• Why complex systems? 

Introductions

mailto:j.e.frank@uu.nl
http://www.staff.science.uu.nl/~frank011/Classes/complexity_intro/


• “Complexity”,  “Complex Systems Science” 
• Mathematics:  combinatorial complexity,  P=NP?  TSP 

• Mathematics:  computational complexity, operations counts 

• Computer science:  (information theoretical) Kolmogorov 
complexity, information content.

Nomenclature

abababababababababababababababab

4c1j5b2p0cv4w1x8rx2y39umgw5q85s7

Vector sum = O(N),

Matrix-vector product = O(N2
),

Matrix-inversion = O(N3
),

FFT = O(N lnN)



• Complex systems science has roots in: 

• Catastrophe theory (1960s) 

• Chaos theory (1980s) 

• Computational science (the third pillar) 

• many others

History



Introductory Books



We study complex systems to understand them, but 
ultimately we often need to be able to predict and 
control them…

Examples of complex systems

Traffic
Transport
Networks



We study complex systems to understand them, but 
ultimately we often need to be able to predict and 
control them…

Trading and finance

Examples of complex systems



We study complex systems to understand them, but 
ultimately we often need to be able to predict and 
control them…

Epidemics

Examples of complex systems



We study complex systems to understand them, but 
ultimately we often need to be able to predict and 
control them…

Climate and weather

Examples of complex systems



We study complex systems to understand them, but 
ultimately we often need to be able to predict and 
control them…

Biology
Ecology

Examples of complex systems



Course references:



• Weekly meeting: Tuesday at 13.15 - 15.00.  The location changes - monitor 
Osiris. 

• I will give lectures, largely focused on models, methods and techniques, some 
dynamics and some analysis. 

• We will also have guest lectures from many different disciplines:  (if anything, 
Complexity science is multidisciplinary, we draw analogies and learn from each 
other)  

 • 27 October. Guest lecture: Henk Stoof (Physics)       
 • 10 November. Guest lecture: Vincent Buskens (Sociology)       
 • 17 November. Guest lecture: Rob de Boer (Theoretical Biology)        
 • 24 November. Guest lecture: Gábor Péli (Economics)      
 • 15 December. Guest lecture: Henk Dijkstra (Oceanography and climate)       
 • 5 January. Guest lecture: Koen Frenken (Innovation studies)      

• Scoring:  class involvement (20%), two small projects (40%), one big project with 
oral exam (40%).  You may work in groups of (up to) 3 persons. 

• Software:  Matlab, NetLogo, ???  Code repository on the course homepage.

Course setup

http://www.phys.uu.nl/~stoof
http://www.uu.nl/staff/vbuskens/0
http://theory.bio.uu.nl/rdb/
http://www.uu.nl/medewerkers/GLPeli/0
http://www.staff.science.uu.nl/~dijks101/
http://www.uu.nl/staff/KFrenken


• Anything that can’t be understood completely? 

• Anything nonlinear?  unpredictable? 

• There is no concensus. 

• Any ideas?

What is a Complex System?



What is a Complex System?
We are surrounded by complicated social worlds. These worlds are composed of multitudes of 
incommensurate elements, which often make them hard to navigate and, ultimately, difficult to 
understand. We would, however, like to make a distinction between complicated worlds and 
complex ones. In a complicated world, the various elements that make up the system maintain 
a degree of independence from one another. Thus, removing one such element (which 
reduces the level of complication) does not fundamentally alter the system’s behavior apart 
from that which directly resulted from the piece that was removed. Complexity arises when the 
dependencies among the elements become important. In such a system, removing one such 
element destroys system behavior to an extent that goes well beyond what is embodied by the 
particular element that is removed.

Complexity is a deep property of a system, whereas complication is not. A complex system 
dies when an element is removed, but complicated ones continue to live on, albeit slightly 
compromised. Removing a seat from a car makes it less complicated; removing the timing belt 
makes it less complex (and useless). Complicated worlds are reducible, whereas complex 
ones are not.

While complex systems can be fragile, they can also exhibit an unusual degree of robustness 
to less radical changes in their component parts. The behavior of many complex systems 
emerges from the activities of lower-level components. Typically, this emergence is the result 
of a very powerful organizing force that can overcome a variety of changes to the lower-level 
components. In a garden, if we eliminate an insect the vacated niche will often be filled by 
another species and the ecosystem will continue to function; in a market, we can introduce 
new kinds of traders and remove old traders, yet the system typically maintains its ability to 
set sensible prices. Of course, if we are too extreme in such changes, say, by eliminating a 
keystone species in the garden or all but one seller in the market, then the system’s behavior 
as we know it collapses.



What is a Complex System?
When a scientist faces a complicated world, traditional tools that rely on reducing the system 
to its atomic elements allow us to gain insight. Unfortunately, using these same tools to 
understand complex worlds fails, because it becomes impossible to reduce the system without 
killing it. The ability to collect and pin to a board all of the insects that live in the garden does 
little to lend insight into the ecosystem contained therein.

The innate features of many social systems tend to produce complexity. Social agents, 
whether they are bees or people or robots, find themselves enmeshed in a web of 
connections with one another and, through a variety of adaptive processes, they must 
successfully navigate through their world. Social agents interact with one another via 
connections. These connections can be relatively simple and stable, such as those that bind 
together a family, or complicated and ever changing, such as those that link traders in a 
marketplace. Social agents are also capable of change via thoughtful, but not necessarily 
brilliant, deliberations about the worlds they inhabit. Social agents must continually make 
choices, either by direct cognition or a reliance on stored (but not immutable) heuristics, about 
their actions. These themes of connections and change are ever present in all social worlds.

The remarkable thing about social worlds is how quickly such connections and change can 
lead to complexity. Social agents must predict and react to the actions and predictions of other 
agents. The various connections inherent in social systems exacerbate these actions as 
agents become closely coupled to one another. The result of such a system is that agent 
interactions become highly nonlinear, the system becomes difficult to decompose, and 
complexity ensues.
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• Complexity is often juxtaposed with reductionism, the scientific approach of 
dissecting a problem and studying its parts. 

• It is said that a complex system is one for which: 

• “the whole is greater than the sum of its parts” 

• a system whose behavior cannot be deduced from the behavior of its 
constituent elements - seems unlikely 

• more probably: we do not understand how the behavior of elements gives 
rise to the macroscopic behavior.  

• We will roughly adopt the definition that a complex system is one composed 
of many parts, for which the behavior of interest is expressed at a system 
level, as opposed to an individual level.  

• Clearly a multi-scale character, with emergent behavior (phase transitions) 

• Adaptivity, optimization, criticality

What is a Complex System?



Forest fire model (Miller & Page)
Lattice model (1D or 2D) of tree sites i=1,…,N. 
Each site contains a tree (Xi=1 ) or none (Xi=0 ).   
The production period consists of several phases: 
1) Growth - a new tree grows at each site with probability g. 
2) Fire - lightning strikes each tree with probability f.  All trees 

at contiguous lattice sites burn. 
3) Adaptation (optional) - each site adapts its growth rate, 

depending on its assessed risk. 
4) Production - the surviving trees are counted as the forest 

production for the period.
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Conclusions from Forest Fire models:
• The models do not succumb easily to direct analysis (and this gets 

worse with increased complexity). 

• Do not confuse model with reality. 

• Models can be used to test assumptions and make statements like “a 
possible mechanism that could cause an observed phenomenon 
is…” 

• Forest fire models have been used to model other phenomenon, like 
bank collapses. 

• “All models are wrong but some are useful” - George Box



Dynamical systems
The basic components of most complex systems are 
dynamical systems. 
 
Iterated maps: 

and differential equations: 

Flow maps and numerical methods.

D ⇢ RN , F : D ! D
xn+1 = F (xn), xn 2 D

dx

dt

= f(x), x(t) 2 D

x(t+ s) = �t(x(s)) xn+1 = xn +�tf(xn)



Dynamical systems
In general the dynamical systems may depend explicitly on 
time (nonautonomous), may depend on random variables 
(stochastic differential equations), and may be (highly) 
nonsmooth or discontinuous. 

Example:  see Forest fire models. 

Typically they are nonlinear and chaotic.



Lorenz Attractor

Lorenz’s 3-component model (1963)

E.N. Lorenz

1917 - 2008

dy1
dt

= �(y2 � y1)

dy2
dt

= y1(⇢� y3)� y2

dy3
dt

= y1y2 � �y3

� = 10, ⇢ = 28, � = 8/3



This effect is seen in 
climate simulations!

Chaotic behavior

Ten simulations of the 
Lorenz system with small 
perturbations to initial 
condition.

Just the variable z als 
functie van de tijd.



Chaos
A dynamical system is said to be “chaotic” if it possesses 
three properties: 
• Sensitive dependence on initial conditions 
• Topologically mixing (ergodic) 
• Dense (unstable) periodic orbits 

These properties are typically hard to prove for a given 
system, yet many practical nonlinear systems seem to exhibit 
them to some degree. 

Sensitive dependence has the greatest consequences for 
predictability.  



Lyapunov Exponents
Lyapunov exponents measure the exponential growth rate of 
a perturbation      to the initial condition. 

Example. 

Suppose A has a basis of eigenvectors

"0

xn+1 = Axn

x̃n+1 = A x̃n

"n+1 = A "n, "n = x̃n � xn

Avi = �ivi, i = 1, . . . ,M

"0 = ↵1v1 + ↵2v2 + · · ·+ ↵MvM

A"0 = ↵1Av1 + · · ·+ ↵MAvm = ↵1�1v1 + · · ·+ ↵M�Mvm

"n = An"0 = ↵1�
n
1 v1 + · · ·+ ↵M�n

MvM



Lyapunov Exponents
Lyapunov exponents measure the exponential growth rate of 
a perturbation      to the initial condition. 

Example.

"0 "(t) = e�t"0

ẋ = f(x)

˙̃
x = f(x̃)

"(t) = x̃(t)� x(t)

"̇ = f(x+ ")� f(x)

"̇ ⇡ f

0(x)"

Ẋ = f

0(x(t))X, X(0) = 1 ) "(t) = X(t)"0

e�t = X(t)

�(t) =
1

t
ln |X(t)|

�(t) = lim
t!1

1

t
ln |X(t)|

x(t) 2 R

� > 0 is expanding, � < 0 is contracting



Lyapunov Exponents
Lyapunov exponents measure the exponential growth rate of 
a perturbation      to the initial condition. 

General: 

Source: Cross, Lecture Notes, CalTech

"0 "(t) = e�t"0

ẋ = f(x)

˙̃
x = f(x̃)

"(t) = x̃(t)� x(t)

"̇ = f(x+ ")� f(x)

"̇ ⇡ f

0(x)"

) "(t) = X(t)"0

x(t) 2 RM

Ẋ = f

0(x(t))X, X(0) = I

�i(t) = lim
t!1

1

t
ln kX(t)vik, i = 1, . . . ,M

There exists an orthonormal basis                            such that  

(independent of initial condition for ergodic systems).

{vi, i = 1, . . .M}



Computing Lyapunov exponents
Computation of Lyapunov exponents is tricky because of the 
great differences in scaling.  Construct an orthogonal basis.

Source: Dieci, Jolly, Van Vleck 2011 

Q̇R+QṘ = AQR

Ṙ = QTAQR�QT Q̇R = BR

Q̇ = (I �QQT )AQ�QS

B = QTAQ� S

S = QT Q̇ = �ST

Ṙ = BR

These equations essentially project the original linear system 
onto a new basis in which the system becomes triangular.  In 
this case the Lyapunov exponents can be determined from

�i = lim
t!1

1

t

Z t

0
Bii(s) ds

Ẋ = A(t)X, X(t) = Q(t)R(t)



Computing Lyapunov exponents
Computation of Lyapunov exponents is tricky because of the 
great differences in scaling.  Construct an orthogonal basis.

Source: Dieci, Jolly, Van Vleck 2011 

Q̇ = (I �QQT )AQ�QS

Ṙ = BR

We can choose: 
to compute the p largest Lyapunov exponents. 

a basis for the unstable space.   

�i = lim
t!1

1

t

Z t

0
Bii(s) ds

B = QTAQ� S

S = QT Q̇ = �ST

ẋ = f(x), A(t) = f

0(x(t))

�i > 0, i = 1, . . . , p,

�p+1 = 0
Q = (q1, . . . , qp))

Q(0)R(0) = X(0) 2 RM⇥p



Computing Lyapunov exponents

Some notes: 

• The equations for Q and R need to be solved 
accurately (high order or adaptive step). 

• It is important to preserve orthogonality in the 
columns of Q (projection). 

• Orthogonalization via the modified Gram-Schmidt 
process.



CHAPTER 26. SHADOWING 2

the trajectory remains close to the backwards iteration of the true trajectory starting
atpn. This procedure applies to a hyperbolic system in higher dimensions, since the
expanding and contracting directions are consistent and separate. The shadowing
trajectory is found by integrating forward from the initial point the contracting
directions, and integrating backwards from the final point of the pseudo-trajectory
the expanding directions.

The existence of the shadowing trajectory near the pseudo-trajectory is shown
by the following argument [2] (we take the case of a two dimensional map F for
simplicity).

P P P0 1 2

p
p

p0
1

2

γ γ γ0 1
2F F F

Figure 26.1: Construction of the first few parallelograms Pi .

Surround the points on the pseudo-trajectory pj and pj+1 by parallelograms
Pj and Pj+1, with sides given by pieces of the stable and unstable manifolds,
chosen so that F(Pj ) straddles Pj+1 as shown in figure 26.1. If the one step error
is less than δ then the sides of the parallelograms can be restricted to a few times
δ. Now consider a closed curve γ0 in P0 running from one of the contracting sides
to the other. Then F(γo) must contain a closed curve γ1 that lies wholly within
P1 and runs from one contracting side to the other. Continue this to generate the
sequence of curves γj completely in Pj . Now choose a point xn on γn. Then this
point is close to pn (within a few δ). Also, each preimage Fj−n(xn) lies on γj

and is therefore close to within a few δ of pj . This shows the existence of the true
trajectory within the confining parallelograms.
An approximation to the true trajectory can be constructed by the “refinement”

technique [2]. Suppose that πn+1 is the one step error due to truncation or noise

πn+1 = pn+1 − f (pn) (26.1)

Shadowing trajectories
Consider a hyperbolic system with a fixed dimension of 
stable and unstable manifolds.  Suppose δ bounds the local 
error.  And let F(x) be the exact time-Δt flow map.

Source: Cross, Lecture Notes, CalTech

x0
x1

x2

stable

un
st

ab
le

2δ (say)



Shadowing
Shadowing can also be used to construct an improved 
trajectory.

Source: Cross, Lecture Notes, CalTech

Local error ⇡n+1 = xn+1 � F (xn)

Refined solution x̃n+1 = F (x̃n)

Determine �n such that x̃n = xn + �n

�n+1 = x̃n+1 � xn+1

= F (x̃n)� F (xn)� ⇡n+1

⇡ F

0(xn)�n � ⇡n+1

Let Qn = (Un|Sn) be a basis of unstable/stable spaces

Project the above equation onto Un and Sn.

Solve the stable (unstable) iteration forward (backward) in time.

�n = Un↵n + Sn�n

⇡n = Un⌘n + Sn⇣n



Shadowing
Shadowing results have been generalized to non-hyperbolic 
systems, etc.  

1186 ERIK S. VAN VLECK

Meth0d
Serial
Serial

-Serial
Serial
Serial
Serial
Serial
Serial

Parallel
Serial

Parallel
Parallel

TABLE 3
Lorenz equation (8 1.D 6).

0 T M
0.D0 "1.04 1.D+I"
0.D0 1.38 1.2D+i
l.D0 117’.5 i.D+3
.D-2 117.5 1.D+3
.’D4 117.5 1.D+3

l.D-6 117.5 1.D+3’
0.D0 117.5 1.D+3
5.D-2 117.5 1.D+3
5.D-2 118.5 1.D+3
51D-2 1126.3 l.D+4
5.D-2 1133.8 l.D+4
5.’D-2 11258.9 1.D+5

IiA-III
1.91D+3
1.56D+5
8.75D0

’5.17D+
1.290+5
3.32D+5
3.32D+5
1.26D+1
1.26D+
1.26D+
1.55D+1
2.34D+

23.03
525.42

4.89
12.51

’553.71
876.23
876.39

6.28
6.28
6.28
6.28
6.89

r/
8.4D-1

3.5D0
1.90-2

1.1D-2
1.1D-2
1.1D-2
1.3D-2
2.2D-2

Cost
4.78D-5 2,0

2.0- 5.1
2.51D-5 52.50

49.39
52.48
45.19

1.25D-5 54.66
1.25D-5 2.96
1.250-5 413.9
1.25D-5 3’.41
1.380-5 6.10

3O

25

20

15

10

-5

-15

-2O

-25
-20 -15 -i0 -5 0 5 i0 15 20

FIG. 2. x y plot ofcomputed trajectoryfor T 117.5.

where r (x2 + y2)1/2. We consider the initial condition (x0, y0, z0) (1, 0, 0). We
use as a final time for the numerical integration T 6.283186 which is six-digit accurate
approximation to to the actual period 2zr. For this problem we restricted the maximum possible
order of ODEX to order eight.

The results for showing the existence of an actual periodic orbit near the numerically
computed orbit in Fig. 3 are tabulated in Table 4. These numerical results suggest that there
exists a periodic solution of the original IVP with a slightly different period that is within of
the computed orbit in Fig. 3. Time reparameterization is necessary as one would expect when
approximating a periodic orbit numerically with a standard method.
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Source: Van Vleck, SIAM J. Sci. Comput., 1995

By admitting uncertainty in 
the time step as well as in 
the discrete trajectory, Van 
Vleck is able to shadow a 
solution on the Lorenz 
attractor to time T=117.5 !



The time series of the y1 variable of one Lorenz trajectory was used as a 
driving function in a second.  The trajectories of the second system were 
observed to converge to those of the first.

Synchronization: Pecora & Carroll 1990

dy1
dt

= �(y2 � y1)

dy2
dt

= y1(⇢� y3)� y2

dy3
dt

= y1y2 � �y3

dY2

dt
= y1(⇢� Y3)� Y2

dY3

dt
= y1Y2 � �Y3

The same happened using y2 as a driver.  
With y3 it didn’t work.


Explanation:  sub-Lyapunov exponents 
(negative for the first two components, 
positive for the last).

Source: Pecora & Carroll, Phys. Rev Lett, 1990



The observation of Pecora & Carroll has remarkable 
consequences for prediction and control:


Even though the Lorenz system is chaotic, knowing only 
the time series of one component is sufficient to predict 
the whole solution.


Similarly, even though the system is chaotic, it is only 
necessary to control one component to drive the whole 
system.

Synchronization



• M. Cross, Introduction to Chaos, Lecture Notes, Cal.Tech.  
( http://www.cmp.caltech.edu/~mcc/Chaos_Course/Outline.html ) 

• N. Balci, A.L. Mazzucato, J.M. Restrepo, G.R. Sell, Ensemble dynamics 
and bred vectors, Monthly Weather Review, 140 (2012) 2308—2334. 

• L. Dieci, M.S. Jolly, E.S. Van Vleck, Numerical techniques for approximating 
Lyapunov exponents and their implementation, J. Computational and 
Nonlinear Dynamics, 2011. 

• L.M. Pecora & T.L. Carroll, Synchronization in complex systems, Physical 
Review Letters 64 (1990) 821-824. 

• E.S. Van Vleck, Numerical shadowing near hyperbolic trajectories, SIAM J. 
Scientific Computing, 16 (1995) 1177-1189.

Sources

http://www.cmp.caltech.edu/~mcc/Chaos_Course/Outline.html

