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Introductions

- Me:

e Jason Frank
 Mathematical Institute, Numerical Analysis

« NWO Complexity (program board), UU Focus Area (steering
committee)

* Hans Freudenthal Building (HFG 612), L.e.frank@uu.nl, Tues-Thurs.
http://www.staff.science.uu.nl/~frankO11/Classes/complexity intro/

- You:

e “What’s your major?”, year”?
e Specialties?

 \Why complex systems?


mailto:j.e.frank@uu.nl
http://www.staff.science.uu.nl/~frank011/Classes/complexity_intro/

Nomenclature

o “Complexity”, “Complex Systems Science”
 Mathematics: combinatorial complexity, P=NP? TSP
 Mathematics: computational complexity, operations counts

* Computer science: (information theoretical) Kolmogorov
complexity, information content.

Vector sum = O(N),

Matrix-vector product — O( N 2)7 abababababababababababababababab
Matrix-inversion = O(N3),
FET = O(N In N)

4cl1j5b2p0cviwlx8rx2y39umgw5q85s7




History

e Complex systems science has roots in:
e Catastrophe theory (1960s)
e Chaos theory (1980s)
 Computational science (the third pillar)

* many others
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Introductory Books
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Examples of complex systems

We study complex systems to understand them, but
ultimately we often need to be able to predict and
control them...
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Examples of complex systems

We study complex systems to understand them, but
ultimately we often need to be able to predict and
control them
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Examples of complex systems

We study complex systems to understand them, but
ultimately we often need to be able to predict and
control them...

Climate and weather

[t

1 Meter Inundation
T T TR T RS



Examples of complex systems

We study complex systems to understand them, but
ultimately we often need to be able to predict and
control them...
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Course setup

* Weekly meeting: Tuesday at 13.15 - 15.00. The location changes - monitor
Osiris.

| will give lectures, largely focused on models, methods and technigques, some
dynamics and some analysis.

* We will also have guest lectures from many different disciplines: (if anything,

Complexity science is multidisciplinary, we draw analogies and learn from each
other)

27 October. Guest lecture: Henk Stoof (Physics)

10 November. Guest lecture: Vincent Buskens (Sociology)

17 November. Guest lecture: Rob de Boer (Theoretical Biology)

24 November. Guest lecture: Gabor Péli (Economics)

15 December. Guest lecture: Henk Dijkstra (Oceanography and climate)
5 January. Guest lecture: Koen Frenken (Innovation studies)

e Scoring: class involvement (20%), two small projects (40%), one big project with
oral exam (40%). You may work in groups of (up to) 3 persons.

« Software: Matlab, NetlLogo, ?77? Code repository on the course homepage.


http://www.phys.uu.nl/~stoof
http://www.uu.nl/staff/vbuskens/0
http://theory.bio.uu.nl/rdb/
http://www.uu.nl/medewerkers/GLPeli/0
http://www.staff.science.uu.nl/~dijks101/
http://www.uu.nl/staff/KFrenken

What is a Complex System?

Anything that can’t be understood completely?
Anything nonlinear? unpredictable”
There is no concensus.

Any ideas”



What is a Complex System?

We are surrounded by complicated social worlds. These worlds are composed of multitudes of
incommensurate elements, which often make them hard to navigate and, ultimately, difficult to
understand. We would, however, like to make a distinction between complicated worlds and
complex ones. In a complicated world, the various elements that make up the system maintain
a degree of independence from one another. Thus, removing one such element (which
reduces the level of complication) does not fundamentally alter the system’s behavior apart
from that which directly resulted from the piece that was removed. Complexity arises when the
dependencies among the elements become important. In such a system, removing one such
element destroys system behavior to an extent that goes well beyond what is embodied by the
particular element that is removed.

Complexity is a deep property of a system, whereas complication is not. A complex system
dies when an element is removed, but complicated ones continue to live on, albeit slightly
compromised. Removing a seat from a car makes it less complicated; removing the timing belt
makes it less complex (and useless). Complicated worlds are reducible, whereas complex
ones are not.

While complex systems can be fragile, they can also exhibit an unusual degree of robustness
to less radical changes in their component parts. The behavior of many complex systems
emerges from the activities of lower-level components. Typically, this emergence is the result
of a very powerful organizing force that can overcome a variety of changes to the lower-level
components. In a garden, if we eliminate an insect the vacated niche will often be filled by
another species and the ecosystem will continue to function; in a market, we can introduce
new kinds of traders and remove old traders, yet the system typically maintains its ability to
set sensible prices. Of course, if we are too extreme in such changes, say, by eliminating a
keystone species in the garden or all but one seller in the market, then the system’s behavior
as we know it collapses.

COMPLEX
ADAPTIVE
SYSTEMS

AN INTRODUCTION TO
COMPUTATIONAL MODELS
OF SOCIAL LIFE




What is a Complex System?

When a scientist faces a complicated world, traditional tools that rely on reducing the system
to its atomic elements allow us to gain insight. Unfortunately, using these same tools to

understand complex worlds fails, because it becomes impossible to reduce the system without COMPLEX
killing it. The ability to collect and pin to a board all of the insects that live in the garden does ADAPTIVE

SYSTEMS

little to lend insight into the ecosystem contained therein.

The innate features of many social systems tend to produce complexity. Social agents,
whether they are bees or people or robots, find themselves enmeshed in a web of
connections with one another and, through a variety of adaptive processes, they must
successfully navigate through their world. Social agents interact with one another via
connections. These connections can be relatively simple and stable, such as those that bind
together a family, or complicated and ever changing, such as those that link traders in a
marketplace. Social agents are also capable of change via thoughtful, but not necessarily
brilliant, deliberations about the worlds they inhabit. Social agents must continually make
choices, either by direct cognition or a reliance on stored (but not immutable) heuristics, about
their actions. These themes of connections and change are ever present in all social worlds.

AN INTRODUCTION TO
COMPUTATIONAL MODELS
OF SOCIAL LIFE

The remarkable thing about social worlds is how quickly such connections and change can
lead to complexity. Social agents must predict and react to the actions and predictions of other
agents. The various connections inherent in social systems exacerbate these actions as
agents become closely coupled to one another. The result of such a system is that agent
interactions become highly nonlinear, the system becomes difficult to decompose, and
complexity ensues.
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What is a Complex System?

Complexity is often juxtaposed with reductionism, the scientific approach of
dissecting a problem and studying its parts.

It is said that a complex system is one for which:
e “the whole is greater than the sum of its parts”

e a system whose behavior cannot be deduced from the behavior of its
constituent elements - seems unlikely

* more probably: we do not understand how the behavior of elements gives
rise to the macroscopic behavior.

We will roughly adopt the definition that a complex system is one composed
of many parts, for which the behavior of interest is expressed at a system
level, as opposed to an individual level.

Clearly a multi-scale character, with emergent behavior (phase transitions)

Adaptivity, optimization, criticality



Forest fire model (Miller & Page)

Lattice model (1D or 2D) of tree sites i=1,...,N.

Each site contains a tree (X;=1 ) or none (X;=0 ).

The production period consists of several phases:
1) Growth - a new tree grows at each site with probability g.

2) Fire - lightning strikes each tree with probabillity f. All trees
at contiguous lattice sites burn.

4) Production - the surviving trees are counted as the forest
production for the period.



Forest fire model (Miller & Page)

Lattice model (1D or 2D) of tree sites i=1,...,N.
Each site contains a tree (X;=1 ) or none (X;=0 ).

The production period consists of several phases:
1) Growth - a new tree grows at each site with probability g;.

2) Fire - lightning strikes each tree with probabillity f. All trees
at contiguous lattice sites burn.

3) Adaptation (optional) - each site adapts its growth rate,
depending on its assessed risk.

4) Production - the surviving trees are counted as the forest
production for the period.




Conclusions from Forest Fire models:

The models do not succumb easily to direct analysis (and this gets
worse with increased complexity).

Do not confuse model with reality.

Models can be used to test assumptions and make statements like “a

possible mechanism that could cause an observed phenomenon
S...”

Forest fire models have been used to model other phenomenon, like
bank collapses.

“All models are wrong but some are useful” - George Box




Dynamical systems

The basic components of most complex systems are
dynamical systems.

[terated maps:
D c RY, F:D—7D

Ln+l = F(.I'n), T, © D

and differential equations:

dx
- = f(z), z(t)eD

Flow maps and numerical methods.
x(t + s) = de(x(s)) Tnt1 = Tn + At f(2n)



Dynamical systems

In general the dynamical systems may depend explicitly on
time (nonautonomous), may depend on random variables
(stochastic differential equations), and may e (highly)
nonsmooth or discontinuous.

Example: see Forest fire models.

Typically they are nonlinear and chaotic.



Lorenz’s 3-component model (1963)

Lorenz Attractor

E.N. Lorenz
1917 - 2008
W _ o(y2 — y1)
pm 2 1
Gz _ y1(p—y3) =y
o 1 3
dys 5 =
dt — Y1Y2 Y3
oc=10, p=28, [=28/3




Chaotic behavior

Ten simulations of the

Lorenz system with small
perturbations to initial

condition. .
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Chaos

A dynamical system is said to be “chaotic” If it possesses
three properties:

e Sensitive dependence on initial conditions

e Topologically mixing (ergodic)

e Dense (unstable) periodic orbits

These properties are typically hard to prove for a given
system, yet many practical nonlinear systems seem to exhibit
them to some degree.

Sensitive dependence has the greatest consequences for
predictabillity.



Lyapunov Exponents

Lyapunov exponents measure the exponential growth rate of
a perturbation €o to the initial condition.

Example. Tnt+1 = AZn
ilén—l—l — Aijn
En+1 :AEn, En :fz'n_mn
Suppose A has a basis of eigenvectors
A”UZ':)\Z'UZ', ZZl,,M

Eg = 1V + QU2 + ++ - + QUM

Acg = a1 Avy + -+ apyAv,, = g \vr + - + app Ay v,

En = Anéf() = ()41)\711@1 + -+ (XM)\RZUM



Lyapunov Exponents

Lyapunov exponents measure the exponential growth rate of
a perturbation €o to the initial condition.  &(t) = e*eg

Example. ZL‘ = f(z) =) eR e=flx+e¢e)— f(z)

R ¢~ [ (@)

o X (t)
A1) = 7 I |X (1)
A(f) = Jim —In| X (1)

A > 0 1s expanding, A < 0 is contracting



Lyapunov Exponents

Lyapunov exponents measure the exponential growth rate of
a perturbation €o to the initial condition.  &(t) = e*eg

General: ff = f(i”:’) z(t) € R é=f(z+e)— f(z)
T = f(x) e~ f'(x)e
e(t) = &(t) — ()

X =fl(z(t)X, X(0)=I = &(t) = X(t)eo

There exists an orthonormal basis {v;,7 =1,... M} such that

1
)\z(t) = lim ZIHHX(t)v’Luv 1 = 1,,M

{— 00

(independent of initial condition for ergodic systems).
Source: Cross, Lecture Notes, Callech



Computing Lyapunov exponents

Computation of Lyapunov exponents is tricky because of the
great differences in scaling. Construct an orthogonal basis.

X =A®)X, X)) =Q{)R(t)
QR+ QR =AQR
R=QTAQR-QTQR=BR B=Q'4Q-S
S=Q7Q=-5"
Q=(-QQ"NAQ—-QS
R = BR
These equations essentially project the original linear system

onto a new basis in which the system becomes triangular. In

this case the Lyapunov exponents can be determined from
1
)\i — ]lim - Bzz(s) ds
t=oo t Jo Source: Dieci, Jolly, Van Vieck 2011



Computing Lyapunov exponents

Computation of Lyapunov exponents is tricky because of the
great differences in scaling. Construct an orthogonal basis.

b= f(z),  A(t)=f(x(t))
Q=-QQ"NHAQ-QS  B=Q"4Q-S

R = BR S=Q"Q=-5"
1 t
)\i — lim - Bzz(s) ds
t—oo 0
We can choose: Q(0)R(0) = X(0) € RM*P

to compute the p largest Lyapunov exponents.

N >0, 2=1,...,p,
= Q: q1,-..,4
N (@12 p)

a basis for the unstable space.
Source: Dieci, Jolly, Van Vleck 2011



Computing Lyapunov exponents

Some notes:

* The equations
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e |tisimportantt

for Q and R need to be solved
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Shadowing trajectories

Consider a hyperbolic system with a fixed dimension of
stable and unstable manifolds. Suppose 6 bounds the local
error. And let F(x) be the exact time-At flow map.

[/ B
YO PO Y_l P1 ,Y PZ

F F 2 F
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Q
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Source: Cross, Lecture Notes, CalTech



Shadowing

Shadowing can also be used to construct an improved
trajectory.

Local error w11 = xpa1 — F(xy)
Refined solution z,, 11 = F(x,)
Determine ®,, such that z,, = x,, + ®,,

(I)n—l—l — jjn—l—l — Ln+1l
= F(z,) — F(xp) — Tni1
~ F,(Zlfn)q)n — Tn4+1

Let Q.,, = (U,|S,) be a basis of unstable/stable spaces

Project the above equation onto U,, and §,,.
Solve the stable (unstable) iteration forward (backward) in time.

Tn = UpMn T+ SnCn

Source: Cross, Lecture Notes, Callech



Shadowing

Shadowing results have been generalized to non-hyperbolic

systems, etc.

By admitting uncertainty in
the time step as well as In
the discrete trajectory, Van
Vleck is able to shadow a
solution on the Lorenz
attractor to time 1=117.5!
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Synchronization: Pecora & Carroll 1990

The time series of the y; variable of one Lorenz trajectory was used as a

driving function in a second. The trajectories of the second system were
observed to converge to those of the first.

(a) Lorenz system
same parameters

Ay 10 2
dy]_ ( ) Azw :
— = 0 — 107°
dt 2 I R T B e
dy2 dY2 time
T2 (p—ys) — s —2=yi(p—Y3) — Y
a (P =ys) = v2 dt ulp=Ya) =¥z, oz e e ers
dyg dYg Ay 10°
= Y2 — Bys ar Y ¥ o

time

The Same happened USing y2 aS a driver‘ FIG. 2. .The diﬂ’erencgs }f'—y and z'—z between the

With y3 it didn’t work. Syetom for () when parameters are the same for both systems
and (b) when the parameters differ by 5%.

Explanation: sub-Lyapunov exponents

(negative for the first two components,

positive for the last).
Source: Pecora & Carroll, Phys. Rev Lett, 1990



Synchronization

The observation of Pecora & Carroll has remarkable
conseqguences for prediction and control:

Even though the Lorenz system is chaotic, knowing only
the time series of one component is sufficient to predict
the whole solution.

Similarly, even though the system is chaotic, it is only
necessary to control one component to drive the whole
system.



Sources

M. Cross, Introduction to Chaos, Lecture Notes, Cal.Tech.
(http://www.cmp.caltech.edu/ mcc/Chaos_Course/Outline.html )

N. Balci, A.L. Mazzucato, J.M. Restrepo, G.R. Sell, Ensemble dynamics
and bred vectors, Monthly Weather Review, 140 (2012) 2308 —2334.

L. Dieci, M.S. Jolly, E.S. Van Vleck, Numerical techniques for approximating
Lyapunov exponents and their implementation, J. Computational and
Nonlinear Dynamics, 2011.

L.M. Pecora & T.L. Carroll, Synchronization in complex systems, Physical
Review Letters 64 (1990) 821-824.

E.S. Van Vleck, Numerical shadowing near hyperbolic trajectories, SIAM J.
Scientific Computing, 16 (1995) 1177-1189.
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