
Cellular Automata

Jason Frank
Mathematical Institute

!

WISM484 Introduction to Complex Systems, Utrecht University, 2015

• Game of Life:  
Simulator: http://www.bitstorm.org/gameoflife/  
Hawking: https://www.youtube.com/v/
CgOcEZinQ2I&feature=share&list=FLwikA_t8e6TSJW-L-lAHkKw

• Definition, concepts

• 1D, binary, nearest neighbor CA

• Game of Life, again: https://www.youtube.com/v/My8AsV7bA94

• Traffic models

Cellular Automata

http://www.bitstorm.org/gameoflife/
https://www.youtube.com/v/CgOcEZinQ2I&feature=share&list=FLwikA_t8e6TSJW-L-lAHkKw
https://www.youtube.com/v/My8AsV7bA94

• Defined on a structured lattice, e.g.

• Deterministic “evolution rule” (one-dimensional, radius r):

• Synchronous update

• Any discrete process on a finite space is eventually periodic. (Any
bounded program that doesn’t terminate must eventually repeat).

Cellular Automata
i 2 Zd

s(i, t) 2 Q, t 2 N,
s(i, t+ 1) = f (s(i� r, t), s(i� r + 1, t), . . . , s(i+ r, t)) .

•

• Defined via a look-up table. Example:

• Wolfram rule 101110002 = 184, “Rule 184”

Elementary cellular automata (1D, binary, nearest neighbor rule)

Q = {0, 1}, r = 1

s(i-1,t) s(i,t) s(i+1,t) s(i,t+1)
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

• We must specify 2r values to define the rule, rules.

• For r=1: 23=8 values and 28=256 different possible rules.

• Simplifying assumptions:

• Observational symmetry (no bias towards left or right neighbor),
means rows 2~5, 4~7 are equivalent ⟹ 26=64 distinct rules.

• Outcome symmetry (looks only at neighbors, not at self),
Assuming my neighbors will not change their strategies at the next
time, there is is a unique best move for me ⟹ 23=8 distinct rules.

• 0-1 symmetry 22=4 distinct rules:  
e.g. 0, 5, 90, 160  
Rule 0: trivial rule 
Rule 160: “0 unless both neighbors 1”  
Rule 5: “1 only if both neighbors 0” 
Rule 90: “Exactly two 1s in the ‘hood”

Elementary cellular automata (1D, binary, nearest neighbor rule)

22
r

s(i-1,t) s(i,t) s(i+1,t) Rule 160 Rule 5 Rule 90
1 1 1 1 0 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 0 0 0 1
0 1 1 0 0 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 1 0

• Wolfram identifies 4 classes of elementary CAs:

1. Quick evolution to stable, homogeneous state. (Rule 0, 160)

2. Stable or oscillating structures. Local changes to initial pattern
remain local. (Rule 5)

3. Chaotic: spread of initial perturbations, stable structures give
was to noise. (Rules 90, 30)

4. Complex: local structures persist for long times, capable of
universal computation. (Rule 110)

Wolfram’s classification

• A Turing machine is an abstract “computer” that can perform a finite
set of instructions on a data stream. This simple construction can
emulate the logic of any computer algorithm (a universal computer)

• Cook and Wolfram proved that Rule 110 is Turing complete, i.e. a
universal computer.

• This means that any computer program can be simulated using Rule
110.

• Of course, the devil is in the details: one has to find the right initial
condition, and be able to interpret the output.

• How a simple system can still generate complexity.

Universal computation

• Game of Life:  
Simulator: http://www.bitstorm.org/gameoflife/  
Hawking: https://www.youtube.com/v/
CgOcEZinQ2I&feature=share&list=FLwikA_t8e6TSJW-L-lAHkKw

• Definition, concepts

• 1D, binary, nearest neighbor CA

• Game of Life, again: https://www.youtube.com/v/My8AsV7bA94

• Traffic models

Cellular Automata

http://www.bitstorm.org/gameoflife/
https://www.youtube.com/v/CgOcEZinQ2I&feature=share&list=FLwikA_t8e6TSJW-L-lAHkKw
https://www.youtube.com/v/My8AsV7bA94

•

• Defined via a look-up table. Example:

• Wolfram rule 101110002 = 184, “Rule 184”

Elementary cellular automata (1D, binary, nearest neighbor rule)

Q = {0, 1}, r = 1

s(i-1,t) s(i,t) s(i+1,t) s(i,t+1)
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

• “Whenever there exists in the current state a 1 followed by a 0 (to its right), these swap
places.”

• Numbers of 1s and 0s is fixed: “number conserving”

• Symmetry: (left,right,0,1)

• Solves the “majority problem” in the sense that ultimately a repeated value indicates the
majority.

• “Traffic flow”

Rule 184

s(i-1,t) s(i,t) s(i+1,t) Rule 160 Rule 5 Rule 90
1 1 1 1 0 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 0 0 0 1
0 1 1 0 0 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 1 0

226 6 Spatial Models

where vi(t) is the velocity of car i at time t. Then, if xi(t) is the position of
car i at time t, cars are moving according to the rule

xi(t + 1) = xi(t) + vi(t + 1).

That is, at each time step, each car increases its speed by one unit (acceleration
a = 1), respecting the speed limit and avoiding collisions. But, the model also
includes some noise: with a probability p, each car decreases its speed by
one unit.

Although rather simple, the model exhibits features observed in real high-
way traffic (e.g., with increasing vehicle density, it shows a transition from
laminar traffic flow to start-stop waves, as illustrated in Fig. 6.3).

Fig. 6.3. First 50 iterations of the Nagel–Schreckenberg probabilistic cellular au-
tomaton traffic flow model. The initial configuration is random with a density equal
to 0.24 in the left figure and 0.48 in the right one. In both cases vmax = 2 and
p = 0.2. The number of lattice sites is equal to 50. Empty cells are very light gray
while cells occupied by a car with velocity v equal to either 0, 1, or 2 have darker
shades of gray. Time increases downwards

When discussing road configurations evolving according to various illustra-
tive rules, the knowledge of both car positions and velocities proves necessary.
Therefore, although we are dealing with two-state cellular automaton rules,
we shall not represent the state of a cell by its occupation number (i.e., 0
or 1), but by a letter in the alphabet {e, 0, 1, . . . , vmax}, indicating that the
cell is either empty (i.e., in state e) or occupied by a car with a velocity equal
to v (i.e., in state v ∈ {0, 1, . . . , vmax}). Configurations of cells of this type
will be called velocity configurations, or configurations for short.

When using velocity configurations, we shall not represent cellular automa-
ton rules by their rule tables but make use of a representation that clearly

228 6 Spatial Models

Fig. 6.4. First 30 iterations of the generalized deterministic rule 184 traffic flow
model. The initial configuration is random with a density equal to 0.24 in the left
figure and 0.48 in the right one. In both cases vmax = 2. The number of lattice sites
is equal to 50. Empty cells are white while cells occupied by a car with velocity v
equal to 0, 1, and 2 have darker shades of gray. Time increases downwards

It is straightforward to generalize the traffic flow model described by rule
184 to higher maximum velocities (see Fig. 6.4). If, as before, di is the distance
between car i and car i + 1, car velocities are updated in parallel according
to the rule7

vi(t + 1) = min(di(t) − 1, vmax),

and car positions are updated according to the rule

xi(t + 1) = xi(t) + vi(t + 1).

In the steady state, the average car velocity ⟨v⟩(ρ,∞) is given, as a function
of the car density ρ, by

⟨v⟩(ρ,∞) =

⎧
⎪⎨

⎪⎩

vmax, if ρ < ρc =
1

1 + vmax
,

1 − ρ

ρ
, otherwise,

(6.12)

and the order parameter characterizing the second-order phase transition be-
tween the free-moving phase and the jammed phase is

m(ρ) = vmax − ⟨v⟩(ρ,∞), (6.13)

or

m(ρ) =

⎧
⎨

⎩

0, if ρ < ρc,
ρ − ρc

ρρc
, otherwise.

In the jammed phase close to the critical car density ρc, the critical behavior
of the order parameter is characterized by the exponent β = 1 defined by
m(ρ) ∼ (ρ − ρc)β .
7 A similar model has also been studied by Fukui and Ishibashi [170].

