

Jason Frank Mathematical Institute

WISM484 Introduction to Complex Systems, Utrecht University, 2015

- Game of Life: Simulator: <u>http://www.bitstorm.org/gameoflife/</u> Hawking: <u>https://www.youtube.com/v/</u> <u>CgOcEZinQ2I&feature=share&list=FLwikA_t8e6TSJW-L-IAHkKw</u>
- Definition, concepts
- 1D, binary, nearest neighbor CA
- Game of Life, again: https://www.youtube.com/v/My8AsV7bA94
- Traffic models

- Defined on a structured lattice, e.g. $i \in \mathbb{Z}^d$
- Deterministic "evolution rule" (one-dimensional, radius r):

 $s(i,t) \in Q, \quad t \in \mathbb{N},$ $s(i,t+1) = f(s(i-r,t), s(i-r+1,t), \dots, s(i+r,t)).$

- Synchronous update
- Any discrete process on a finite space is eventually periodic. (Any bounded program that doesn't terminate must eventually repeat).

Elementary cellular automata (1D, binary, nearest neighbor rule)

•
$$Q = \{0, 1\}, \quad r = 1$$

• Defined via a look-up table. Example:

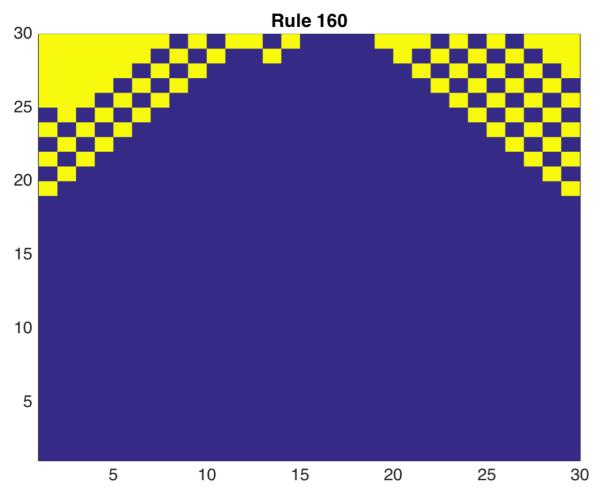
s(i-1,t)	s(i,t)	s(i+1,t)	s(i,t+1)
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

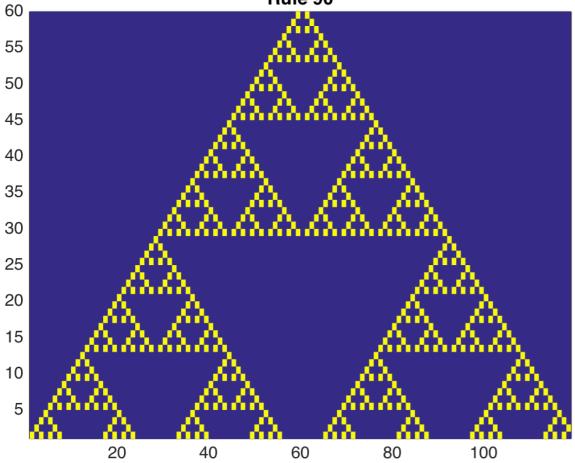
• Wolfram rule $10111000_2 = 184$, "Rule 184"

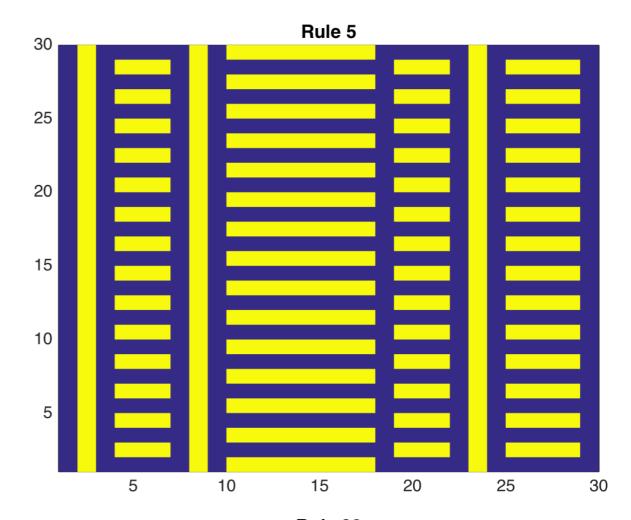
Elementary cellular automata (1D, binary, nearest neighbor rule)

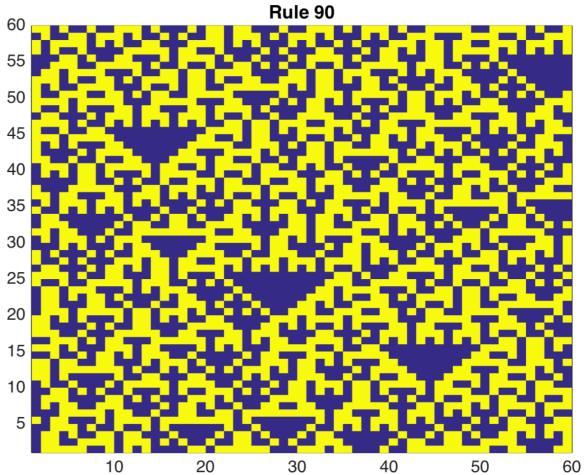
- We must specify 2^r values to define the rule, 2^{2^r} rules.
- For r=1: 2^3 =8 values and 2^8 =256 different possible rules.
- Simplifying assumptions:
 - Observational symmetry (no bias towards left or right neighbor), means rows 2~5, 4~7 are equivalent \Rightarrow 2⁶=64 distinct rules.
 - Outcome symmetry (looks only at neighbors, not at self), Assuming my neighbors will not change their strategies at the next time, there is is a unique best move for me $\Rightarrow 2^3=8$ distinct rules.
 - 0-1 symmetry 2²=4 distinct rules:
 e.g. 0, 5, 90, 160
 Rule 0: trivial rule
 Rule 160: "0 unless both neighbors 1"
 Rule 5: "1 only if both neighbors 0"
 Rule 90: "Exactly two 1s in the 'hood"

	s(i-1,t)	s(i,t)	s(i+1,t)	Rule 160	Rule 5	Rule 90
	1	1	1	1	0	0
	1	1	0	0	0	1
	1	0	1	1	0	0
J	1	0	0	0	0	1
	0	1	1	0	0	1
	0	1	0	0	1	0
	0	0	1	0	0	1
	0	0	0	0	1	0



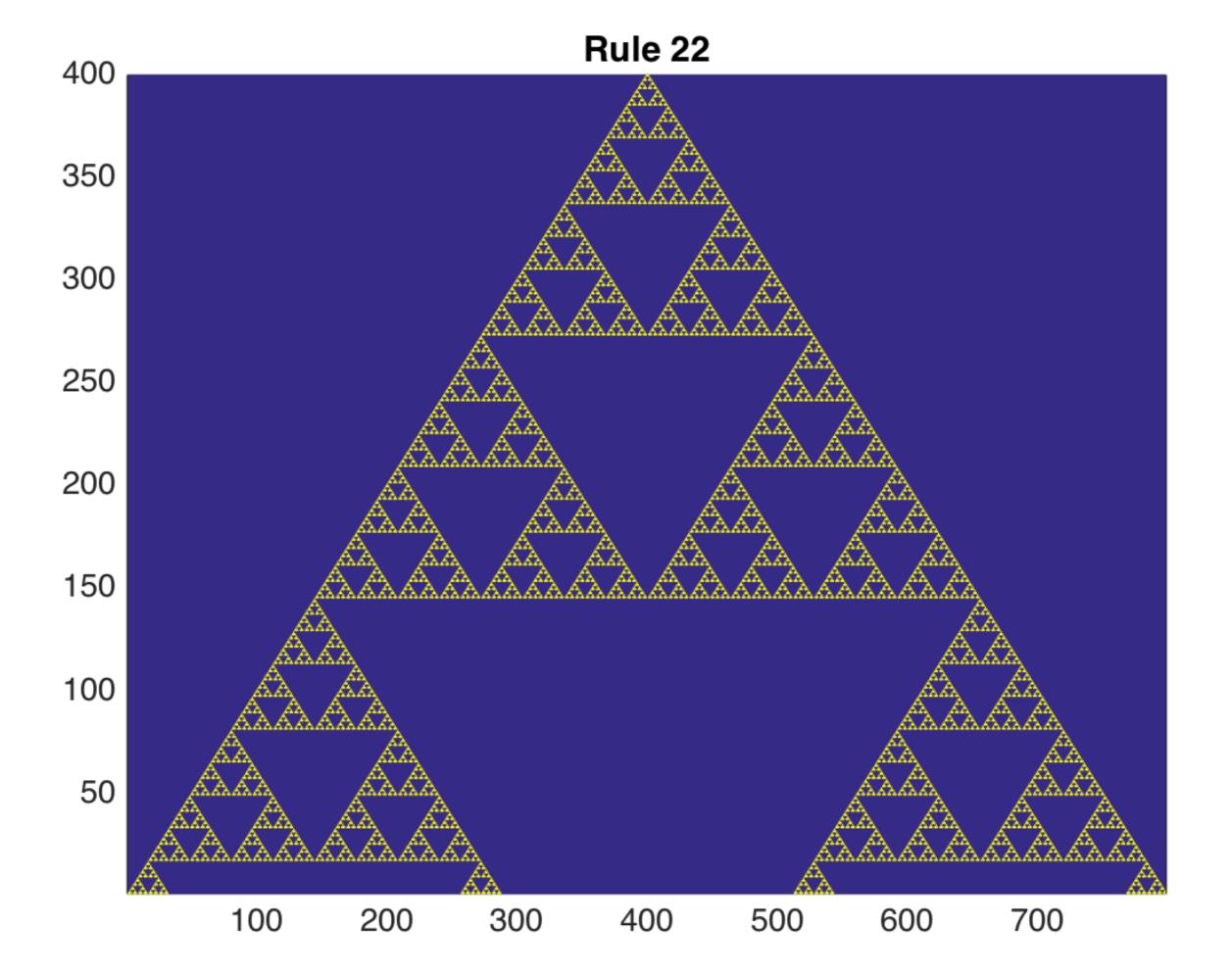


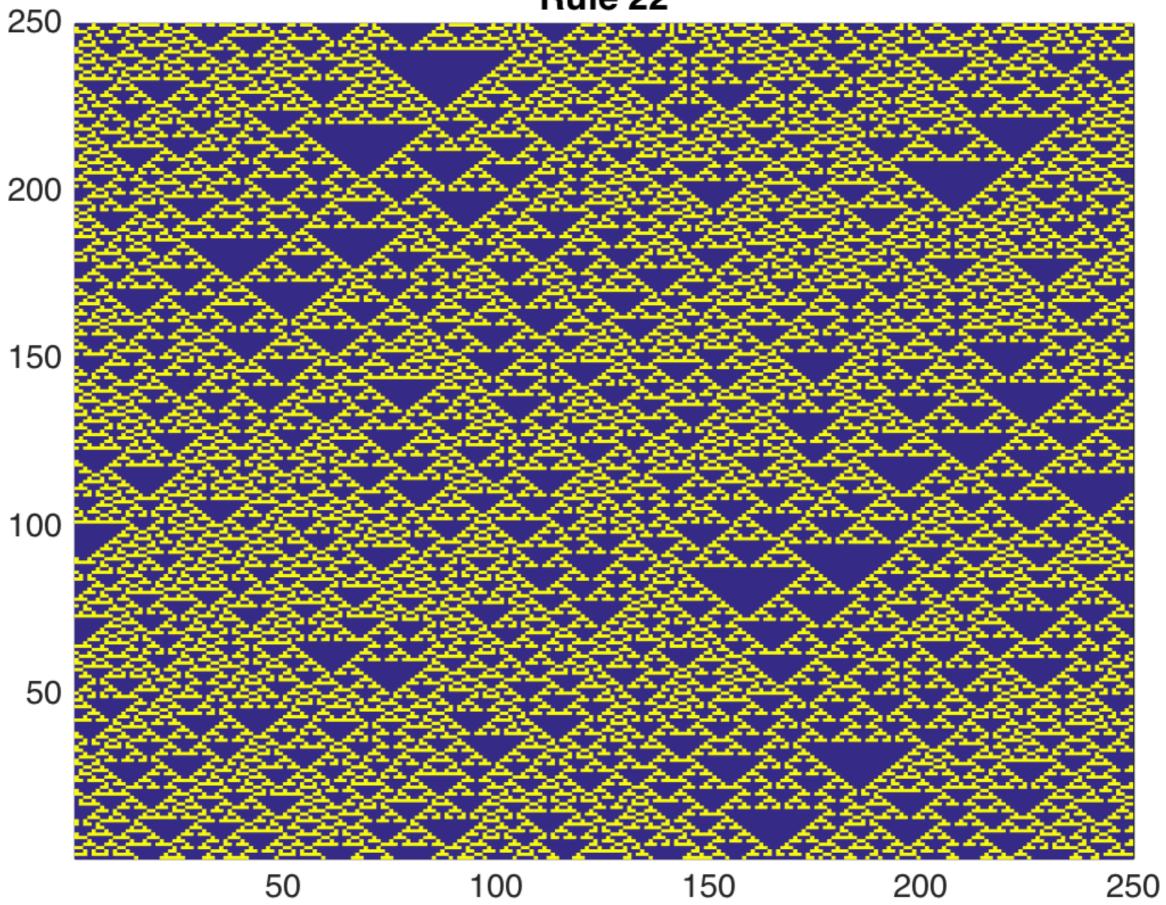


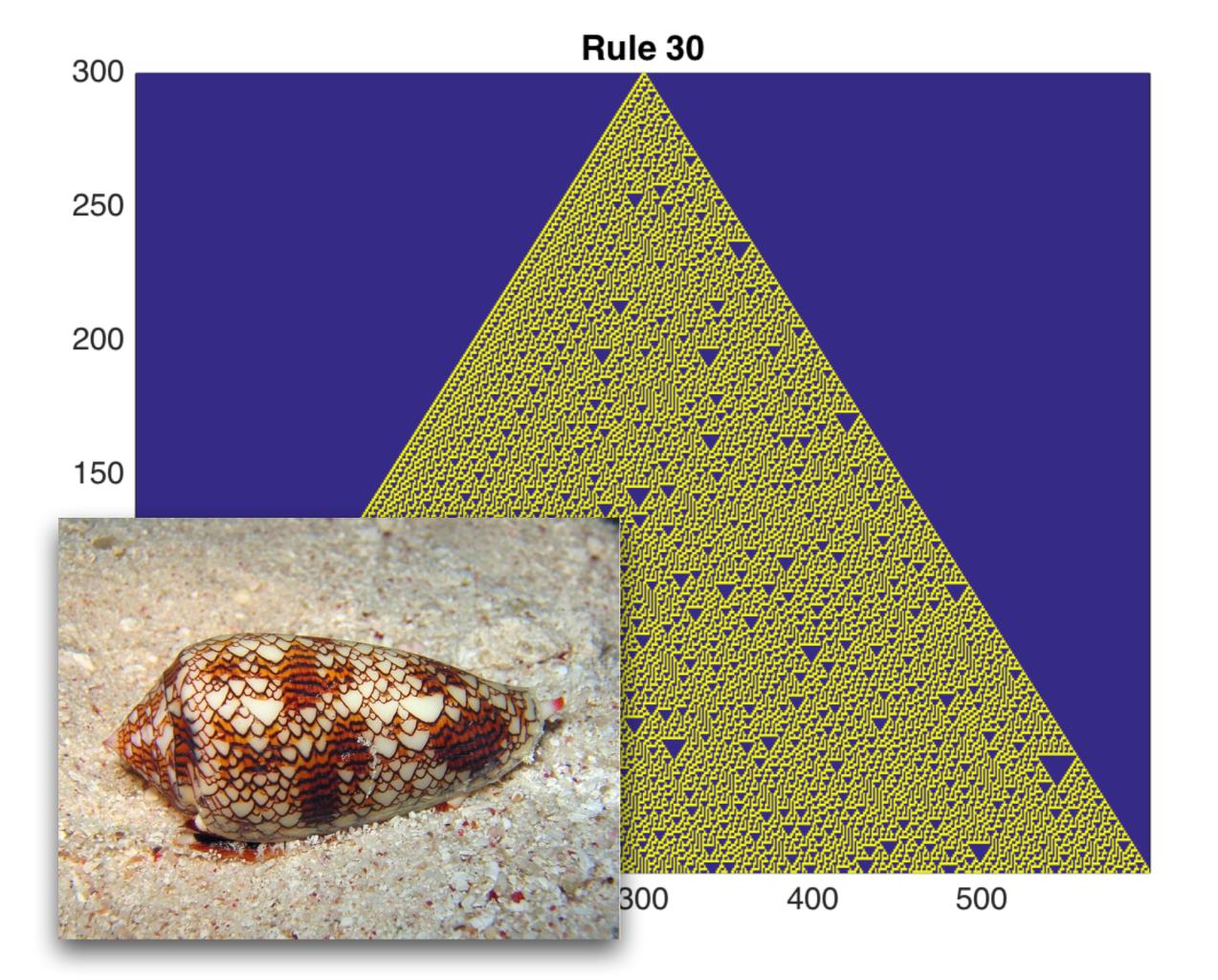


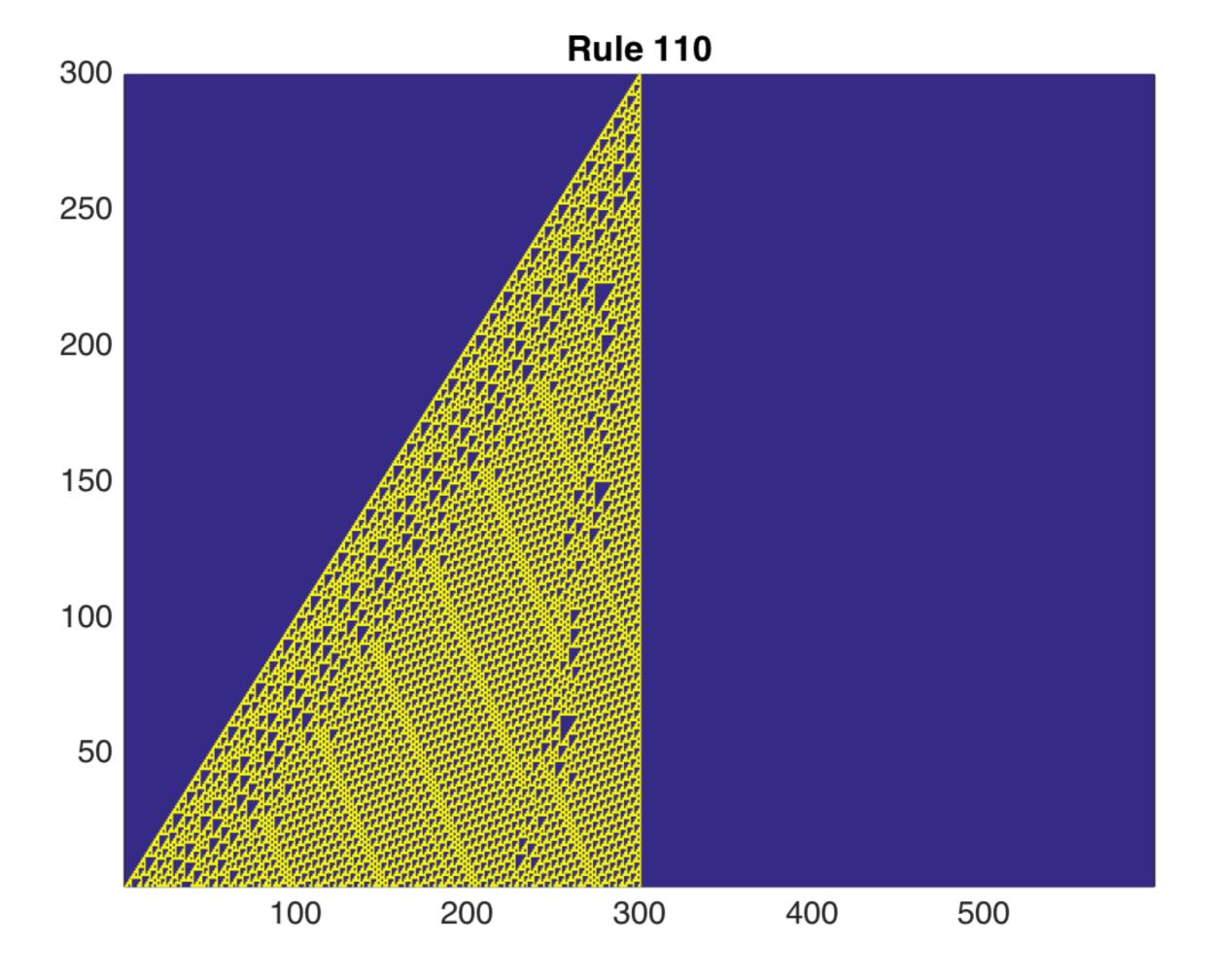
Wolfram's classification

- Wolfram identifies 4 classes of elementary CAs:
 - 1. Quick evolution to stable, homogeneous state. (Rule 0, 160)
 - 2. Stable or oscillating structures. Local changes to initial pattern remain local. (Rule 5)
 - 3. Chaotic: spread of initial perturbations, stable structures give was to noise. (Rules 90, 30)
 - 4. Complex: local structures persist for long times, capable of universal computation. (Rule 110)

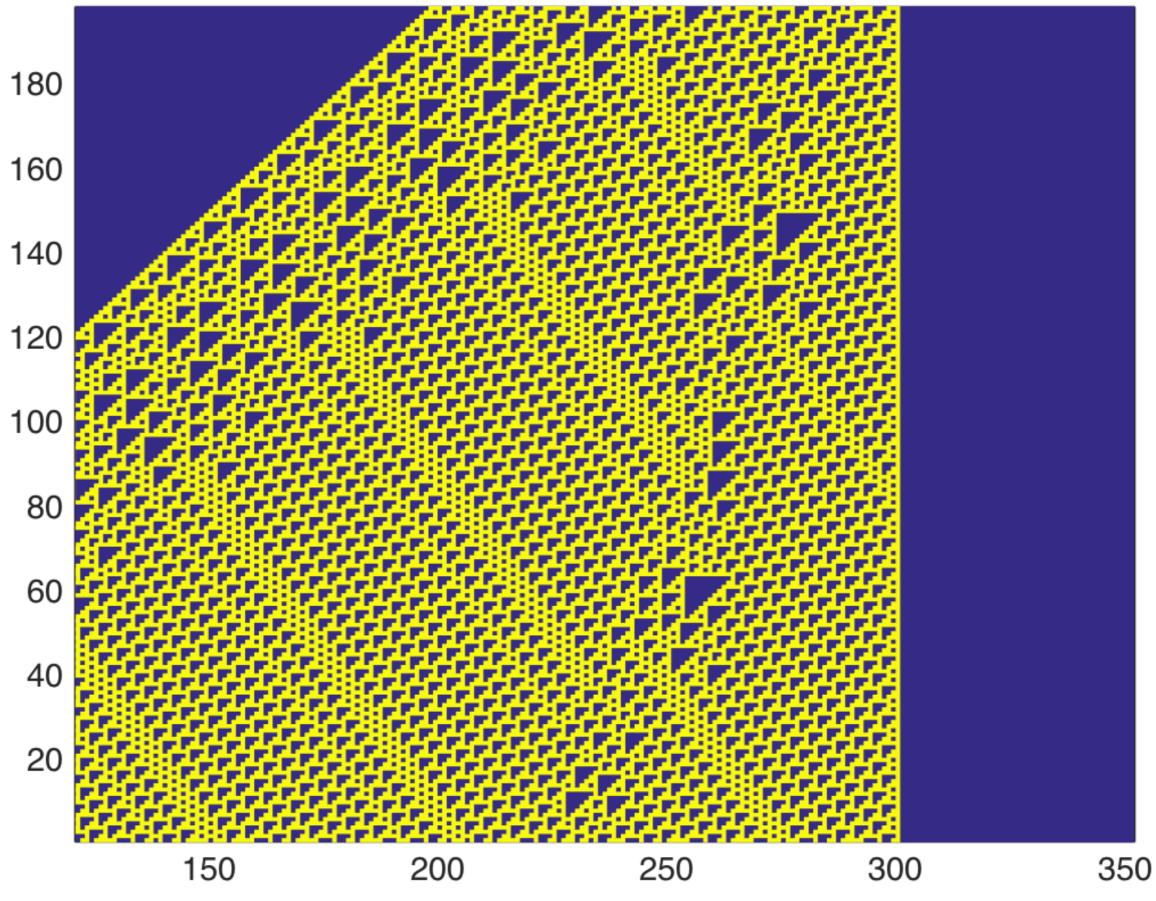




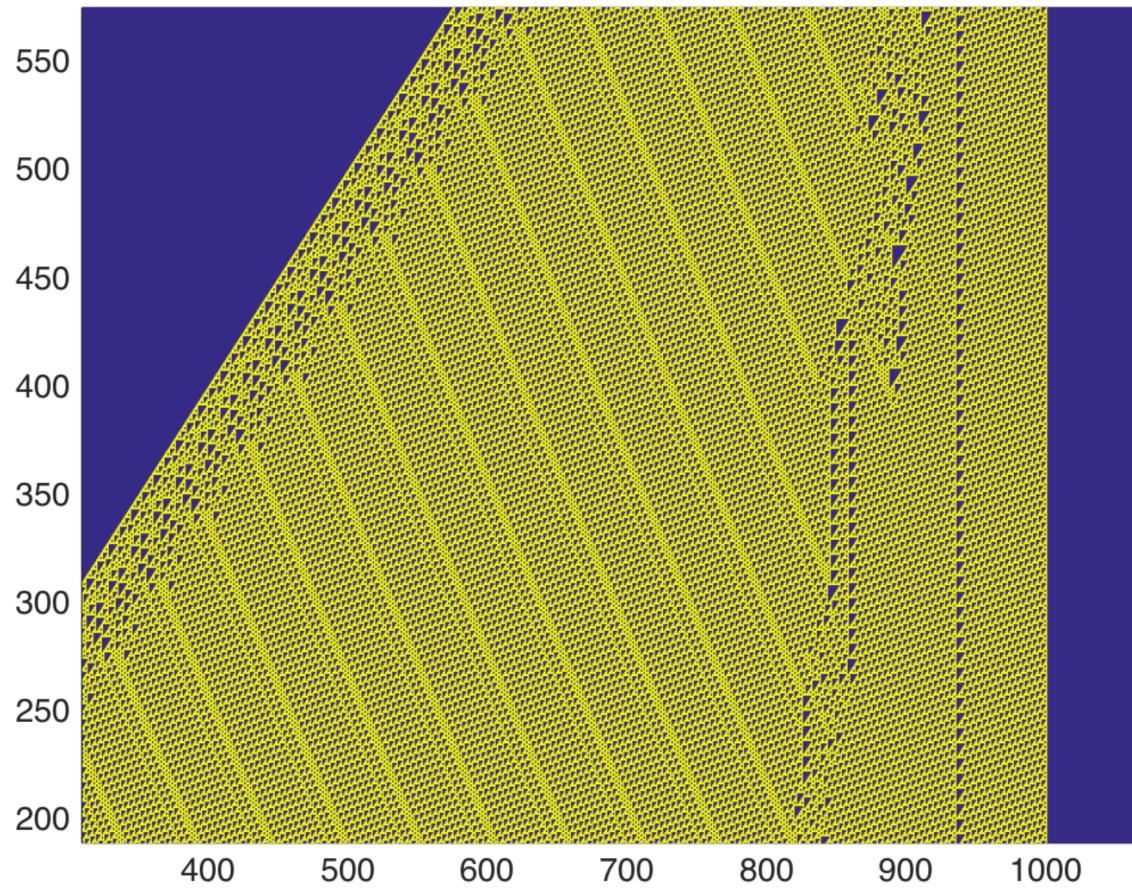




Rule 110

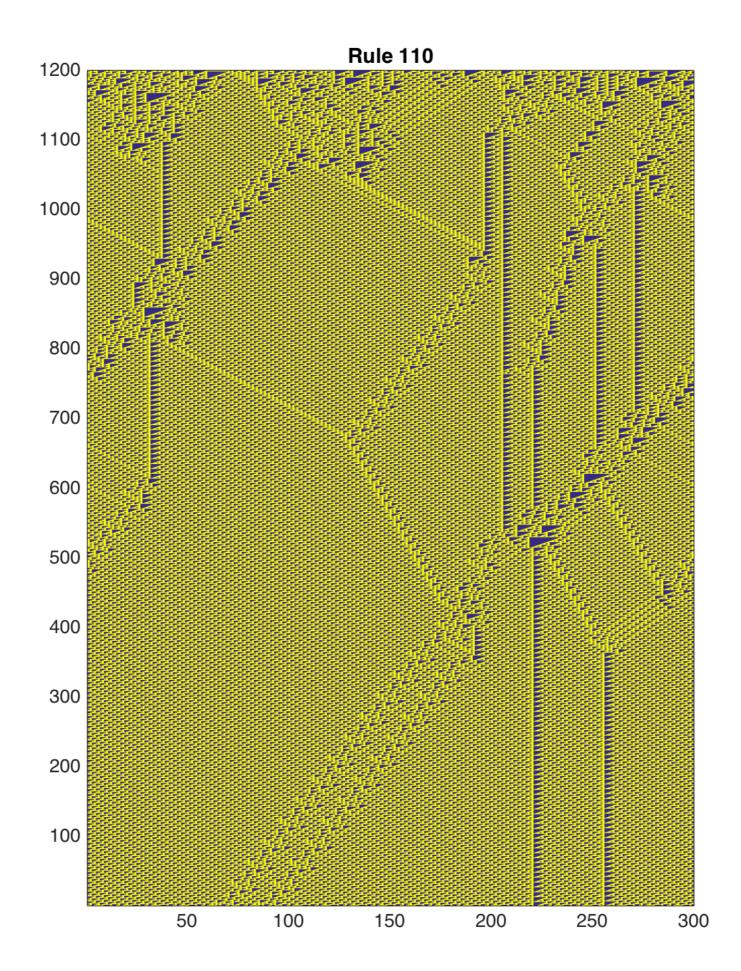


Rule 110



Universal computation

- A **Turing machine** is an abstract "computer" that can perform a finite set of instructions on a data stream. This simple construction can emulate the logic of any computer algorithm (a **universal computer**)
- Cook and Wolfram proved that **Rule 110** is Turing complete, i.e. a universal computer.
- This means that any computer program can be simulated using Rule 110.
- Of course, the devil is in the details: one has to find the right initial condition, and be able to interpret the output.
- How a simple system can still generate complexity.



- Game of Life: Simulator: <u>http://www.bitstorm.org/gameoflife/</u> Hawking: <u>https://www.youtube.com/v/</u> <u>CgOcEZinQ2I&feature=share&list=FLwikA_t8e6TSJW-L-IAHkKw</u>
- Definition, concepts
- 1D, binary, nearest neighbor CA
- Game of Life, again: https://www.youtube.com/v/My8AsV7bA94
- Traffic models

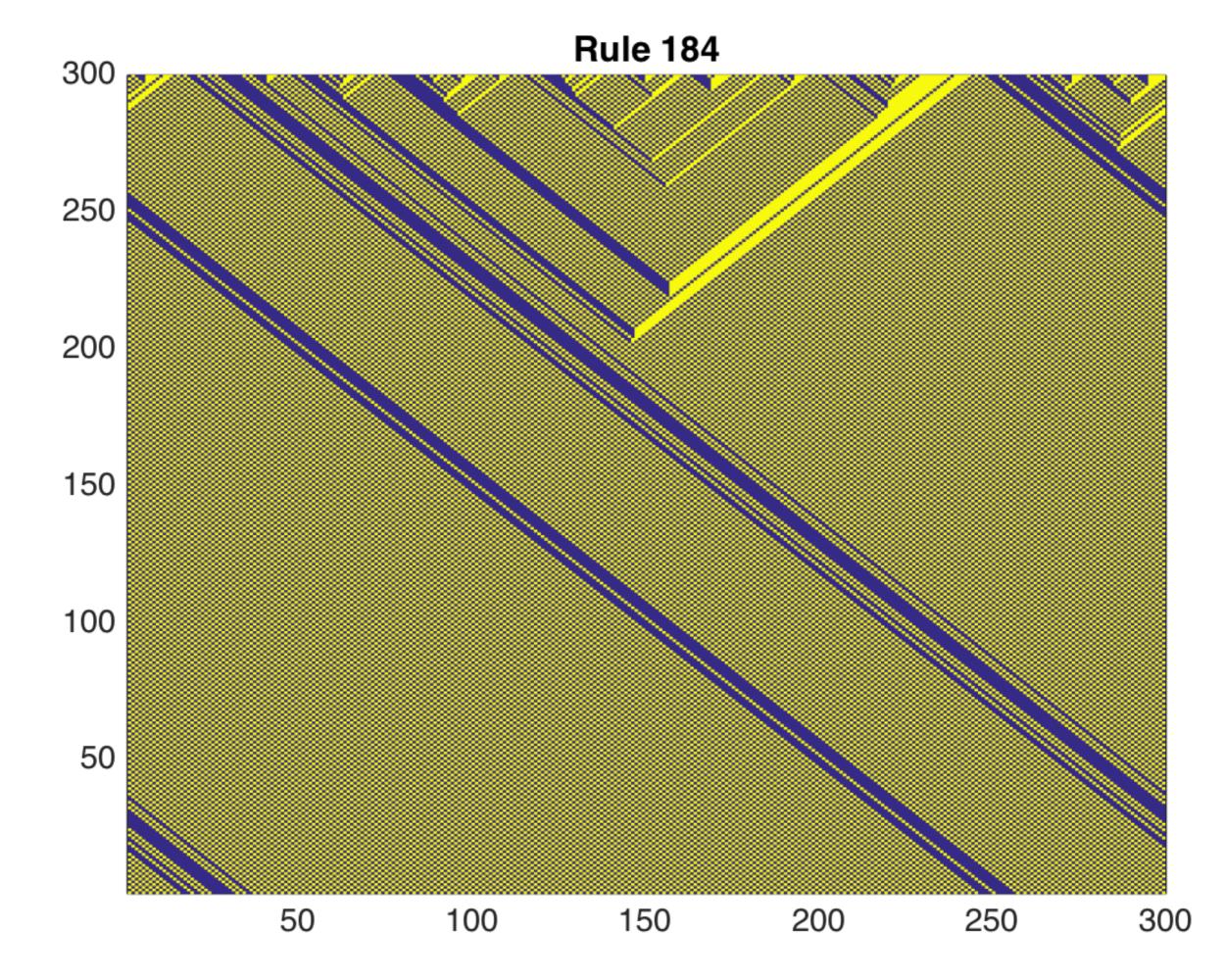
Elementary cellular automata (1D, binary, nearest neighbor rule)

•
$$Q = \{0, 1\}, \quad r = 1$$

• Defined via a look-up table. Example:

s(i-1,t)	s(i,t)	s(i+1,t)	s(i,t+1)
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

• Wolfram rule $10111000_2 = 184$, "Rule 184"



Rule 184

s(i-1,t)	s(i,t)	s(i+1,t)	Rule 160	Rule 5	Rule 90
1	1	1	1	0	0
1	1	0	0	0	1
1	0	1	1	0	0
1	0	0	0	0	1
0	1	1	0	0	1
0	1	0	0	1	0
0	0	1	0	0	1
0	0	0	0	1	0

- "Whenever there exists in the current state a 1 followed by a 0 (to its right), these swap places."
- Numbers of 1s and 0s is fixed: "number conserving"
- Symmetry: (left,right,0,1)
- Solves the "majority problem" in the sense that ultimately a repeated value indicates the majority.
- "Traffic flow"

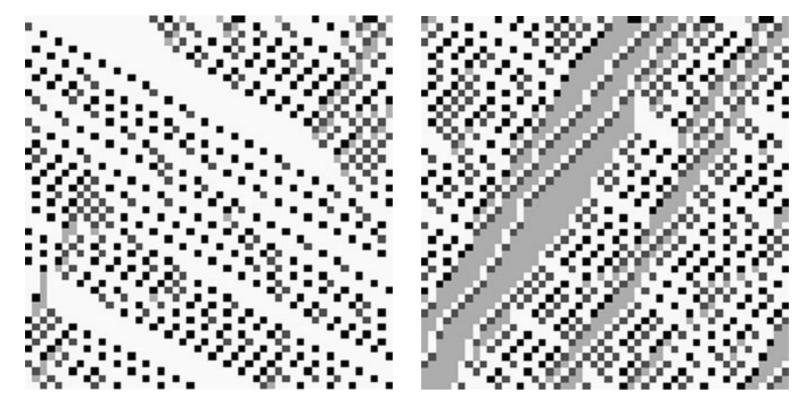


Fig. 6.3. First 50 iterations of the Nagel–Schreckenberg probabilistic cellular automaton traffic flow model. The initial configuration is random with a density equal to 0.24 in the left figure and 0.48 in the right one. In both cases $v_{\text{max}} = 2$ and p = 0.2. The number of lattice sites is equal to 50. Empty cells are very light gray while cells occupied by a car with velocity v equal to either 0, 1, or 2 have darker shades of gray. Time increases downwards

