Mathematical Modelling

Lecture |
Dimensional analysis



Preliminaries
® You

® Me
® Modelling

® focus is applied mathematics, techniques for constructing
models in various applications

® no real theory of modelling: experience; this course: a
taste for how models are constructed

® ODEs and PDEs (limited knowledge)

@® Scoring: based on 3/4 projects (coherent
problem set, a bit of computing, short report)

® announcement: no classes next week



Apples and oranges (pears? cats!)
Dimensional analysis

® (Don't let it fool you!)

® DA may suggest the form of a functional
relation, sanity check

® Allows us to put a problem in canonical
form

® Transform a solution for a specific case

® |dentify a minimum set of parameters



Aphids and Ladybugs

bifurcation analysis

® Aphid reproduction...

® | ogistic growth with predation

dn n n?
D 1
dt rn N) c -+ n?

® 3D parameter space (r, N, ¢)

® stable steady state populations
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Apples and oranges (pears? cats!)
Dimensional analysis

The main idea: you can't add apples and oranges (or apples and
cats)

* the equations that express a physical phenomenon should hold
independent of the measurement units used:

|.both sides of an equality, inequality, sum, difference must have
the same units

2. ratios, products, rational powers may mix units (km/hr)

3. arguments to transcendental functions must be dimensionless

* fundamental units: length (L), time (T), mass (M), charge (Q),
temperature (0)

* denote by [A] the fundamental dimensions of the quantity A (if
X denotes length, then [X] = L.

* (seeTable I.l in the book)



Example: projectile problem

2 2
Dimensional model: d’z ___gR C2(0) =0, ax

dt? (R+ x)? dt
X = height above ground, g = gravitational acceleration, R
radius of earth

d?zx
dt?

(0) = vg

~—g, = x(t)=~ A + vot

R~ R
Tr + >



Example |: projectile problem

Dimensional analysis:

Functional dependence presumed known: zn = f(m,g,vo)

Dimensions: [zm] =L, [¢gl=LT"* [m]l=M, [v]=LT""

Dimensional equation: = [m® vl ¢°
q 0] = [ of g° .

Equating dimensions: |, — M®(L/T)*(L/T?)° T: —b—2c=0

— MCLLb+CT—b—QC M: a=0
V2 {a=0,b=2,c= -1}

The only possibility is  4,, = o-2
9
Parameter determined by experiment, check scaling law



Example 2: drag on a sphere
Functional dependence presumed known:
DF — f(R,U,,O,,U)

Dpl = MLT™ %, [R|=L, []=LT"",
lp] =ML, [p]=MLT)™"

Dimensions:

Dimensional equation: [Dr] = [R*v° p°u”]

Equating dimensions: ;772 _ LO(L/T) (M L3)e(M/LT)
_ La—I—b—3C—dT—b—nd—|—d

L: a+b—3c—d=1
T: —b—d= -2 {a=2—-d,b=2—-d,c=1-d}
M: c+d=1

d
A solution is: Dy = aR> %2~ dpl=d,d — o pR?y? (Ru )
vp



Example 2: drag on a sphere

el
Rup’
Since d is arbitrary, the general form is

Dr = pR*v*F (II)

“Dimensionless group™: I = I =1

Here, [Dr] = [pR*v?]

Solution is nonunique. Alternative is

Dr="H (II)




The Buckingham-I1 theorem

Given a functional dependence ¢ = f(p1,P2;..-,Pn)
N lq] = LT M™e
With dimensions: P
[pi] — [t A
Dimensional analysis:  [¢] = [p{*p5? - - - p%]
L : lia1 + lras + ... 0, a,, = Cyag
T t1a1 -+ t2a2 + ... tnan — t()a()
M mia1 + meas + ... mya, = Moy

Linear system (m x n): Ad = b (dimensionally (in-)complete)

Homogeneous problem: Ad =0 = K(A)=span{dy,...,dx

General solution: a=a, +va; + -+ Ykak

Dimensionless groups a; = (ay, 5;, - - ., w;)
Dimensional group: a, = (ay, 8y, ..., wp)

General form: ¢ =Q F(Il4,...,II})

Bi

}

= I, =pi"py’ -~ Py
:> Q:p?ppgp (:';J)P



The Buckingham-I1 theorem

@® Assuming the formula ¢ = f(p1,p2,...,pn) is dimensionally
homogeneous and dimensionally complete, then it is possible to

reduce it to one of the form ¢ = Q F(Ily,...,1Ix) whereIl,...
are independent dimensionless products of Pi1,pP2,...,Pn. The
quantity Q is a dimensional product of P1,P2,...,Pn with the

same dimensions as q.



Nondimensionalization

® Change of variables = =X¢, t=1Tr
® |dentify the dimensionless groups (by inspection, division)
® Use dimensionless groups to determine scaling:

® Rule of Thumb [:us the DGs that appear in the ICs

® Rule of Thumb 2: use DGs that are robust wrt scaling

® Example: Projectile problem
d ddr 1d

d2$ gR2 daj _— - — = — —
Z . 2(0)=0, —(0)=w dt drdt Tdr
dt? (R4 )2 di ’ PR
dt2 T2 dr?
1 d? gR? 1 d
X¢) = 0) =0, ——X&0)=



Nondimensionalization
Change of variables = =X¢, t=1Tr

|dentify the dimensionless groups (by inspection, division)
Use dimensionless groups to determine scaling:

® Rule of Thumb [:us the DGs that appear in the ICs

® Rule of Thumb 2: use DGs that are robust wrt scaling

Example: Projectile problem

1 d2 B gR2 B 1 d -
T2 dTQ( ) (R+ X6)? £(0) =0, Td—TXf(O) = g
X\ d*¢ 1 - X\ de,
M= =g =7



Nondimensionalization
Change of variables == X¢, t=1T7

|dentify the dimensionless groups (by inspection, division)
Use dimensionless groups to determine scaling:

® Rule of Thumb |:us the DGs that appear in the ICs

® Rule of Thumb 2: use DGs that are robust wrt scaling
Example: Projectile problem

X\ d% 1 - e

) &=~ 0= Gr)&0-
X X

H1:ﬁ7 1y = UO—T

RoT1: X:’U()T

RoT2: HQ < 1 — X:gT2:_O

2| T

9 H3:



Nondimensionalization
Change of variables == X¢, t=Tr

|dentify the dimensionless groups (by inspection, division)
Use dimensionless groups to determine scaling:

® Rule of Thumb [:use the DGs that appear in the ICs

® Rule of Thumb 2: use DGs that are robust wrt scaling

Example: Projectile problem

e 1 _o % -
d7'2 T (1+€€)27 5(0) _07 dT(O) =1




