
Mathematical Modelling
Lecture 1

Dimensional analysis



Preliminaries
•You

•Me

•Modelling 

• focus is applied mathematics, techniques for constructing 
models in various applications

• no real theory of modelling: experience; this course: a 
taste for how models are constructed

• ODEs and PDEs (limited knowledge)

•Scoring: based on 3/4 projects (coherent 
problem set, a bit of computing, short report)

•announcement:  no classes next week



Apples and oranges (pears? cats!)
Dimensional analysis

• (Don’t let it fool you!)

• DA may suggest the form of a functional 
relation, sanity check

• Allows us to put a problem in canonical 
form

• Transform a solution for a specific case

• Identify a minimum set of parameters



Aphids and Ladybugs
bifurcation analysis

• Aphid reproduction...

• Logistic growth with predation

• 3D parameter space (r, N, c)

• stable steady state populations
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Figure 1.1: Prey and predator. a. aphids devouring a rosebud. b. ladybug devouring an aphid.
(source: Wikipedia)

population equal to the di↵erence in birth and death rates, dN/dt = bN(t)�mN(t). This results
in the exponential growth/decay model

dN(t)
dt

= rN(t), (1.1)

where r 2 R is the rate of population increase or decrease, depending on whether there are more
births or deaths. For aphids, all else being equal, the births far outweigh the deaths.

The model (1.1) is an example of a di↵erential equation, and it is to this type of model—and
in particular to its solution on the computer—that this course is devoted.

Formally, a di↵erential equation of the general form

dy

dt

= f(t, y) (1.2)

specifies the relation between an unknown di↵erentiable function y(t) and its derivative dy/dt.
Equation (1.2) is termed an ordinary di↵erential equation (ODE) because it involves deriva-
tives with respect to a single independent variable (t). This is in contrast to a partial di↵erential

equation, which is one involving derivatives with respect to several independent variables, e.g.
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For ODEs, time is often the independent variable, which is suggested by the letter t. We will often
use the shorthand notation y

0(t) and occasionally ẏ to denote dy/dt.
A solution of the di↵erential equation (1.2) is a di↵erentiable function ỹ(t) that satisfies the

di↵erential equation,
@ỹ(t)
@t

= f(t, ỹ(t)),

at least for all t on some interval of interest. For example, for the aphid population model (1.1),
the function

Ñ(t) = ce

rt

is a solution for each constant c 2 R, since dÑ/dt = cr exp(rt) = rN(t) conform (1.1). We will
usually drop the tilde when there is no chance of confusion.

dn

dt
= rn(1� n

N
)� n2

c+ n2
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If n(0) = n0, then c = n0/(1� n0) and the solution can be written

n(t) =
n0e

rt

(1� n0) + n0e
rt

.

If r > 0 it can be checked that
lim

t!1
n(t) = 1

for any initial state n0 > 0. That is, the population eventually saturates (N ! N

⇤) for any initial
population. This behavior is shown in the left plot of Figure 1.2.

Next, suppose that in attempt to control the aphid population, a predator is introduced into
the rose farm. One nasty predator is the ladybug (Fig. 1.1b. If you are an aphid, the ladybug is
anything but a symbol of nonviolence!). Normally lady bugs will not bother eating aphids unless
there is su�cient supply. The logistic model can be extended to incorporate predation by lady
bugs as follows:

dn

dt

= rn

⇣
1� n

s

⌘
� n

2

1 + n

2
. (1.5)

The last term gradually “turns on” ladybug predation as the population n grows greater than 1.
We have re-introduced the saturation level s because there are now two important populations
levels—the natural saturation level, and the level for which ladybugs get “interested”. Some
solutions of this model are shown in the right plot of Figure 1.2. It is interesting to note that for
s = 20 and either r = 0.1 or r = 0.6, the aphid population eventually tends to a constant value,
independent of the initial population. This is similar to the case of the logistic equation without
predation (1.4). For the case s = 20, r = 0.25, however, the final aphid population depends on
the starting population. For a starting population of about n0 < 5, the aphids settle down to
a low level of about n = 0.5, whereas for a starting population of n0 > 5, the aphid population
eventually stabilizes at a relatively high level of around n = 14.5. Such a change in the quality of
solutions with a change in parameter values is called bifurcation.
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Figure 1.2: Solutions of the logistic model. On the left, solutions of (1.4) with r = 0.25 for di↵erent
initial conditions. On the right, with predation (1.5), s = 20 and r = 0.6 (green), r = 0.25 (black),
and r = 0.1 (red). For r = 0.25, there are two steady states, depending on the initial condition

This model is still rather crude, because it assumes an endless supply of ladybugs. An alterna-
tive model might consider an isolated system of aphids and ladybugs, and model the populations
of both. Let p(t) denote the (normalized) population of ladybugs. In the absence of aphids, the
ladybugs would die out exponentially: dp/dt = �mp for some m > 0. But with an increasing
number of aphids, the ladybugs will flourish, so the ladybug population should satisfy

dp

dt

= anp�mp

r

n*



Apples and oranges (pears? cats!)
Dimensional analysis

The main idea: you can't add apples and oranges (or apples and 
cats)

• the equations that express a physical phenomenon should hold 
independent of the measurement units used:

1.both sides of an equality, inequality, sum, difference must have 
the same units

2.  ratios, products, rational powers may mix units (km/hr)
3.  arguments to transcendental functions must be dimensionless
• fundamental units:   length (L), time (T), mass (M), charge (Q), 

temperature (θ)
• denote by [A] the fundamental dimensions of the quantity A (if 

X denotes length, then [X] = L.
• (see Table 1.1 in the book)



Example: projectile problem

• Dimensional model: 

• x = height above ground, g = gravitational acceleration, R 
radius of earth

•  

•
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Example 1: projectile problem
• Dimensional analysis: 

• Functional dependence presumed known:

• Dimensions: 

• Dimensional equation: 

• Equating dimensions:

• The only possibility is

• Parameter determined by experiment, check scaling law

xM = f(m, g, v0)

[xM ] = L, [g] = LT

�2
, [m] = M, [v0] = LT

�1

[xM ] = [ma
v

b
0 g

c]

L = Ma(L/T )b(L/T 2)c

= MaLb+cT�b�2c

{a = 0, b = 2, c = �1}
xM = ↵

v

2
0

g

L : b+ c = 1

T : � b� 2c = 0

M : a = 0



Example 2: drag on a sphere
• Functional dependence presumed known:

• Dimensions: 

• Dimensional equation: 

• Equating dimensions:

• A solution is:

DF = f(R, v, ⇢, µ)

L : a+ b� 3c� d = 1

T : � b� d = �2

M : c+ d = 1

{a = 2� d, b = 2� d, c = 1� d}

[DF ] = [Ra vb ⇢cµd]

[DF ] = MLT�2, [R] = L, [v] = LT�1,

[⇢] = ML�3, [µ] = M(LT )�1

MLT�2 = La(L/T )b(M/L3)c(M/LT )d

= La+b�3c�dT�b�dM c+d

DF = ↵R2�dv2�d⇢1�dµd = ↵⇢R2v2
✓

µ

Rv⇢

◆d



Example 2: drag on a sphere
• “Dimensionless group”:

• Since d is arbitrary, the general form is

• Here,  

• Solution is nonunique.  Alternative is

• But these must be functionally dependent

[DF ] = [⇢R2v2]

⇧ =
µ

Rv⇢
, [⇧] = 1

DF = ⇢R2v2F (⇧)

DF =
µ2

⇢
H (⇧)

H(⇧) =
1

⇧2
F (⇧)



The Buckingham-Π theorem
• Given a functional dependence

• With dimensions: 

• Dimensional analysis:

• Linear system (m x n):                    (dimensionally (in-)complete)

• Homogeneous problem:

• General solution:

• Dimensionless groups

•  Dimensional group:

• General form:

q = f(p1, p2, . . . , pn)

[q] = L`0T t0Mm0

[pi] = L`1T t1Mm1

[q] = [pa1
1 pa2

2 · · · pan
n ]

L : `1a1 + `2a2 + . . . `nan = `0a0

T : t1a1 + t2a2 + . . . tnan = t0a0

M : m1a1 +m2a2 + . . .mnan = m0a0

A~a = ~b

A~a = 0 ) K(A) = span{~a1, . . . ,~ak}

~a = ~ap + �1~a1 + · · ·+ �k~ak

~ai = (↵i,�i, . . . ,!i) ) ⇧i = p↵i
1 p�i

2 · · · p!i
n

~ap = (↵p,�p, . . . ,!p) ) Q = p
↵p

1 p
�p

2 · · · p!p
n

q = QF (⇧1, . . . ,⇧k)



The Buckingham-Π theorem

• Assuming the formula                                  is dimensionally 
homogeneous and dimensionally complete, then it is possible to 
reduce it to one of the form                                     where                     
are independent dimensionless products of                      .  The 
quantity Q is a dimensional product of                         with the 
same dimensions as q.

q = f(p1, p2, . . . , pn)

q = QF (⇧1, . . . ,⇧k) ⇧1, . . . ,⇧k
p1, p2, . . . , pn

p1, p2, . . . , pn



Nondimensionalization
• Change of variables 

• Identify the dimensionless groups (by inspection, division)

• Use dimensionless groups to determine scaling:

• Rule of Thumb 1: us the DGs that appear in the ICs

• Rule of Thumb 2: use DGs that are robust wrt scaling

• Example: Projectile problem

x = X⇠, t = T ⌧
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dt
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T 2
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d⌧2
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, ⇠(0) = 0,

1

T

d

dt
X⇠(0) = v0
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Nondimensionalization
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