Mathematical Modelling
 Lecture I

Dimensional analysis

Preliminaries

- You
- Me
- Modelling
- focus is applied mathematics, techniques for constructing models in various applications
- no real theory of modelling: experience; this course: a taste for how models are constructed
- ODEs and PDEs (limited knowledge)
- Scoring: based on 3/4 projects (coherent problem set, a bit of computing, short report)

Onnouncement: no classes next week

Apples and oranges (pears? cats!) Dimensional analysis

- (Don't let it fool you!)
- DA may suggest the form of a functional relation, sanity check
- Allows us to put a problem in canonical form
- Transform a solution for a specific case
- Identify a minimum set of parameters

Aphids and Ladybugs bifurcation analysis

- Aphid reproduction...

- Logistic growth with predation

$$
\frac{d n}{d t}=r n\left(1-\frac{n}{N}\right)-\frac{n^{2}}{c+n^{2}}
$$

- 3D parameter space ($\mathrm{r}, \mathrm{N}, \mathrm{c}$)
- stable steady state populations

Apples and oranges (pears? cats!) Dimensional analysis

The main idea: you can't add apples and oranges (or apples and cats)

- the equations that express a physical phenomenon should hold independent of the measurement units used:
I. both sides of an equality, inequality, sum, difference must have the same units

2. ratios, products, rational powers may mix units ($\mathrm{km} / \mathrm{hr}$)
3. arguments to transcendental functions must be dimensionless

- fundamental units: length (L), time (T), mass (M), charge (Q), temperature (θ)
- denote by $[\mathrm{A}]$ the fundamental dimensions of the quantity A (if X denotes length, then $[X]=L$.
- (see Table I.I in the book)

Example: projectile problem

- Dimensional model: $\quad \frac{d^{2} x}{d t^{2}}=-\frac{g R^{2}}{(R+x)^{2}}, \quad x(0)=0, \quad \frac{d x}{d t}(0)=v_{0}$
- $\quad x=$ height above ground, $g=$ gravitational acceleration, R radius of earth

$$
x+R \approx R \quad \frac{d^{2} x}{d t^{2}} \approx-g, \quad \Rightarrow \quad x(t) \approx-\frac{g}{2} t^{2}+v_{0} t
$$

- $\quad x_{\max } \approx \frac{v_{0}}{2 g}$

Example I: projectile problem

- Dimensional analysis:
- Functional dependence presumed known: $x_{M}=f\left(m, g, v_{0}\right)$
- Dimensions: $\quad\left[x_{M}\right]=L, \quad[g]=L T^{-2}, \quad[m]=M, \quad\left[v_{0}\right]=L T^{-1}$
- Dimensional equation: $\left[x_{M}\right]=\left[m^{a} v_{0}^{b} g^{c}\right]$

$$
L: b+c=1
$$

- Equating dimensions: $L=M^{a}(L / T)^{b}\left(L / T^{2}\right)^{c} \quad T:-b-2 c=0$

$$
=M^{a} L^{b+c} T^{-b-2 c} \quad M: a=0
$$

- The only possibility is $x_{M}=\alpha \frac{v_{0}^{2}}{g}$
- Parameter determined by experiment, check scaling law

Example 2: drag on a sphere

- Functional dependence presumed known:

$$
D_{F}=f(R, v, \rho, \mu)
$$

- Dimensions: $\left[D_{F}\right]=M L T^{-2}, \quad[R]=L, \quad[v]=L T^{-1}$,
- Dimensions:

$$
[\rho]=M L^{-3}, \quad[\mu]=M(L T)^{-1}
$$

- Dimensional equation: $\left[D_{F}\right]=\left[R^{a} v^{b} \rho^{c} \mu^{d}\right]$
- Equating dimensions: $M L T^{-2}=L^{a}(L / T)^{b}\left(M / L^{3}\right)^{c}(M / L T)^{d}$

$$
=L^{a+b-3 c-d} T^{-b-d} M^{c+d}
$$

$$
\begin{aligned}
& L: a+b-3 c-d=1 \\
& T:-b-d=-2 \quad\{a=2-d, b=2-d, c=1-d\} \\
& M: c+d=1
\end{aligned}
$$

- A solution is: $D_{F}=\alpha R^{2-d} v^{2-d} \rho^{1-d} \mu^{d}=\alpha \rho R^{2} v^{2}\left(\frac{\mu}{R v \rho}\right)^{d}$

Example 2: drag on a sphere

- "Dimensionless group": $\Pi=\frac{\mu}{R v \rho}, \quad[\Pi]=1$
- Since d is arbitrary, the general form is

$$
D_{F}=\rho R^{2} v^{2} F(\Pi)
$$

- Here, $\left[D_{F}\right]=\left[\rho R^{2} v^{2}\right]$
- Solution is nonunique. Alternative is

$$
D_{F}=\frac{\mu^{2}}{\rho} H(\Pi)
$$

- But these must be functionally dependent

$$
H(\Pi)=\frac{1}{\Pi^{2}} F(\Pi)
$$

The Buckingham- Π theorem

- Given a functional dependence $q=f\left(p_{1}, p_{2}, \ldots, p_{n}\right)$
- With dimensions:

$$
[q]=L^{\ell_{0}} T^{t_{0}} M^{m_{0}}
$$

$$
\left[p_{i}\right]=L^{\ell_{1}} T^{t_{1}} M^{m_{1}}
$$

- Dimensional analysis:

$$
[q]=\left[p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}\right]
$$

L :

$$
\ell_{1} a_{1}+\ell_{2} a_{2}+\ldots \ell_{n} a_{n}=\ell_{0} a_{0}
$$

T:

$$
t_{1} a_{1}+t_{2} a_{2}+\ldots t_{n} a_{n}=t_{0} a_{0}
$$

M:

$$
m_{1} a_{1}+m_{2} a_{2}+\ldots m_{n} a_{n}=m_{0} a_{0}
$$

- Linear system ($\mathrm{m} \times \mathrm{n}$): $A \vec{a}=\vec{b} \quad$ (dimensionally (in-)complete)
- Homogeneous problem: $A \vec{a}=0 \quad \Rightarrow \quad K(A)=\operatorname{span}\left\{\vec{a}_{1}, \ldots, \vec{a}_{k}\right\}$
- General solution: $\vec{a}=\vec{a}_{p}+\gamma_{1} \vec{a}_{1}+\cdots+\gamma_{k} \vec{a}_{k}$
- Dimensionless groups $\vec{a}_{i}=\left(\alpha_{i}, \beta_{i}, \ldots, \omega_{i}\right) \quad \Rightarrow \quad \Pi_{i}=p_{1}^{\alpha_{i}} p_{2}^{\beta_{i}} \cdots p_{n}^{\omega_{i}}$
- Dimensional group: $\quad \vec{a}_{p}=\left(\alpha_{p}, \beta_{p}, \ldots, \omega_{p}\right) \Rightarrow Q=p_{1}^{\alpha_{p}} p_{2}^{\beta_{p}} \cdots p_{n}^{\omega_{p}}$
- General form: $\quad q=Q F\left(\Pi_{1}, \ldots, \Pi_{k}\right)$

The Buckingham- $П$ theorem

- Assuming the formula $q=f\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is dimensionally homogeneous and dimensionally complete, then it is possible to reduce it to one of the form $q=Q F\left(\Pi_{1}, \ldots, \Pi_{k}\right)$ where Π_{1}, \ldots, Π_{k} are independent dimensionless products of $p_{1}, p_{2}, \ldots, p_{n}$. The quantity Q is a dimensional product of $p_{1}, p_{2}, \ldots, p_{n}$ with the same dimensions as q.

Nondimensionalization

- Change of variables $x=X \xi, \quad t=T \tau$
- Identify the dimensionless groups (by inspection, division)
- Use dimensionless groups to determine scaling:
- Rule of Thumb I: us the DGs that appear in the ICs
- Rule of Thumb 2: use DGs that are robust wrt scaling
- Example: Projectile problem

$$
\begin{array}{cl}
\frac{d^{2} x}{d t^{2}}=-\frac{g R^{2}}{(R+x)^{2}}, \quad x(0)=0, \quad \frac{d x}{d t}(0)=v_{0} & \frac{d}{d t}=\frac{d}{d \tau} \frac{d \tau}{d t}=\frac{1}{T} \frac{d}{d \tau} \\
\frac{d^{2}}{d t^{2}}=\frac{1}{T^{2}} \frac{d^{2}}{d \tau^{2}} \\
\frac{1}{T^{2}} \frac{d^{2}}{d \tau^{2}}(X \xi)=-\frac{g R^{2}}{(R+X \xi)^{2}}, \quad \xi(0)=0, & \frac{1}{T} \frac{d}{d t} X \xi(0)=v_{0}
\end{array}
$$

Nondimensionalization

- Change of variables $x=X \xi, \quad t=T \tau$
- Identify the dimensionless groups (by inspection, division)
- Use dimensionless groups to determine scaling:
- Rule of Thumb I: us the DGs that appear in the ICs
- Rule of Thumb 2: use DGs that are robust wrt scaling
- Example: Projectile problem

$$
\begin{aligned}
& \frac{1}{T^{2}} \frac{d^{2}}{d \tau^{2}}(X \xi)=-\frac{g R^{2}}{(R+X \xi)^{2}}, \quad \xi(0)=0, \quad \frac{1}{T} \frac{d}{d \tau} X \xi(0)=v_{0} \\
& \left(\frac{X}{g T^{2}}\right) \frac{d^{2} \xi}{d \tau^{2}}=-\frac{1}{\left[1+\left(\frac{X}{R}\right) \xi\right]^{2}}, \quad \xi(0)=0, \quad\left(\frac{X}{v_{0} T}\right) \frac{d \xi}{d \tau}(0)=1 \\
& \Pi_{1}=\frac{X}{g T^{2}}, \quad \Pi_{2}=\frac{X}{R}, \quad \Pi_{3}=\frac{X}{v_{0} T}
\end{aligned}
$$

Nondimensionalization

- Change of variables $x=X \xi, \quad t=T \tau$
- Identify the dimensionless groups (by inspection, division)
- Use dimensionless groups to determine scaling:
- Rule of Thumb I: us the DGs that appear in the ICs
- Rule of Thumb 2: use DGs that are robust wrt scaling
- Example: Projectile problem

$$
\begin{aligned}
& \left(\frac{X}{g T^{2}}\right) \frac{d^{2} \xi}{d \tau^{2}}=-\frac{1}{\left[1+\left(\frac{X}{R}\right) \xi\right]^{2}}, \quad \xi(0)=0, \\
& \Pi_{1}=\frac{X}{g T^{2}}, \quad \Pi_{2}=\frac{X}{v_{0} T}, \quad \Pi_{3}=\frac{X}{v_{0} T} \\
& \text { RoT1: } \quad X=v_{0} T \\
& \text { RoT2: } \quad \Pi_{2} \ll 1 \Rightarrow \quad X=g T^{2}=\frac{v_{0}^{2}}{g} \quad T=\frac{v_{0}}{g}
\end{aligned}
$$

Nondimensionalization

- Change of variables $x=X \xi, \quad t=T \tau$
- Identify the dimensionless groups (by inspection, division)
- Use dimensionless groups to determine scaling:
- Rule of Thumb I: use the DGs that appear in the ICs
- Rule of Thumb 2: use DGs that are robust wrt scaling
- Example: Projectile problem

$$
\begin{aligned}
& \frac{d^{2} \xi}{d \tau^{2}}=-\frac{1}{(1+\varepsilon \xi)^{2}}, \quad \xi(0)=0, \quad \frac{d \xi}{d \tau}(0)=1 \\
& \varepsilon=\frac{v_{0}^{2}}{g R}
\end{aligned}
$$

