Mathematical Modelling

Lecture 2
Reaction kinetics



Reaction kinetics

* Molecules in a reactive gas mixture. Reaction occurs when two
reactants undergo collision,and a new molecule is produced.

* The reaction rate depends on the likelihood of collisions.

* In epidemiology, the reactants may be invected and noninfected
individuals, and the collisions are chance meetings.

* |In population dynamics, the reactants may be predators and prey.



Aphids and Ladybugs

predator-prey problem

® |n the absence of predators, prey population grows
exponentially 4 = 34

® |n the absence of prey, predator population decays
exponentially ;7 _ _ 1

® When predators and prey are well-mixed,the [ — ~ AT,
populations of both change at distinct rates A — _SAT

e Full model: L =~AL —alL
A=—6AL+ BA



Kinetic equations (chemistry)

® Example: two chemical species A and B fill a region. These are
supposed to be well mixed and in motion. Upon collision, they form a
new compound C. In symbols:

A+ B —>C (A, B, C are labels)

® |nterpretation: one unit of A combines with one unit of B to produce
one unit of C. Rates of change:

dA dB  dC

(A, B, C denote concentrations)

dt - dt  dt
® Posit the existence of a rate function r(A,B): dA (A, B)
dt |
dB
— = —r(A, B)
@ = ”I"(A, B)

dt



Kinetic equations (chemistry)

® Supposing the concentrations are small, r can be approximated by a
Taylor expansion

T(AaB) :TOO+T10A+T013—|—T20A2—|—’I"11AB—|—’]"OZBQ_|_...

or or 0°r

8A(O 0), ro1= 83(0 0), 20 = 573 (0,0), etc.

roo =17(0,0), 7r10 =

® |f either A or B is absent, the rate should go to zero identically

or or
7(4,0) = (0, B) =0 = (4,0) = 52.(0, B) =
® Hence the first not-necessarily-vanishing term is
O%r
= 0,0
"= a5 00 A
® and we take / j—é o
r=kAB _ at
X kap

— di
® Alternative reasoning: bilinearity, polynomial approximation, ...



The Law of Mass Action

In general we can have systems of reactions
OélA - ﬁlB — ’}/10 T 51D
CVQA T 523 — ”)/QC T 52D

&al| PLEASE"LEASH, CURB

AND CLEAN_UP
AFTER YOUR DOG!

The coefficients &;, Bi, Yi, Oi are called the stoichiometric coefficients.
They are positive and indicate the number of each species involved in
the reaction.

A and B are reactants, C and D are products.

The LAW OF MASS ACTION (Def’n 3.1) states:

® The rate,r, of the reaction is proportional to the product of the reactant
concentrations, with each concentration raised to the power equal to its respective
stoichiometric coefficient.

® The rate of change of the concentration of each species in the reaction is the
product of its stoichiometric coefficient with the rate of the reaction, adjusted for
sign (+ if product, - if reactant).

® For a system of reactions, the rates add.



g=i| PLEASE LEASH, CURB
AND CLEAN_UP

The Law of Mass Action 7 S THE Law

AETER YOUR D0G!

® |In general we can have systems of reactions
OélA - ﬁlB — ’}/10 T 51D
CVQA T ﬁgB — ”)/QC T 52D

® The [AW OF MASS ACTION (Def’n 3.1) states:

® The rate,r, of the reaction is proportional to the product of the reactant
concentrations, with each concentration raised to the power equal to its respective
stoichiometric coefficient.

® The rate of change of the concentration of each species in the reaction is the
product of its stoichiometric coefficient with the rate of the reaction, adjusted for
sign (+ if product, - if reactant).

® For a system of reactions, the rates add.

® Example. For the above reaction, 7, = kle‘lBﬁl, ro = ko A%2 BP2

dA dC

— = —Qr] — Qare, — = !
7 171 272 o



Conservation laws

Consider the single reaction
oA+ BB = ~vC 4+ 0D
The rateis r = kA“BP

Hence, dA dB

= akA“ B, = bkAY B,
dC dD
o vkA® B”, g 0kA“B”,
dA dB d
But note that — —a— = —(pA—aB) =0
ut note tha ﬁdt a— dt(ﬁ aB)

For given initial conditions SA(t) — aB(t) = Ay — aBy

Similar conservation laws

d d
—(~A — — (A —
g (YA + aC) o (0A+aD) =0



Conservation laws

Conservation laws are nifty because they define a submanifold to which
the solution is constrained.

In fact, we can solve for B, C,and D in terms of A:

BA(t) — aB(t) = BAy — aBy

B(t) = Bo + 2 (A(t) — 40)

Q
And reduce the system to a single scalar equation for A:
dA
— = —akA%(a + bA)P

dt



The Law of Mass Action 7 7S THE LAW

gal| PLEASE"LEASH, CURB

: AN CLEAN UP
General formulation. Consider n reactions in m species: ALTER YOUS. D0G!

m m
ZO&@J’X@%ZﬁinZ', fOI’jZl,...,n
1=1 1=1

The reaction rates are r; = k; H X,

1=1
The kinetic equations are

d
In matrix form —X =8r, Si; = Bi; —

dt
. . d T T
A conservation law satisfies pric X =0, a" X(t)=a" X(0)
rdX d
a€ K(S")=a"Sr=a" = —a’ X =0

dt  dt




Example: enzyme catalyzed reaction

® (Consider the reactions (actually3) S+ E=C

® The reaction rates are C—P+E

T = k1SE, r_1 = k_lC, To — kQC

L : dsS
® Kinetic equations: — = —hSE+k.C

IE
E — —]ﬁSE —|— k_lc —|— kQC
d

d—f — k1 SE — k_1C — k'O

dP
Sl e
dt 2

® [wo conservation laws: di(E +C) =0, %(S +C+P)=0
t



Equilibria
For a general system of evolution equations

E: (y)

The equilibria, or steady states are the points
{ys : F'(ys) = 0}

Furthermore, an equilibrium is stable if any solution that originates near
enough to the equilibrium stays near it. It is asympototically stable if
any solution that originates near the equilibrium eventually tends to it
in infinite time.

A sufficient condition for an equilibrium to be asymptotically stable is if
all eigenvalues of the Jacobian matrle _ OF; " (ys) have strictly
negative real part. 3yj ’




Linear stability

Consider a solution that is a small perturbation from the equilibrium
y(t) = ys + 6y(t)

Taylor expanding the solution

d OF

Gi s +09(0) = Flys) + AGy®) +---, A= Z-(ys)

Suppose A has a basis of eigenvectors
AZIZ‘Z:)\ZZCZ, 7):1,...,77,
The perturbation solution can be expanded in the eigenbasis
Sy(t) = are™lay + - + ape™la,
The perturbations decay if Re)\; <0, foralls

The perturbations grow unbounded if Re A; > 0, for some ¢



Example: van der Pol equation

Consider the model 2_? —
dv e <1
ey = ut ulo—v*/3)
Steady state us = 0,v5 =0 0 1 0

1
Eigenvalues )\ = o (,u + /2 — 45)
e

The steady state is asymptotically stable if @ <0

What happens for £ > 0 ? “Hopf bifurcation”



u-axis

Example: van der Pol (-like) equation

® The phase plane (v,u) C;_;L

v
dt

® Nullclines {v =0}, {u

—U

u+ p(v —v?/3)

—u(v —v°/3)}

du —v/e

dv u+ (v —v3/3)

: dv/dt >0 .
du/dt >0 : du/dt <0 + dv/dt<0
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® For small &, the second equation is nearly an algebraic relation (more
on this next week). The solution rapidly approaches the v-nulicline.



