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Reaction kinetics



Reaction kinetics

• Molecules in a reactive gas mixture.  Reaction occurs when two 
reactants undergo collision, and a new molecule is produced.

• The reaction rate depends on the likelihood of collisions.

• In epidemiology, the reactants may be invected and noninfected 
individuals, and the collisions are chance meetings.

• In population dynamics, the reactants may be predators and prey.



Aphids and Ladybugs
predator-prey problem

• In the absence of predators, prey population grows 
exponentially

• In the absence of prey, predator population decays 
exponentially

• When predators and prey are well-mixed, the 
populations of both change at distinct rates

• Full model: 
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Figure 1.1: Prey and predator. a. aphids devouring a rosebud. b. ladybug devouring an aphid.
(source: Wikipedia)

population equal to the di↵erence in birth and death rates, dN/dt = bN(t)�mN(t). This results
in the exponential growth/decay model

dN(t)
dt

= rN(t), (1.1)

where r 2 R is the rate of population increase or decrease, depending on whether there are more
births or deaths. For aphids, all else being equal, the births far outweigh the deaths.

The model (1.1) is an example of a di↵erential equation, and it is to this type of model—and
in particular to its solution on the computer—that this course is devoted.

Formally, a di↵erential equation of the general form

dy

dt

= f(t, y) (1.2)

specifies the relation between an unknown di↵erentiable function y(t) and its derivative dy/dt.
Equation (1.2) is termed an ordinary di↵erential equation (ODE) because it involves deriva-
tives with respect to a single independent variable (t). This is in contrast to a partial di↵erential

equation, which is one involving derivatives with respect to several independent variables, e.g.
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For ODEs, time is often the independent variable, which is suggested by the letter t. We will often
use the shorthand notation y

0(t) and occasionally ẏ to denote dy/dt.
A solution of the di↵erential equation (1.2) is a di↵erentiable function ỹ(t) that satisfies the

di↵erential equation,
@ỹ(t)
@t

= f(t, ỹ(t)),

at least for all t on some interval of interest. For example, for the aphid population model (1.1),
the function

Ñ(t) = ce

rt

is a solution for each constant c 2 R, since dÑ/dt = cr exp(rt) = rN(t) conform (1.1). We will
usually drop the tilde when there is no chance of confusion.

L̇ = �AL

Ȧ = ��AL

Ȧ = �A

L̇ = �↵L

L̇ = �AL� ↵L

Ȧ = ��AL+ �A



Kinetic equations (chemistry)

• Example: two chemical species A and B fill a region.  These are 
supposed to be well mixed and in motion.  Upon collision, they form a 
new compound C.   In symbols:

• Interpretation: one unit of A combines with one unit of B to produce 
one unit of C.   Rates of change:

• Posit the existence of a rate function r(A,B):

A+B ! C

dA

dt
=

dB

dt
= �dC

dt

(A, B, C are labels)

(A, B, C denote concentrations)

dA

dt
= �r(A,B)

dB

dt
= �r(A,B)

dC

dt
= r(A,B)



Kinetic equations (chemistry)
• Supposing the concentrations are small, r can be approximated by a 

Taylor expansion

• If either A or B is absent, the rate should go to zero identically

• Hence the first not-necessarily-vanishing term is 

• and we take

• Alternative reasoning: bilinearity, polynomial approximation, ...

r(A,B) = r00 + r10A+ r01B + r20A
2 + r11AB + r02B

2 + · · ·
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The Law of Mass Action
• In general we can have systems of reactions

• The coefficients αi, βi, γi, δi are called the stoichiometric coefficients.  
They are positive and indicate the number of each species involved in 
the reaction.

• A and B are reactants, C and D are products.  

• The LAW OF MASS ACTION (Def’n 3.1) states:
• The rate, r, of the reaction is proportional to the product of the reactant 

concentrations, with each concentration raised to the power equal to its respective 
stoichiometric coefficient.

• The rate of change of the concentration of each species in the reaction is the 
product of its stoichiometric coefficient with the rate of the reaction, adjusted for 
sign (+ if product, - if reactant).

• For a system of reactions, the rates add.

↵1A+ �1B ! �1C + �1D

↵2A+ �2B ! �2C + �2D



The Law of Mass Action
• In general we can have systems of reactions

• The LAW OF MASS ACTION (Def’n 3.1) states:
• The rate, r, of the reaction is proportional to the product of the reactant 

concentrations, with each concentration raised to the power equal to its respective 
stoichiometric coefficient.

• The rate of change of the concentration of each species in the reaction is the 
product of its stoichiometric coefficient with the rate of the reaction, adjusted for 
sign (+ if product, - if reactant).

• For a system of reactions, the rates add.

• Example.  For the above reaction,

↵1A+ �1B ! �1C + �1D

↵2A+ �2B ! �2C + �2D

r1 = k1A
↵1B�1 , r2 = k2A

↵2B�2

dA

dt
= �↵1r1 � ↵2r2,

dC

dt
= ?



• Consider the single reaction

• The rate is

• Hence,

• But note that 

• For given initial conditions

• Similar conservation laws 

Conservation laws

↵A+ �B ! �C + �D
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• Conservation laws are nifty because they define a submanifold to which 
the solution is constrained.

• In fact, we can solve for B, C, and D in terms of A: 

• And reduce the system to a single scalar equation for A:

Conservation laws

�A(t)� ↵B(t) = �A0 � ↵B0

B(t) = B0 +
�

↵
(A(t)�A0)

dA

dt
= �↵kA↵(a+ bA)�



The Law of Mass Action
• General formulation.  Consider n reactions in m species:

• The reaction rates are

• The kinetic equations are

• In matrix form

• A conservation law satisfies 

mX
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�ijXi, for j = 1, . . . , n.

d
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• Consider the reactions (actually 3)

• The reaction rates are

• Kinetic equations:

• Two conservation laws: 

Example: enzyme catalyzed reaction
S + E ⌦ C

C ! P + E

r1 = k1SE, r�1 = k�1C, r2 = k2C

d

dt
(E + C) = 0,

d

dt
(S + C + P ) = 0

dS

dt
= �k1SE + k�1C

dE

dt
= �k1SE + k�1C + k2C

dC

dt
= k1SE � k�1C � k2C

dP

dt
= k2C



• For a general system of evolution equations

• The equilibria, or steady states are the points

• Furthermore, an equilibrium is stable if any solution that originates near 
enough to the equilibrium stays near it.   It is asympototically stable if 
any solution that originates near the equilibrium eventually tends to it 
in infinite time.

• A sufficient condition for an equilibrium to be asymptotically stable is if 
all eigenvalues of the Jacobian matrix                        have strictly 
negative real part. 

Equilibria

dy

dt
= F (y)

{ys : F (ys) = 0}
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• Consider a solution that is a small perturbation from the equilibrium

• Taylor expanding the solution 

• Suppose A has a basis of eigenvectors

• The perturbation solution can be expanded in the eigenbasis

• The perturbations decay if

• The perturbations grow unbounded if

Linear stability

y(t) = ys + �y(t)

d

dt
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Re�i < 0, for all i

Re�i > 0, for some i



• Consider the model

• Steady state

• Eigenvalues 

• The steady state is asymptotically stable if 

• What happens for            ?  “Hopf bifurcation”

Example: van der Pol equation
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• The phase plane (v,u) 

• Nullclines

• For small ℇ, the second equation is nearly an algebraic relation (more 
on this next week).  The solution rapidly approaches the v-nullcline.

Example: van der Pol (-like) equation
du

dt
= �v

"
dv

dt
= u+ µ(v � v3/3)

du

dv
=

�v/"

u+ µ(v � v3/3)

{v = 0}, {u = �µ(v � v3/3)}
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Now, for stability it is required that Re(r±) < 0, and so the steady-state
(u

s

, v
s

) = (0, 0) is asymptotically stable if � < 0 and unstable if � > 0.
Up to this point this example appears to be very similar to the previous

one. However, there is an important di↵erence in how the steady-state goes
unstable. In the last example the steady-state (u

s

, v
s

) = (0, 0) went unstable
because r+ switched from negative to positive as ↵ passed through zero. In the
current example, when � is close to zero, the solutions in (3.119) are complex
valued. The steady-state goes unstable, as � goes from negative to positive,
because r+ and r� both move from the left half-plane, where Re(r) < 0, into
the right half-plane, where Re(r) > 0, as � passes through zero. Moreover,
at � = 0, d

d�

Re(r) 6= 0. This is called a Hopf bifurcation. This has interesting
repercussions in how the solution behaves when � > 0, and exactly what it
does do is considered next.

A sketch of the basic properties of the solution in the phase plane is given
in Figure 3.12. The u-nullcline is a vertical line passing through the origin,
while the v-nullcline is the cubic ��(v � v3/3). Both are shown in the fig-
ure with dashed curves. The small arrows indicate the slope as determined
from dv

du

, with the arrowheads showing the direction of the solution as time
increases. From this it is possible to give a rough description of the solu-
tion curve assuming ✏ << 1. As an example, suppose the initial condition
corresponds to the point a in the figure. Because ✏ is small, the v equation
in (3.118) will move very quickly to reach a quasi-steady-state. This means
the solution will move almost immediately to the v-nullcline, and given the
direction of the arrows, this means it will move towards point b. Once there
the solution will move upwards, following the v-nullcline very closely, until
it reaches point c. It must still move upwards, but the v equation requires it
to stay near the v-nullcline. The only choice is for the solution to move from
c over to d. Once there it then moves down, following the v-nullcline very
closely, until it reaches point e. It must continue moving downward, but will
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Figure 3.12 Phase plane and direction fields for Example 3, in the case of when
� > 0.
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Figure 3.13 Numerical solution of (3.114), (3.115) using di↵erent starting points.
In the calculations, � = 1. Also, the dashed curves are the two nullclines.

stay near the v-nullcline. This means the solution will head towards point b,
and once there the whole process repeats itself. The result is that the solution
converges to a closed circuit that encloses the unstable steady-state solution.
This is known as a limit cycle. To reinforce this conclusion, the numerical
solution of the problem is given in Figure 3.13. Two di↵erent starting points
are used, one inside and the other outside the limit cycle, and both converge
to the limit cycle. A somewhat di↵erent perspective is shown in Figure 3.14,
which shows the solution trajectory with the time variable given explicitly.
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Figure 3.14 Numerical solution of (3.114), (3.115) with � = 1. The initial condition
is (u, v) = (0, 1.5) and ✏ = 0.01.

dv/dt >0du/dt >0 dv/dt<0du/dt <0


