Mathematical Modelling
 Lecture 3

The Big Picture (regular perturbations)

Regular expansions

Consider the solutions of the quadratic equation

$$
x^{2}+2 \varepsilon x-1=0 \quad(\varepsilon \ll 1)
$$

where ε is a small parameter.

$$
x^{2}-1=-2 \varepsilon x
$$

Import are:

I. we are interested in the class of solutions as a function of ε.
2. we are interested in obtaining approximate solutions as ε tends to zero.

The number of solutions is 2 , also in the limit $\varepsilon \rightarrow 0$ (regular perturbation).
Consider instead the singular perturbation problem:

$$
\varepsilon x^{2}+2 x-1=0
$$

Regular expansions

Consider the solutions of the quadratic equation

$$
x^{2}+2 \varepsilon x-1=0 \quad(\varepsilon \ll 1)
$$

where ε is a small parameter.

$$
x^{2}-1=-2 \varepsilon x
$$

Import are:

I. we are interested in the class of solutions as a function of ε.

$$
x=-\varepsilon \pm \sqrt{1+\varepsilon^{2}}
$$

2. we are interested in obtaining approximate solutions as ε tends to zero.

Recall that $(1+x)^{1 / 2}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\cdots, \quad(x<1)$
(for common expansions, see Table 2.I). Hence,

$$
x=-\varepsilon \pm\left(1+\frac{1}{2} \varepsilon^{2}-\frac{1}{8} \varepsilon^{4}+\cdots\right)= \pm 1-\varepsilon \pm \frac{1}{2} \varepsilon^{2} \mp \frac{1}{8} \varepsilon^{4}+\cdots
$$

Regular expansions

Consider the solutions of the quadratic equation

$$
x^{2}+2 \varepsilon x-1=0 \quad(\varepsilon \ll 1)
$$

where ε is a small parameter.
Suppose we did not know the solution of the quadratic. We expect the solution to depend on ε. Generalizing Taylor's theorem, we try an
expansion

$$
x(\varepsilon) \sim x_{0}+\varepsilon^{\alpha} x_{1}+\varepsilon^{\beta} x_{2}+\cdots
$$

Assumptions:
-Well-ordering $0<\alpha<\beta<\ldots$

- Coefficients $x_{0}, x_{1}, x_{2}, \cdots$ do not depend on ε

Note that $\quad x^{2} \sim\left(x_{0}+\varepsilon^{\alpha} x_{1}+\varepsilon^{\beta} x_{2}+\cdots\right)\left(x_{0}+\varepsilon^{\alpha} x_{1}+\varepsilon^{\beta} x_{2}+\cdots\right)$

$$
\sim x_{0}^{2}+2 \varepsilon^{\alpha} x_{0} x_{1}+2 \varepsilon^{\beta} x_{0} x_{2}+\varepsilon^{2 \alpha} x_{1}^{2}+\cdots
$$

Regular expansions

Consider the solutions of the quadratic equation

$$
x^{2}+2 \varepsilon x-1=0
$$

where ε is a small parameter.
Substituting the expansion into the quadratic equation gives

$$
\begin{aligned}
& x(\varepsilon) \sim x_{0}+\varepsilon^{\alpha} x_{1}+\varepsilon^{\beta} x_{2}+\cdots \\
& x_{0}^{2}+2 \varepsilon^{\alpha} x_{0} x_{1}+\cdots+2 \varepsilon\left(x_{0}+\varepsilon^{\alpha} x_{1}+\cdots\right)-1=0
\end{aligned}
$$

Taking the limit $\varepsilon \rightarrow 0$ yields the relation
$\mathcal{O}(1) \quad x_{0}^{2}-1=0 \quad \Rightarrow \quad x_{0}= \pm 1$
Leaving $2 \varepsilon^{\alpha} x_{0} x_{1}+\cdots+2 \varepsilon\left(x_{0}+\varepsilon^{\alpha} x_{1}+\cdots\right)=0$
If the expansion is to hold as ε tends to zero, the terms of the same order in ε must equate independently. The term $2 \varepsilon x_{0}$ must be balanced by $2 \varepsilon^{\alpha} x_{0} x_{1}$

$$
\begin{aligned}
& \Rightarrow \alpha=1 \\
& \mathcal{O}(\varepsilon) \quad 2 x_{0} x_{1}+2 x_{0}=0 \quad \Rightarrow \quad x_{1}=-1
\end{aligned}
$$

Regular expansions

Consider the solutions of the quadratic equation

$$
x^{2}+2 \varepsilon x-1=0 \quad(\varepsilon \ll 1)
$$

where ε is a small parameter.
Continuing this way yields

$$
\begin{aligned}
\mathcal{O}(1) & x_{0}^{2}-1=0 \quad \Rightarrow \quad x_{0}= \pm 1 \\
\mathcal{O}(\varepsilon) & 2 x_{0} x_{1}+2 x_{0}=0 \quad \Rightarrow \quad x_{1}=-1 \\
\mathcal{O}\left(\varepsilon^{2}\right) & 2 x_{0} x_{2}+x_{1}^{2}-2 x_{1}=0 \quad \Rightarrow \quad x_{2}= \pm \frac{1}{2}
\end{aligned}
$$

Compare $\quad x=-\varepsilon \pm\left(1+\frac{1}{2} \varepsilon^{2}-\frac{1}{8} \varepsilon^{4}+\cdots\right)= \pm 1-\varepsilon \pm \frac{1}{2} \varepsilon^{2} \mp \frac{1}{8} \varepsilon^{4}+\cdots$
Formally, we require:

$$
\lim _{\varepsilon \rightarrow 0} \frac{x-(1-\varepsilon)}{\varepsilon}=0 \quad \lim _{\varepsilon \rightarrow 0} \frac{x-\left(1-\varepsilon+\frac{1}{2} \varepsilon^{2}\right)}{\varepsilon^{2}}=0
$$

i.e. the truncated expansions converge as $\varepsilon \rightarrow 0$.

But the (infinite) expansion typically does not converge for fixed ε.

Expansion of functions

Compound function:

$$
f(\varepsilon)=\sin \left(e^{\varepsilon}\right)
$$

Start with the innermost function

$$
e^{\varepsilon}=1+\varepsilon+\frac{1}{2} \varepsilon^{2}+\cdots \quad \sin \left(e^{\varepsilon}\right)=\sin \left(1+\varepsilon+\frac{1}{2} \varepsilon^{2}+\cdots\right)
$$

From Table 2.I $\sin (1+y) \sim \sin (1)+y \cos (1)-\frac{1}{2} y^{2} \sin (1)+\cdots$ $\sin \left(e^{\varepsilon}\right) \sim \sin (1)+\cos (1)\left(\varepsilon+\frac{1}{2} \varepsilon^{2}+\cdots\right)-\frac{1}{2} \sin (1)\left(\varepsilon+\frac{1}{2} \varepsilon^{2}+\cdots\right)^{2}+\cdots$

$$
\sin \left(e^{\varepsilon}\right) \sim \sin (1)+\varepsilon \cos (1)+\frac{1}{2} \varepsilon^{2}[\cos (1)-\sin (1)]+\cdots
$$

Expansion of functions

Compound function:

$$
f(\varepsilon)=\frac{1}{[1-\cos (\varepsilon)]^{3}}
$$

Start with the innermost function

$$
\begin{aligned}
& \cos (\varepsilon) \sim 1-\frac{1}{2} \varepsilon^{2}+\frac{1}{24} \varepsilon^{4}+\cdots \\
& \frac{1}{1-\cos (\varepsilon)} \sim \frac{1}{\frac{1}{2} \varepsilon^{2}-\frac{1}{24} \varepsilon^{4}+\cdots}=\frac{2}{\varepsilon^{2}} \frac{1}{1-\frac{1}{12} \varepsilon^{2}+\cdots} \\
& \frac{1}{[1-\cos (\varepsilon)]^{3}} \sim \frac{8}{\varepsilon^{6}}\left(1+\frac{1}{12} \varepsilon^{2}+\cdots\right)^{3}=\frac{8}{\varepsilon^{6}}\left(1+\frac{1}{4} \varepsilon^{2}+\cdots\right)
\end{aligned}
$$

Expansion of equations

Algebraic/transcendental equation:

$$
\begin{aligned}
& x^{3}+\varepsilon^{2} e^{x}-1+\varepsilon^{3}=0 \\
& x \\
& \sim \varepsilon x_{0}+\cdots \\
& x \sim x_{0}+\varepsilon^{\alpha} x_{1}+\cdots \\
& x \sim \frac{1}{\varepsilon} x_{0}+\cdots \\
& e^{x} \sim e^{x_{0}+\varepsilon^{\alpha} x_{1}+\cdots}=e^{x_{0}} e^{\varepsilon^{\alpha} x_{1}+\cdots} \\
&= e^{x_{0}}\left(1+y+\frac{1}{2} y^{2}+\cdots\right) \\
&=e^{x_{0}}\left(1+\left(\varepsilon^{\alpha} x_{1}+\cdots\right)+\frac{1}{2}\left(\varepsilon^{\alpha} x_{1}+\cdots\right)^{2}+\cdots\right) \\
&=e^{x_{0}}\left(1+\varepsilon^{\alpha} x_{1}+\cdots\right) \\
& x^{3} \sim x_{0}^{3}+3 \varepsilon^{\alpha} x_{0}^{2} x_{1}+\cdots \\
& \Rightarrow \quad x_{0}^{3}+3 \varepsilon^{\alpha} x_{0}^{2} x_{1}+\cdots+\varepsilon^{2} e^{x_{0}}\left(1+\varepsilon^{\alpha} x_{1}+\cdots\right)-1+\varepsilon^{3}=0
\end{aligned}
$$

Expansion of equations

Algebraic/transcendental equation:

$$
\Rightarrow \quad x_{0}^{3}+3 \varepsilon^{\alpha} x_{0}^{2} x_{1}+\cdots+\varepsilon^{2} e^{x_{0}}\left(1+\varepsilon^{\alpha} x_{1}+\cdots\right)-1+\varepsilon^{3}=0
$$

$$
\mathcal{O}(1) \quad x_{0}^{3}-1=0 \quad \Rightarrow \quad x_{0}=1
$$

$$
\mathcal{O}\left(\varepsilon^{2}\right) \quad 3 x_{0}^{2} x_{1}+e^{x_{0}}=0 \quad \Rightarrow \quad x_{1}=-\frac{1}{3} e
$$

Two-term approximation:

$$
x \sim 1-\frac{1}{3} \varepsilon^{2} e+\cdots
$$

Expansion of initial value problems

Rescaled projectile problem from the first lecture

$$
\frac{d^{2} x}{d t^{2}}=-\frac{1}{(1+\varepsilon x)^{2}}, \quad x(0)=0, \quad \frac{d x}{d t}(0)=1 \quad\left(\varepsilon=\frac{v_{0}^{2}}{g R}\right)
$$

In this case, expansion coefficients are functions of t :

$$
x(t ; \varepsilon) \sim x_{0}(t)+\varepsilon^{\alpha} x_{1}(t)+\varepsilon^{\beta} x_{2}(t)+\cdots
$$

Note: $\frac{1}{(1+\varepsilon x)^{2}}=1-2 \varepsilon x+3 \varepsilon^{2} x^{2}+\cdots$

$$
\begin{aligned}
& \sim 1-2 \varepsilon\left(x_{0}+\varepsilon^{\alpha} x_{1}+\cdots\right)+3 \varepsilon^{2}\left(x_{0}+\cdots\right)^{2}+\cdots \\
& =1-2 \varepsilon x_{0}+\cdots
\end{aligned}
$$

The expansion of the differential equation is

$$
x_{0}^{\prime \prime}+\varepsilon^{\alpha} x_{1}^{\prime \prime}+\cdots=-1+2 \varepsilon x_{0}+\cdots
$$

The expansions of the initial conditions are

$$
x_{0}(0)+\varepsilon^{\alpha} x_{1}(0)+\cdots=0, \quad x_{0}^{\prime}(0)+\varepsilon^{\alpha} x_{1}^{\prime}(0)+\cdots=1
$$

Expansion of initial value problems

The expansion of the differential equation is

$$
x_{0}^{\prime \prime}+\varepsilon^{\alpha} x_{1}^{\prime \prime}+\cdots=-1+2 \varepsilon x_{0}+\cdots
$$

The expansions of the initial conditions are

$$
x_{0}(0)+\varepsilon^{\alpha} x_{1}(0)+\cdots=0, \quad x_{0}^{\prime}(0)+\varepsilon^{\alpha} x_{1}^{\prime}(0)+\cdots=1
$$

Consistency conditions:

$$
\begin{aligned}
\mathcal{O}(1) \quad & x_{0}^{\prime \prime}=-1 \quad x_{0}(0)=0, \quad x_{0}^{\prime}(0)=1 \\
& \Rightarrow x_{0}(t)=t\left(1-\frac{1}{2} t\right)
\end{aligned}
$$

(term $2 \varepsilon x_{0}$ must balance with $\varepsilon^{\alpha} x_{1}^{\prime \prime}, \Rightarrow \alpha=1$)
$\mathcal{O}(\varepsilon) \quad x_{1}^{\prime \prime}=2 x_{0} \quad x_{1}(0)=0, \quad x_{1}^{\prime}(0)=0$

$$
\Rightarrow x_{1}(t)=\frac{1}{12} t^{3}(4-t)
$$

Two-term solution: $\quad x(t) \sim t\left(1-\frac{1}{2} t\right)+\frac{1}{12} \varepsilon t^{3}(4-t)+\cdots$

Expansion of initial value problems

We can apply the same approach to systems

$$
\left.\begin{array}{rlr}
\frac{d u}{d t}=1 & -u e^{\varepsilon(q-1)}, \quad u(0)=0 & \left.\left.\begin{array}{l}
u
\end{array}\right) u_{0}(t)+\varepsilon\right\} \\
q & \sim q_{0}(t)+\varepsilon q
\end{array}\right] \begin{array}{rlr}
\frac{d q}{d t}= & u e^{\varepsilon(q-1)}-q, \quad q(0)=0 & \\
e^{\varepsilon(q-1)} & \sim 1+\varepsilon(q-1)+\frac{1}{2} \varepsilon^{2}(q-1)^{2}+\cdots & \\
& \sim 1+\varepsilon\left(q_{0}+\varepsilon q_{1}+\cdots-1\right)+\frac{1}{2} \varepsilon^{2}\left(q_{0}+\varepsilon q_{1}+\cdots-1\right)^{2} \\
& \sim 1+\varepsilon\left(q_{0}-1\right)+\cdots & \\
u e^{\varepsilon(q-1)} & \sim\left(u_{0}+\varepsilon u_{1}+\cdots\right)\left[1+\varepsilon\left(q_{0}-1\right)+\cdots\right] \\
& \sim u_{0}+\varepsilon\left[u_{0}\left(q_{0}-1\right)+u_{1}\right]+\cdots \\
u_{0}^{\prime}+\varepsilon u_{1}^{\prime} & +\cdots=1-u_{0}-\varepsilon\left(u_{0}\left(q_{0}-1\right)+u_{1}\right)+\cdots \\
q_{0}^{\prime}+\varepsilon q_{1}^{\prime} & +\cdots=u_{0}-q_{0}+\varepsilon\left(u_{0}\left(q_{0}-1\right)+u_{1}-q_{1}\right)+\cdots
\end{array}
$$

Expansion of initial value problems

$$
\begin{aligned}
u_{0}^{\prime}+\varepsilon u_{1}^{\prime}+\cdots & =1-u_{0}-\varepsilon\left(u_{0}\left(q_{0}-1\right)+u_{1}\right)+\cdots \\
q_{0}^{\prime}+\varepsilon q_{1}^{\prime}+\cdots & =u_{0}-q_{0}+\varepsilon\left(u_{0}\left(q_{0}-1\right)+u_{1}-q_{1}\right)+\cdots
\end{aligned}
$$

Consistency conditions

$$
\begin{gathered}
\mathcal{O}(1) \quad u_{0}^{\prime}=1-u_{0} \quad q_{0}^{\prime}=u_{0}-q_{0}, \quad u_{0}(0)=q_{0}(0)=0 \\
\Rightarrow u_{0}(t)=1-e^{-t}, \quad q_{0}(t)=1-(1+t) e^{-t} \\
\mathcal{O}(\varepsilon) \quad u_{1}^{\prime}=-u_{1}-u_{0}\left(q_{0}-1\right) \quad q_{1}^{\prime}=-q_{1}+u_{1}+u_{0}\left(q_{0}-1\right), \\
u_{1}(0)=q_{1}(0)=0 \\
\Rightarrow \quad u_{1}(t)=\frac{1}{2}\left(t^{2}+2 t-4\right) e^{-t}+(2+t) e^{-2 t}, \\
\\
q_{1}(t)=\frac{1}{6}\left(t^{3}-18 t+30\right) e^{-t}-(2 t+5) e^{-2 t} \\
u(t) \sim 1-e^{-t}+\varepsilon\left(\frac{1}{2}\left(t^{2}+2 t-4\right) e^{-t}+(2+t) e^{-2 t}\right)+\cdots \\
q(t) \sim 1-(1+t) e^{-t}+\varepsilon\left(\frac{1}{6}\left(t^{3}-18 t+30\right) e^{-t}-(2 t+5) e^{-2 t}\right)+\cdots
\end{gathered}
$$

