
Mathematical Modelling
Lecture 3

The Big Picture (regular perturbations)



Regular expansions
Consider the solutions of the quadratic equation

where ε is a small parameter.

Import are:

1. we are interested in the class of solutions as a function of ε.

2. we are interested in obtaining approximate solutions as ε tends to zero.

The number of solutions is 2, also in the limit            (regular perturbation).  
Consider instead the singular perturbation problem:
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Regular expansions
Consider the solutions of the quadratic equation

where ε is a small parameter.

Import are:

1. we are interested in the class of solutions as a function of ε.

2. we are interested in obtaining approximate solutions as ε tends to zero.

Recall that 

(for common expansions, see Table 2.1).   Hence,
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Regular expansions
Consider the solutions of the quadratic equation

where ε is a small parameter.

Suppose we did not know the solution of the quadratic.   We expect the 
solution to depend on ε.   Generalizing Taylor’s theorem, we try an 
expansion

Assumptions:

- Well-ordering

- Coefficients                      do not depend on ε

Note that 
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Regular expansions
Consider the solutions of the quadratic equation

where ε is a small parameter.

Substituting the expansion into the quadratic equation gives

Taking the limit            yields the relation 

Leaving

If the expansion is to hold as ε tends to zero, the terms of the same order 
in ε must equate independently.  The term         must be balanced by                
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Regular expansions
Consider the solutions of the quadratic equation

where ε is a small parameter.

Continuing this way yields 

Compare

Formally, we require:

i.e. the truncated expansions converge as           .
But the (infinite) expansion typically does not converge for fixed ε.
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Expansion of functions
Compound function:

Start with the innermost function

From Table 2.1
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Expansion of functions
Compound function:

Start with the innermost function
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Expansion of equations
Algebraic/transcendental equation:
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Expansion of equations
Algebraic/transcendental equation:

Two-term approximation:
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Figure 2.3 Comparison between the numerical solution of (2.16) and the asymptotic
expansion (2.19).

the procedure to find the complex-valued solutions. What might not have
been noticed is that not all of the terms in the original equation contribute
to the approximation of the solution in (2.19). Namely, the ✏3 term does
not contribute and the reason is that we have only computed the expansion
through ✏2. In fact, if ✏3 were to be replaced with ✏4 or sin(✏3) the expansion
in (2.19) still holds. It would not hold, however, if ✏3 were to be changed to
✏ or cos(✏).

2.2.3 Given an Initial Value Problem

The next stage in the development is to apply regular expansions to problems
involving di↵erential equations. We will work out two examples, the first
involves a single equation, and the second a system.

Example 1
The projectile problem furnishes an excellent example. Using (1.65) - (1.67)
the problem to solve is

d2x

dt2
= � 1

(1 + ✏x)2
, for 0 < t, (2.20)

where

x(0) = 0, (2.21)
dx

dt
(0) = 1. (2.22)

It is important to note that we are using the nondimensional problem and
not the original given in (1.65) - (1.67). The use of an asymptotic expan-
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Expansion of initial value problems
Rescaled projectile problem from the first lecture

In this case, expansion coefficients are functions of t:

Note:

The expansion of the differential equation is

The expansions of the initial conditions are
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Expansion of initial value problems
The expansion of the differential equation is

The expansions of the initial conditions are

Consistency conditions:

(term         must balance with         ,                    )

Two-term solution:   
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The solution of this problem is x1 = 1
12 t3(4� t).

We have therefore found that a two-term expansion of the solution is

x ⇠ t(1� 1
2
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✏t3(4� t) + · · · . (2.27)

This rather simple-looking expression is a two-term asymptotic expansion of
the nonlinear projectile problem. Physically, the first term, t(1 � 1

2 t), gives
the displacement of the projectile for a uniform gravitational field, and is the
nondimensional version of (1.5). The second term, ✏t3(4� t)/12, gives us the
correction due to the nonlinear gravitational field.

To determine how well we have done in approximating the solution, a
comparison is shown in Figure 2.4 for ✏ = 0.1 and ✏ = 0.01. It is seen that
the one-term approximation, x ⇠ t(1 � 1

2 t), produces a reasonably accurate
approximation for ✏ = 0.01, but not when ✏ = 0.1. In contrast, the two-
term approximation (2.27) does very well for both values. To put this into
perspective, if the object’s initial velocity is the speed of sound then ✏ ⇡ 0.002,
while if it is equal to the Earth’s escape velocity then ✏ ⇡ 2. Figure 2.4 shows
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Figure 2.4 Comparison between the numerical solution of the projectile problem
and the asymptotic expansion (2.27). In the upper graph ✏ = 0.1, and in the lower
graph ✏ = 0.01. In both graphs the curves for the exact solution and two-term expan-
sion are almost indistinguishable.



Expansion of initial value problems
We can apply the same approach to systems
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Expansion of initial value problems

Consistency conditions
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