
Mathematical Modelling
Lecture 4

The devil’s in the details (singular perturbations)



Review of regular perturbations
• Asymptotic expansions: 

• Assumed: 

• Collecting terms:

• Consequently, 

•                 chosen to achieve balance, starting at the lowest order in 

• Leads to a hierarchy of approximations, e.g.

• Convergence in epsilon, divergent series

• Initial value problems (expansion of ODE and initial conditions)
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Singular perturbations
Consider the solutions of the quadratic equation

where ε is a small parameter.

One root converges to 1/2, one diverges in the limit          

Using a regular perturbation expansion, we can approximate the root at 
x=1/2, but not the other root.

Instead we introduce a rescaling              .  The problem becomes

for which both roots exist in the limit          , and regular expansions can 
be applied.
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Boundary layers
Singular perturbation problems arise also in differential equations.  
Typically when ε multiplies the highest derivative.

Again the character of the problem changes for         :  Both boundary 
conditions cannot be satisfied.

Exact solution

Solution varies (rapidly) over
a region of width ∼ ε
“Boundary layer”

Solution has two parts: 
inner and outer layers
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Boundary layers
Singular perturbation problems arise also in differential equations.  
Typically when ε multiplies the highest derivative.

To obtain the outer solution we just apply the regular perturbation 
method:

One free parameter, can satisfy only one b.c.
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Boundary layers
Singular perturbation problems arise also in differential equations.  
Typically when ε multiplies the highest derivative.

Next we consider what happens in a neighborhood of the left boundary.  
We rescale in x: 

We want to choose γ such that the first term remains as           .

We balance     with either     or    at the lowest order.
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Boundary layers

Balance           
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Boundary layers
Next, we want to match the solutions in the “overlap region”.  We require 
the matching condition:

Since both solutions are constant outside of their respective regions, we 
can construct a composite solution:
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Figure 2.9 Graph of the inner approximation (2.57), and the outer approximation
(2.50), before matching.

approximations are both constant. Given that they are approximations of the
same function then we need to require that the inner and outer expansions
are equal in this region. In more mathematical terms, the requirement we
will impose on these two expansions is

lim
x̄!1

Y0 = lim
x!0

y0. (2.58)

This is called the matching condition. With this we conclude A = e and
the resulting functions are plotted in Figure 2.10 for ✏ = 10�4. The overlap
domain is clearly seen in this figure.

Step 4. Composite Expansion
The approximation of the solution we have comes in two pieces, one that
applies near x = 0 and another that works everywhere else. Because neither
can be used over the entire interval we say that they are not uniformly valid
for 0  x  1. The question we consider now is whether we can combine them
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Figure 2.10 Graph of the inner approximation (2.57), and the outer approximation
(2.50), after matching in the particular case of when ✏ = 10�4. Note the overlap
region where the two approximations produce, approximately, the same result.
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approximations are both constant. Given that they are approximations of the
same function then we need to require that the inner and outer expansions
are equal in this region. In more mathematical terms, the requirement we
will impose on these two expansions is

lim
x̄!1

Y0 = lim
x!0

y0. (2.58)

This is called the matching condition. With this we conclude A = e and
the resulting functions are plotted in Figure 2.10 for ✏ = 10�4. The overlap
domain is clearly seen in this figure.

Step 4. Composite Expansion
The approximation of the solution we have comes in two pieces, one that
applies near x = 0 and another that works everywhere else. Because neither
can be used over the entire interval we say that they are not uniformly valid
for 0  x  1. The question we consider now is whether we can combine them
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Figure 2.10 Graph of the inner approximation (2.57), and the outer approximation
(2.50), after matching in the particular case of when ✏ = 10�4. Note the overlap
region where the two approximations produce, approximately, the same result.



Multiple boundary layers
Our second example illustrates multiple boundary layers and nonconstant 
coefficients:

For           the solution is simply                , which satisfies neither b.c.

Outer solution:

Boundary layer at x=0: 

Balance: 

Matching condition: 
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Multiple boundary layers
Our second example illustrates multiple boundary layers and nonconstant 
coefficients:

For           the solution is simply                , which satisfies neither b.c.

Outer solution:

Boundary layer at x=1: 

Balance: 

Matching condition: 
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Multiple boundary layers
Composite solution:  
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Figure 2.15 Sketch of the three regions and the values of the approximations in
those regions.

region (i.e., ex ! �1) that you get the same value as when you enter the
boundary layer from the outer region (i.e., x ! 1). Given that r+ > 0 and
r� < 0 then limex!�1 er�ex = 1 and limex!�1 er+ex = 0. For eY0 to be able
to match with the outer solution we must set 1 � e � A = 0. With this our
first term approximation in this boundary layer is

eY0(ex) = e + (1� e)er+ex. (2.71)

Step 4. Composite
In a similar manner as in the last example, it is possible to combine the three
approximations we have derived to produce a uniform approximation. The
situation is shown schematically in Figure 2.15. It is seen that in each region
the two approximations not associated with that region add to 1 + e. This
means we simply add the three approximations together and subtract 1 + e.
In other words,

y ⇠ y0(x) + Y0(x̄) + eY0(ex)� y0(0)� y0(1)

= ex + e�x/✏ + (1� e)er+(x�1)/✏. (2.72)

This function is a composite expansion of the solution and it is valid for
0  x  1. To demonstrate its e↵ectiveness the composite approximation is
plotted in Figure 2.16 along with the numerical solution for ✏ = 10�1 and
for ✏ = 10�2. The approximations are not very accurate for ✏ = 10�1, but
this is not unexpected given that ✏ is not particularly small. In contrast, for
✏ = 10�2 the composite approximation is quite good over the entire interval,
and it is expected to get even better for smaller values of ✏.

72 2 Perturbation Methods

2.6 Multiple Scales and Two-Timing

As the last two examples have demonstrated, the presence of a boundary layer
limits the region over which an approximation can be used. Said another way,
the inner and outer approximations are not uniformly valid over the entire
interval. The tell-tale sign that this is going to happen is that when ✏ = 0
the highest derivative in the problem is lost. However, the lack of uniformity
can occur in other ways and one investigated here relates to changes in the
solution as a function of time. It is easier to explain what happens by working
out a typical example. For this we use the pendulum problem. Letting ✓(t)
be the angular deflection made by the pendulum, as shown in Figure 2.17,
the problem is

✓00 + sin(✓) = 0, (2.73)

where
✓(0) = ✏, (2.74)

and
✓0(0) = 0. (2.75)

The equation of motion (2.73) comes from Newton’s second law, F = ma,
where the external forcing F is gravity. It is assumed the initial angle is small,
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Figure 2.16 Graph of the numerical solution of the boundary value problem (2.60)-
(2.62) and the composite approximation of the solution (2.72). In the upper plot
✏ = 10�1 and in the lower plot ✏ = 10�2.



Two time-scales
Pendulum:

Regular perturbation analysis:  
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Figure 2.18 Graph of the numerical solution of the pendulum problem (2.60)-(2.62)
and the first term in the regular perturbation approximation (2.76). Shown are the
solutions over the entire time interval, as well as a close up of the solutions near
t = 200. In the calculation ✏ = 1

3 and both solutions have been divided by ✏ = 1
3 .

✏✓0
0(0) + ✏↵+1✓0

1(0) + · · · = 0. (2.80)

Proceeding in the usual manner yields the following problem.

O(✏) ✓00
0 + ✓0 = 0

✓0(0) = 1, ✓0
0(0) = 0

The general solution of the di↵erential equation is ✓0 = a cos(t) +
b sin(t), where a, b are arbitrary constants. It is possible to write this
solution in the more compact form ✓0 = A cos(t + B), where A,B are
arbitrary constants. As will be explained later, there is a reason for
why the latter form is preferred in this problem. With this, and the
initial conditions, it is found that ✓0 = cos(t).

The plot of the one-term approximation, ✓ ⇠ ✏ cos(t), and the numerical
solution are shown in Figure 2.18. The asymptotic approximation describes
the solution accurately at the start, and reproduces the amplitude very well
over the entire time interval. What it has trouble with is matching the phase
and this is evident in the lower plot in Figure 2.18. One additional comment
to make is the value for ✏ used in Figure 2.18 is not particularly small, so
getting an approximation that is not very accurate is no surprise. However,
if a smaller value is used the same di�culty arises. The di↵erence is that the
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Two time-scales
Pendulum:

Regular perturbation analysis:  
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first term approximation works over a longer time interval but eventually the
phase error seen in Figure 2.18 occurs.

In looking to correct the approximation to reduce the phase error we cal-
culate the second term in the expansion. With the given ✓0 there is an ✏3✓3

0

term in (2.78). To balance this we use the ✓1 term in the expansion and this
requires ↵ = 2. With this we have the following problem to solve.
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1 + ✓1 = 1

6✓3
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1(0) = 0

The method of undetermined coe�cients can be used to find a par-
ticular solution of this equation. This requires the identity cos3(t) =
1
4 (3 cos(t) + 3 cos(3t)), in which case the di↵erential equation becomes

✓00
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1
24

(3 cos(t) + 3 cos(3t)). (2.81)

With this the general solution is found to be ✓1 = a cos(t) + b sin(t)�
1
16 t sin(t), where a, b are arbitrary constants. From the initial condi-
tions this reduces to ✓1 = � 1

16 t sin(t).

The plot of the two term approximation,

✓ ⇠ ✏ cos(t)� 1
16

✏3t sin(t), (2.82)

and the numerical solution is shown in Figure 2.19. It is clear from this
that we have been less than successful in improving the approximation. The
culprit here is the t sin(t) term. As time increases its contribution grows, and
it eventually gets as large as the first term in the expansion. Because of this it
is called a secular term, and it causes the expansion not to be uniformly valid
for 0  t <1. This problem would not occur if time were limited to a finite
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Figure 2.19 Graph of the numerical solution of the pendulum problem (2.60)-(2.62)
and the regular perturbation approximation (2.72). In the calculation ✏ = 1

3 and the

solution has been divided by ✏ = 1
3 .
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Two time-scales
Pendulum:

The problem with the phase is that for the nonlinear problem, the phase 
is not constant, but changes slowly.  We have two time scales:  (1) the time 
scale on which the oscillations occur, (2) the time scale upon which the 
phase slowly changes.

We construct an approximation that explicitly uses these scales:
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Two time-scales
Pendulum: ✓00 + sin(✓) = 0, ✓(0) = ", ✓0(0) = 0
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Two time-scales
Pendulum:

Next order in    is   .  Applying balance as for singular perturbations: 

The next order term gives:

or

To avoid a secular (growing in time) term, we may choose
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Figure 2.20 Graph of the numerical solution of the pendulum problem (2.60)-(2.62)
and the multiple scale approximation (2.92). Shown are the solutions over the entire
time interval, as well as a close up of the solutions near t = 200. In the calculation
✏ = 1

3 and the solution has been divided by ✏ = 1
3 .

Exercises

2.1. Assuming f ⇠ a1✏↵ + a2✏� + · · · find ↵, � (with ↵ < �), and nonzero
a1, a2, for the following:

(a) f = esin(✏).
(b) f =

p
1 + cos(✏).

(c) f = 1/
p

sin(✏).
(d) f = 1/(1� e✏).
(e) f = sin(

p
1 + ✏x), for 0  x  1.

(f) f = ✏ exp(
p

✏ + ✏x), for 0  x  1.

2.2. Let f(✏) = sin(e✏).
(a) According to Taylor’s theorem, f(✏) = f(0)+✏f 0(0)+ 1

2✏2f 00(0)+· · · . Show
that this gives (2.13).

(b) Explain why the formula used in part (a) can not be used to find an
expansion of f(✏) = sin(e

p
✏). Also, show that the method used to derive

(2.13) still works, and derive the expansion.

2.3. Consider the equation

x2 + (1� 4✏)x�
p

1 + 4✏ = 0.




