Mathematical Modelling

Lecture 4
The devil's in the details (singular perturbations)

Review of regular perturbations

- Asymptotic expansions: $\quad x \sim \varepsilon^{\alpha_{0}} x_{0}+\varepsilon^{\alpha_{1}} x_{1}+\cdots$,
- Assumed: $\alpha_{0}<\alpha_{1}<\cdots$
- Collecting terms: $\quad \varepsilon^{\alpha_{0}} f_{0}\left(x_{i}\right)+\varepsilon^{\alpha_{1}} f_{1}\left(x_{i}\right)+\cdots=0, \quad 0<\varepsilon \leq \varepsilon_{0}, \quad x \in D$
- Consequently, $\quad f_{0}\left(x_{i}\right)=0, f_{1}\left(x_{i}\right)=0, \cdots$
- $\alpha_{0}, \alpha_{1}, \cdots$ chosen to achieve balance, starting at the lowest order in ε
- Leads to a hierarchy of approximations, e.g.

$$
\begin{aligned}
& x \approx x_{0} \\
& x \approx x_{0}+\varepsilon x_{1} \\
& x \approx x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}
\end{aligned}
$$

- Convergence in epsilon, divergent series
- Initial value problems (expansion of ODE and initial conditions)

Singular perturbations

Consider the solutions of the quadratic equation

$$
\varepsilon x^{2}+2 x-1=0
$$

where ε is a small parameter.

$$
1-2 x=\varepsilon x^{2}
$$

One root converges to I/2, one diverges in the limit $\varepsilon \rightarrow 0$
Using a regular perturbation expansion, we can approximate the root at $x=1 / 2$, but not the other root.

Instead we introduce a rescaling $\bar{x}=\varepsilon x$. The problem becomes

$$
\bar{x}^{2}+2 \bar{x}-\varepsilon=0
$$

for which both roots exist in the limit $\varepsilon \rightarrow 0$, and regular expansions can be applied.

Boundary layers

Singular perturbation problems arise also in differential equations.
Typically when ε multiplies the highest derivative.

$$
\begin{gathered}
\varepsilon y^{\prime \prime}(x)+2 y^{\prime}(x)+2 y(x)=0, \quad 0<x<1 \\
y(0)=0, \quad y(1)=1
\end{gathered}
$$

Again the character of the problem changes for $\varepsilon=0$: Both boundary conditions cannot be satisfied.
Exact solution $y(x)=\frac{e^{r_{+} x}-e^{r_{-} x}}{e^{r_{+}-e^{r_{-}}}, \quad r_{ \pm}=(-1 \pm \sqrt{1-2 \varepsilon}) / \varepsilon, ~(1) ~}$

Solution varies (rapidly) over a region of width $\sim \varepsilon$
"Boundary layer"
Solution has two parts:
 inner and outer layers

Boundary layers

Singular perturbation problems arise also in differential equations.
Typically when ε multiplies the highest derivative.

$$
\begin{gathered}
\varepsilon y^{\prime \prime}(x)+2 y^{\prime}(x)+2 y(x)=0, \quad 0<x<1 \\
y(0)=0, \quad y(1)=1
\end{gathered}
$$

To obtain the outer solution we just apply the regular perturbation method: $\quad y \sim y_{0}(x)+\varepsilon y_{1}(x)+\cdots$

$$
\begin{aligned}
& \varepsilon\left(y_{0}^{\prime \prime}(x)+\varepsilon y_{1}^{\prime \prime}(x)+\cdots\right)+2\left(y_{0}^{\prime}(x)+\varepsilon y_{1}^{\prime}(x)+\cdots\right)+2\left(y_{0}(x)+\varepsilon y_{1}(x)+\cdots\right)=0 \\
& y_{0}(0)+\varepsilon y_{1}(0)+\cdots=0, \quad y_{0}(1)+\varepsilon y_{1}(1)+\cdots=1
\end{aligned}
$$

$\mathcal{O}(1): \quad 2 y_{0}^{\prime}+2 y_{0}=0, \quad y_{0}(0)=0, y_{0}(1)=1 \quad \Rightarrow \quad y_{0}(x)=a e^{-x}$
One free parameter, can satisfy only one b.c. $\quad \Rightarrow \quad y_{0}(x)=e^{1-x}$
$\mathcal{O}(\varepsilon): \quad y_{0}^{\prime \prime}+2 y_{1}^{\prime}+2 y_{1}=0, \quad y_{1}(1)=1 \quad \Rightarrow \quad y_{1}(x)=(b-x / 2) e^{1-x}$

$$
\Rightarrow \quad y_{1}(x)=(1-x) e^{1-x} / 2
$$

Boundary layers

Singular perturbation problems arise also in differential equations.
Typically when ε multiplies the highest derivative.

$$
\begin{gathered}
\varepsilon y^{\prime \prime}(x)+2 y^{\prime}(x)+2 y(x)=0, \quad 0<x<1 \\
y(0)=0, \quad y(1)=1
\end{gathered}
$$

Next we consider what happens in a neighborhood of the left boundary. We rescale in x :

$$
\begin{aligned}
& \bar{x}=\frac{x}{\varepsilon^{\gamma}}, \quad \frac{d}{d x}=\frac{d \bar{x}}{d x} \frac{d}{d \bar{x}}=\frac{1}{\varepsilon^{\gamma}} \frac{d}{d \bar{x}}, \quad \frac{d^{2}}{d x^{2}}=\frac{1}{\varepsilon^{2 \gamma}} \frac{d^{2}}{d \bar{x}^{2}} \\
& Y(\bar{x})=y(x)
\end{aligned}
$$

$$
\begin{equation*}
\varepsilon^{1-2 \gamma} Y^{\prime \prime}+2 \varepsilon^{-\gamma} Y^{\prime}+2 Y=0 \tag{1}
\end{equation*}
$$

(2)
(3)

We want to choose γ such that the first term remains as $\varepsilon \rightarrow 0$.
We balance (1) with either (2) or ${ }^{(3)}$ at the lowest order.

Boundary layers

$$
\varepsilon^{1-2 \gamma} Y^{\prime \prime}+2 \varepsilon^{-\gamma} Y^{\prime}+2 Y=0
$$

Balance (1) ~ (2): $\quad 1-2 \gamma=-\gamma \Rightarrow \gamma=1, \mathcal{O}\left(\varepsilon^{-1}\right), \quad$ (3) $\sim \mathcal{O}(1)$

$$
\left.\begin{array}{l}
\text { (1) } \sim \text { (3) }: \quad 1-2 \gamma=-0 \Rightarrow \gamma=1 / 2, \mathcal{O}(1), \quad(2) \sim \mathcal{O}\left(\varepsilon^{-1 / 2}\right) \\
Y^{\prime \prime}+2 Y^{\prime}+2 \varepsilon Y=0 \\
Y=Y_{0}+\varepsilon Y_{1}+\cdots \\
Y_{0}^{\prime \prime}+\varepsilon Y_{1}^{\prime \prime}+\cdots+2\left(Y_{0}^{\prime}+\varepsilon Y_{1}^{\prime}+\cdots\right)+2 \varepsilon\left(Y_{0}+\varepsilon Y_{1}+\cdots\right)=0 \\
Y_{0}(0)+\varepsilon Y_{1}(0)=0 \\
\mathcal{O}(1): \quad Y_{0}^{\prime \prime}+2 Y_{0}^{\prime}=0, \quad Y_{0}(0)=0 \quad \Rightarrow \quad Y_{0}=A+B e^{-2 \bar{x}} \\
\\
\end{array} \quad \Rightarrow \quad Y_{0}(\bar{x})=A\left(1-e^{-2 \bar{x}}\right)\right) .
$$

Boundary layers

Next, we want to match the solutions in the "overlap region". We require the matching condition:

$$
\begin{array}{ll}
\lim _{\bar{x} \rightarrow \infty} Y_{0}=\lim _{x \rightarrow 0} y_{0} & y_{0}(x)=e^{1-x} \rightarrow e \\
Y_{0}(\bar{x}) & =A\left(1-e^{-2 \bar{x}}\right) \rightarrow A \\
\Rightarrow A & =e
\end{array}
$$

Since both solutions are constant outside of their respective regions, we can construct a composite solution:

$$
\begin{aligned}
y & \sim y_{0}(x)+Y_{0}(\bar{x})-y_{0}(0) \\
& =e^{1-x}-e^{1-2 x / \varepsilon}
\end{aligned}
$$

Multiple boundary layers

Our second example illustrates multiple boundary layers and nonconstant coefficients:

$$
\begin{gathered}
\varepsilon^{2} y^{\prime \prime}+\varepsilon x y^{\prime}-y(x)=-e^{x}, \quad 0<x<1 \\
y(0)=2, \quad y(1)=1
\end{gathered}
$$

For $\varepsilon=0$ the solution is simply $y(x)=e^{x}$, which satisfies neither b.c.
Outer solution: $y(x)=e^{x}$
Boundary layer at $\mathrm{x}=0: \quad \bar{x}=\frac{x}{\varepsilon^{\gamma}}$

$$
\begin{equation*}
\varepsilon^{2-2 \gamma} Y^{\prime \prime}+\varepsilon \bar{x} Y^{\prime}-Y=e^{\varepsilon^{\gamma} \bar{x}} \tag{1}
\end{equation*}
$$

Balance:

$$
\begin{array}{ll}
\text { (1) } \sim \text { (2): } & 2-2 \gamma=1 \Rightarrow \gamma=1 / 2, \mathcal{O}(\varepsilon), \quad(3) \sim \mathcal{O}(1) \tag{2}\\
\text { (1) } \sim(3): & 2-2 \gamma=0 \Rightarrow \gamma=1, \mathcal{O}(1), \quad(2) \sim \mathcal{O}(\varepsilon)
\end{array}
$$

$Y^{\prime \prime}+\varepsilon \bar{x} Y^{\prime}-Y=-e^{\varepsilon \bar{x}}$ $Y=Y_{0}+\varepsilon Y_{1}+\cdots$
$\mathcal{O}(1) \quad Y_{0}^{\prime \prime}-Y_{0}=-1, \quad Y_{0}(0)=2 \quad \Rightarrow \quad Y_{0}(\bar{x})=1+A e^{\bar{x}}+B e^{-\bar{x}} \quad \Rightarrow \quad B=(1-A)$
Matching condition: $\quad \lim _{\bar{x} \rightarrow \infty} Y_{0}=\lim _{x \rightarrow 0} y_{0} \quad \lim _{\bar{x} \rightarrow \infty} 1+A e^{\bar{x}}=1 \quad \Rightarrow \quad A=0$

Multiple boundary layers

Our second example illustrates multiple boundary layers and nonconstant coefficients:

$$
\begin{gathered}
\varepsilon^{2} y^{\prime \prime}+\varepsilon x y^{\prime}-y(x)=-e^{x}, \quad 0<x<1 \\
y(0)=2, \quad y(1)=1
\end{gathered}
$$

For $\varepsilon=0$ the solution is simply $y(x)=e^{x}$, which satisfies neither b.c.
Outer solution: $y(x)=e^{x}$
Boundary layer at $\mathbf{x}=\mathrm{I}: \tilde{x}=\frac{x-1}{\varepsilon^{\gamma}} \quad \varepsilon^{2-2 \gamma} \tilde{Y}^{\prime \prime}+\varepsilon^{1-\gamma}\left(1+\varepsilon^{\gamma} \tilde{x}\right) \tilde{Y}^{\prime}-\tilde{Y}=-e^{1+\varepsilon^{\gamma} \tilde{x}}$

Balance: (1) ~ (3) : $2-2 \gamma=0 \Rightarrow \gamma=1, \mathcal{O}(1), \quad$ (2) $\sim \mathcal{O}(1)$

$$
\begin{array}{ll}
\tilde{Y}^{\prime \prime}+(1+\varepsilon \tilde{x}) \tilde{Y}^{\prime}-\tilde{Y}=-e^{1+\varepsilon \tilde{x}} & \tilde{Y}=\tilde{Y}_{0}+\varepsilon \tilde{Y}_{1}+\cdots \\
\tilde{Y}_{0}^{\prime \prime}+\varepsilon \tilde{Y}_{1}^{\prime \prime}+\cdots(1+\varepsilon \tilde{x})\left(\tilde{Y}_{0}^{\prime}+\varepsilon \tilde{Y}_{1}^{\prime}+\cdots\right)-\left(\tilde{Y}_{0}+\varepsilon \tilde{Y}_{1}+\cdots\right)=-e^{1+\varepsilon \tilde{x}}
\end{array}
$$

$\mathcal{O}(1) \quad \tilde{Y}_{0}^{\prime \prime}+\tilde{Y}_{0}^{\prime}-\tilde{Y}_{0}=-e, \quad \tilde{Y}_{0}(0)=1 \quad \Rightarrow \quad Y_{0}(\tilde{x})=1+A e^{r+\tilde{x}}+B e^{r-\tilde{x}} \quad r_{ \pm}=\frac{-1 \pm \sqrt{5}}{2}$
Matching condition: $\lim _{\tilde{x} \rightarrow-\infty} \tilde{Y}_{0}=\lim _{x \rightarrow 1} y_{0} \Rightarrow \tilde{Y}_{0}=e+(1-e) e^{r+\tilde{x}}$

Multiple boundary layers

Composite solution:

Two time-scales

Pendulum: $\quad \theta^{\prime \prime}+\sin (\theta)=0, \quad \theta(0)=\varepsilon, \quad \theta^{\prime}(0)=0$
Regular perturbation analysis: $\quad \theta \sim \varepsilon\left(\theta_{0}+\varepsilon^{\alpha} \theta_{1}+\cdots\right)$

$$
\begin{aligned}
& \sin (\theta) \sim \sin \left(\varepsilon\left(\theta_{0}+\varepsilon^{\alpha} \theta_{1}+\cdots\right)\right) \sim \varepsilon \theta_{0}+\varepsilon^{\alpha+1} \theta_{1}-\frac{1}{6} \varepsilon^{3} \theta_{0}^{3}+\cdots \\
& \varepsilon \theta_{0}^{\prime \prime}+\varepsilon^{\alpha+1} \theta_{1}^{\prime \prime}+\cdots+\varepsilon \theta_{0}+\varepsilon^{\alpha+1} \theta_{1}-\frac{1}{6} \varepsilon^{3} \theta_{0}^{3}+\cdots=0 \\
& \varepsilon \theta_{0}(0)+\varepsilon^{\alpha+1} \theta_{1}(0)+\cdots=\varepsilon \\
& \varepsilon \theta_{0}^{\prime}(0)+\varepsilon^{\alpha+1} \theta_{1}^{\prime}(0)+\cdots=0
\end{aligned}
$$

$\mathcal{O}(\varepsilon) \quad \theta_{0}^{\prime \prime}+\theta_{0}=0$,

$$
\theta_{0}(0)=1, \theta_{0}^{\prime}(0)=0
$$

$$
\theta_{0}(t)=A \cos (t+B) \quad \Rightarrow \quad \theta_{0}=\cos t
$$

Two time-scales

Pendulum: $\quad \theta^{\prime \prime}+\sin (\theta)=0, \quad \theta(0)=\varepsilon, \quad \theta^{\prime}(0)=0$
Regular perturbation analysis: $\quad \theta \sim \varepsilon\left(\theta_{0}+\varepsilon^{\alpha} \theta_{1}+\cdots\right)$

$$
\begin{aligned}
& \varepsilon \theta_{0}^{\prime \prime}+\varepsilon^{\alpha+1} \theta_{1}^{\prime \prime}+\cdots+\varepsilon \theta_{0}+\varepsilon^{\alpha+1} \theta_{1}-\frac{1}{6} \varepsilon^{3} \theta_{0}^{3}+\cdots=0 \\
& \varepsilon \theta_{0}(0)+\varepsilon^{\alpha+1} \theta_{1}(0)+\cdots=\varepsilon \\
& \varepsilon \theta_{0}^{\prime}(0)+\varepsilon^{\alpha+1} \theta_{1}^{\prime}(0)+\cdots=0 \\
& \theta_{1}^{\prime \prime}+\theta_{1}=\frac{1}{24}(3 \cos t+3 \cos 3 t) \\
& \mathcal{O}\left(\varepsilon^{3}\right) \quad \theta_{1}^{\prime \prime}+\theta_{1}=\frac{1}{6} \theta_{0}^{3}, \quad \theta_{0}(0)=0, \theta_{0}^{\prime}(0)=0 \quad \theta_{1}=a \cos t+b \sin t-\frac{1}{16} t \sin t \\
& \theta_{1}=-\frac{1}{16} t \sin t \quad \text { Secular term } \\
& \theta \sim \varepsilon \cos t-\frac{\varepsilon^{3}}{6} t \sin t+\cdots
\end{aligned}
$$

TMO tinne-scales

Pendulum: $\quad \theta^{\prime \prime}+\sin (\theta)=0, \quad \theta(0)=\varepsilon, \quad \theta^{\prime}(0)=0$
The problem with the phase is that for the nonlinear problem, the phase is not constant, but changes slowly. We have two time scales: (1) the time scale on which the oscillations occur, (2) the time scale upon which the phase slowly changes.

We construct an approximation that explicitly uses these scales:

$$
\begin{aligned}
& t_{1}=t, \quad t_{2}=\varepsilon^{\gamma} t \quad \frac{d}{d t}=\frac{d t_{1}}{d t} \frac{\partial}{\partial t_{1}}+\frac{d t_{2}}{d t} \frac{\partial}{\partial t_{2}}=\frac{\partial}{\partial t_{1}}+\varepsilon^{\gamma} \frac{\partial}{\partial t_{2}} \\
& \frac{d^{2}}{d t^{2}}=\left(\frac{\partial}{\partial t_{1}}+\varepsilon^{\gamma} \frac{\partial}{\partial t_{2}}\right)^{2}=\frac{\partial^{2}}{\partial t_{1}^{2}}+2 \varepsilon^{\gamma} \frac{\partial}{\partial t_{1}} \frac{\partial}{\partial t_{2}}+\varepsilon^{2 \gamma} \frac{\partial^{2}}{\partial t_{2}^{2}} \\
& \theta \sim \varepsilon\left(\theta_{0}\left(t_{1}, t_{2}\right)+\varepsilon^{\alpha} \theta_{1}\left(t_{1}, t_{2}\right)+\cdots\right) \\
& \varepsilon \frac{\partial^{2}}{\partial t_{1}^{2}} \theta_{0}+\varepsilon^{\alpha+1} \frac{\partial^{2}}{\partial t_{1}^{2}} \theta_{1}+2 \varepsilon^{\gamma+1} \frac{\partial^{2}}{\partial t_{1} \partial t_{2}} \theta_{0}+\cdots+\varepsilon \theta_{0}+\varepsilon^{\alpha+1} \theta_{1}-\frac{1}{6} \varepsilon^{3} \theta_{0}^{3}+\cdots=0 \\
& \varepsilon \theta_{0}(0,0)+\varepsilon^{\alpha+1} \theta_{1}(0,0)+\cdots=0 \\
& \varepsilon \frac{\partial}{\partial t_{1}} \theta_{0}(0,0)+\varepsilon^{\alpha+1} \frac{\partial}{\partial t_{1}} \theta_{1}(0,0)+\varepsilon^{\gamma+1} \frac{\partial}{\partial t_{2}} \theta_{0}(0,0)+\cdots=0
\end{aligned}
$$

Two time-scales

Pendulum: $\quad \theta^{\prime \prime}+\sin (\theta)=0, \quad \theta(0)=\varepsilon, \quad \theta^{\prime}(0)=0$

$$
\begin{aligned}
& \theta \sim \varepsilon\left(\theta_{0}\left(t_{1}, t_{2}\right)+\varepsilon^{\alpha} \theta_{1}\left(t_{1}, t_{2}\right)+\cdots\right) \\
& \varepsilon \frac{\partial^{2}}{\partial t_{1}^{2}} \theta_{0}+\varepsilon^{\alpha+1} \frac{\partial^{2}}{\partial t_{1}^{2}} \theta_{1}+2 \varepsilon^{\gamma+1} \frac{\partial^{2}}{\partial t_{1} \partial t_{2}} \theta_{0}+\cdots+\varepsilon \theta_{0}+\varepsilon^{\alpha+1} \theta_{1}-\frac{1}{6} \varepsilon^{3} \theta_{0}^{3}+\cdots=0 \\
& \varepsilon \theta_{0}(0,0)+\varepsilon^{\alpha+1} \theta_{1}(0,0)+\cdots=0 \\
& \varepsilon \frac{\partial}{\partial t_{1}} \theta_{0}(0,0)+\varepsilon^{\alpha+1} \frac{\partial}{\partial t_{1}} \theta_{1}(0,0)+\varepsilon^{\gamma+1} \frac{\partial}{\partial t_{2}} \theta_{0}(0,0)+\cdots=0 \\
& \quad \mathcal{O}(\varepsilon) \quad \frac{\partial^{2}}{\partial t_{1}^{2}} \theta_{0}+\theta_{0}=0, \quad \theta_{0}(0,0)=1, \quad \frac{\partial}{\partial t_{1}} \theta_{0}(0,0)=0 \\
& \quad \Rightarrow \quad \theta_{0}=A\left(t_{2}\right) \cos \left(t_{1}+B\left(t_{2}\right)\right) \quad A(0)=1, \quad B(0)=0
\end{aligned}
$$

Two time-scales

Pendulum: $\quad \theta^{\prime \prime}+\sin (\theta)=0, \quad \theta(0)=\varepsilon, \quad \theta^{\prime}(0)=0$
Next order in ε is ε^{3}. Applying balance as for singular perturbations:
The next order term gives:

$$
\alpha+1=\gamma+1=3
$$

$\mathcal{O}\left(\varepsilon^{3}\right) \quad \frac{\partial^{2}}{\partial t_{1}^{2}} \theta_{1}+\theta_{1}+2 \frac{\partial^{2}}{\partial t_{1} \partial_{2}} \theta_{0}=\frac{1}{6} \theta_{0}^{3}=0$

$$
\theta_{1}(0,0)=0, \quad \frac{\partial}{\partial t_{1}} \theta_{1}(0,0)+\frac{\partial}{\partial t_{2}} \theta_{0}(0,0)=0
$$

or

$$
\theta_{1}^{\prime \prime}+\theta_{1}=\frac{1}{24}\left[3 \cos \left(t_{1}+B\right)+3 \cos \left(3\left(t_{1}+B\right)\right)\right]+2 A^{\prime} \sin \left(t_{1}+B\right)+2 A B^{\prime} \cos \left(t_{1}+B\right)
$$

To avoid a secular (growing in time) term, we may choose

$$
A^{\prime}=0, \quad 2 A B^{\prime}=-\frac{1}{8} \quad \Rightarrow \quad A=1, B=-t_{2} / 16
$$

$\theta \sim \varepsilon \cos \left(t-\varepsilon^{2} t / 16\right)+\cdots$

