Mathematical Modelling
 Lecture 5
 Hurtling through space

Newtonian mechanics

- Newtonian mechanics addresses systems of mass points. A mass point is a single point moving in space that has a finite mass m attached to it.
- Newton's law:

$$
\text { mass } \times \text { acceleration }=\text { force }
$$

- Newton's apple: (a mass point with mass m and vertical position $z(t)$ at time t). The force is $-m g$:

$$
m \ddot{z}=-m g \Longleftrightarrow \ddot{z}=-g
$$

- Second order ODE, solving IVP requires two initial conditions:

$$
z(t)=z(0)+\dot{z}(0) t-\frac{g}{2} t^{2}
$$

- The state of the system is the collection of variables that completely specifies it at a moment in time

$$
\text { state }=\{\text { position, velocity }\}=\{z, \dot{z}\}
$$

- If the motion is well-posed then $\operatorname{state}(0) \rightarrow \operatorname{state}(t) \quad$ (determinism).

Mechanical systems

More generally, a motion in \mathbb{R}^{n} is a differential mapping

$$
x(t): I \rightarrow \mathbb{R}^{n}
$$

where I is an interval on the real axis. The first derivative of the motion $\dot{x}(t)=d x / d t$ is the velocity vector. The second derivative of the motion $\ddot{x}(t)=d^{2} x / d t^{2}$ is the acceleration vector.

A mechanical system of n points moving in three-dimensional euclidean space is defined as follows: the graph (t, x) of a motion is a curve in $\mathbb{R} \times \mathbb{R}^{3}$ A motion of n points gives n curves. The direct product of n copies of \mathbb{R}^{3} is called the configuration space of the system of n points, i.e. $\mathbb{R}^{N}, N=3 n$

We say the system has N degrees of freedom. The phase space is dimension 2 N .

Newton's principle of determinacy: the initial state of a mechanical system (the totality of the positions and velocities of its points at some moment in time) uniquely determines all of its motion.

Newtonian mechanics

- Energy conservation: Multiply by the velocity and manipulate

$$
\begin{aligned}
& \ddot{z}=-g \\
& \dot{z} \ddot{z}+g \dot{z}=0 \Longleftrightarrow \frac{d}{d t}\left(\frac{\dot{z}^{2}}{2}+g z\right)=0
\end{aligned}
$$

- The invariant quantity is the energy functional (actually times m)

$$
H(z, \dot{z})=\frac{\dot{z}^{2}}{2}+g z=\mathrm{const}=E
$$

- E is determined from the initial condition
- First term is the kinetic energy, second term the potential energy.
- Phase space: the space spanned by the state coordinates (z, \dot{z})
- Every state of the system corresponds to a point (space of all possible states)
- Solutions define nonintersecting trajectories (curves) in phase space
- Trajectories coincide with contours of constant H.
- Plotting the contours of H we can produce the solutions without solving the ODE (but not their parameterization in time).

Galilean invariance

- Galilean space: $\mathbb{R} \times \mathbb{R}^{3}$ equipped with a distance function $|\cdot|$ for points in \mathbb{R}^{3}.
- A Galilean group is a group of transformations g of a Galilean space which preserve its structure:
- Uniform motion with a velocity \mathbf{v}

$$
g(t, x)=(t, x+v t), \quad t \in \mathbb{R}, x, t \in \mathbb{R}^{3}
$$

- Translation of the origin

$$
g(t, x)=(t+s, x+y)
$$

- Rotation of the coordinate axes

$$
g(t, x)=(t, G x)
$$

where $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an orthogonal matrix. Every Galilean transformation can be written as a composition of these.

Galilean invariance

- Newton's law

$$
m \ddot{x}=F(x, \dot{x}, t)
$$

- If the motion is Galilean invariant (inertial coordinate system):
- Time translation: $x=\phi(t)$ a solution, then $x=\phi(t+s)$ is too, $\forall s$.

$$
m \ddot{x}=F(x, \dot{x})
$$

- Space translations: $x_{i}=\phi_{i}(t), i=1, \ldots, n$ are motions of an npoint system, then so are $x_{i}=\phi_{i}(t)+r, i=1, \ldots, n, \forall r \in \mathbb{R}^{3}$

$$
\ddot{x}_{i}=f_{i}\left(\left\{x_{j}-x_{k}\right\},\left\{\dot{x}_{j}-\dot{x}_{k}\right\}\right), \quad i, j, k=1, \ldots, n
$$

- Rotations in \mathbb{R}^{3} : if $x_{i}=\phi_{i}(t), i=1, \ldots, n$ are motions satisfying Newton, and G is a 3×3 orthogonal matrix, then $x_{i}(t)=G \phi_{i}(t)$ is also a solution (no preferred direction)
$f_{i}\left(\left\{G x_{j}-G x_{k}\right\},\left\{G \dot{x}_{j}-G \dot{x}_{k}\right\}\right)=G f_{i}\left(\left\{x_{j}-x_{k}\right\},\left\{\dot{x}_{j}-\dot{x}_{k}\right\}\right), \quad i, j, k=1, \ldots, n$

Conservative forces

- Newton's law:

$$
m \ddot{x}=F(x, \dot{x})
$$

- F is a conservative force if it is the gradient of a potential function $U(x)$

$$
F=-\nabla U(x)
$$

- Example I. The gravitational potential $U=m g z \quad H=\frac{m \dot{z}^{2}}{2}+m g z$
- Example 2. Projectile problem $m \ddot{x}=-\frac{m g R^{2}}{(R+x)^{2}}$

$$
U=\frac{m g R^{2}}{R+x} \quad H=\frac{m|\dot{x}|^{2}}{2}+U
$$

- Example 3. Pendulum $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0$

$$
U=-\frac{g}{\ell} \cos \theta
$$

n-body problems

- Example 4. Consider n point masses in \mathbb{R}^{3}

$$
m_{i} \ddot{x}_{i}(t)=-\frac{\partial U}{\partial x_{i}}, \quad i=1, \ldots, n
$$

- Typically, the potential \mathbf{U} is a sum of pair-potentials $\phi(r)$

$$
U=\sum_{i} \sum_{j>i} m_{i} m_{j} \phi\left(\left|x_{i}-x_{j}\right|^{2}\right)
$$

- Note that this system is Galilean invariant.
- Examples: cellestial mechanics (gravitational potential), classical molecular systems (Lennard-Jones potential):

$$
\phi(r)=4 \varepsilon\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}
$$

Calculus of Variations

- Until now, we have seen the interpretation of mechanics as an initial value problem, where the motion $\mathrm{q}(\mathrm{t})$ is the solution taking the initial condition from $\mathrm{t}=0$ to $\mathrm{t}=\mathrm{T}$.
- An alternative view point looks at the entire path, defining $q(t)$ on the entire interval $[0, \mathrm{~T}]$ as the solution to an integral equation.
- Consider a smooth function $y(x), x \in[a, b]$ and an integral

$$
J[y(x)]=\int_{a}^{b} F\left(y, y^{\prime}, x\right) d x
$$

- Derivatives of F with respect to its arguments: $\quad \frac{\partial F}{\partial y}, \quad \frac{\partial F}{\partial y^{\prime}}, \quad \frac{\partial F}{\partial x}$

$$
F=x^{2} y+\left(y^{\prime}\right)^{2} \quad \Rightarrow \quad \frac{\partial F}{\partial y}=x^{2}, \quad \frac{\partial F}{\partial y^{\prime}}=2 y^{\prime}, \quad \frac{\partial F}{\partial x}=2 x y, \quad \frac{\partial^{2} F}{\partial x \partial y}=2 x
$$

- Functional J depends on the entire function y, denoted by square brackets. Example: norms on function spaces.

Calculus of Variations

- Consider a smooth function $y(x), x \in[a, b]$ and an integral

$$
J[y(x)]=\int_{a}^{b} F\left(y, y^{\prime}, x\right) d x
$$

- Calculus of variations is concerned with the change of J due to small changes in $\mathrm{y}(\mathrm{x})$

$$
y(x) \rightarrow y(x)+\delta y(x)
$$

- The variation $\delta y(x)$ is a smooth function that is small in the sense

$$
\|\delta y(x)\|_{\infty} \ll 1 \text { and }\left\|\delta y^{\prime}\right\|_{\infty} \ll 1 \quad \delta y^{\prime}=\frac{d}{d x} \delta y
$$

- Change in J (the first variation) can be computed via Taylor expansion

$$
\begin{aligned}
J[y+\delta y]-J[y] & =\int_{a}^{b}\left(F\left(y+\delta y, y^{\prime}+\delta y^{\prime}, x\right)-F\left(y, y^{\prime}, x\right)\right) d x \\
& =\int_{a}^{b}\left(\delta y \frac{\partial F}{\partial y}\left(y, y^{\prime}, x\right)+\delta y^{\prime} \frac{\partial F}{\partial y^{\prime}}\left(y, y^{\prime}, x\right)\right) d x+o\left(\delta y^{2}, \delta y^{\prime 2}\right)
\end{aligned}
$$

$$
\delta J=\int_{a}^{b}\left[\frac{\partial F}{\partial y}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right] \delta y d x+\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{a} ^{b}
$$

Calculus of Variations

- Consider a smooth function $y(x), x \in[a, b]$ and an integral

$$
J[y(x)]=\int_{a}^{b} F\left(y, y^{\prime}, x\right) d x
$$

- First variation:

$$
\delta J=\int_{a}^{b}\left[\frac{\partial F}{\partial y}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right] \delta y d x+\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{a} ^{b}
$$

- An extremal is a function $y(x)$ for which the first variation vanishes. In particular, in the interior it must satisfy the Euler-Lagrange equation (EL)

$$
\text { EL: } \frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=\frac{\partial F}{\partial y}
$$

- Boundary conditions: $\quad y(a), y(b)$ fixed $\Rightarrow \delta y(a)=\delta y(b)=0$

$$
y(b) \text { not fixed } \Rightarrow \frac{\partial F}{\partial y^{\prime}}(b)=0
$$

Calculus of Variations

- Example: shortest distance between two points $\left(x_{a}, y_{a}\right)$ and $\left(x_{b}, y_{b}\right)$.

$$
J=\int_{a}^{b} d s=\int_{a}^{b} \sqrt{d x^{2}+d y^{2}}=\int_{x_{a}}^{x_{b}} \sqrt{1+y^{\prime 2}} d x
$$

- Euler-Lagrange equation is

$$
\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0 \quad \Rightarrow \quad \frac{\partial F}{\partial y^{\prime}}=\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=\text { const. }
$$

- Hence the extremal is a straight line through the two endpoints.
- In a variant we do not specify $y\left(x_{b}\right)=y_{b}$. Then the natural boundary condition comes into play $y^{\prime}\left(x_{b}\right)=0$, and the extremal is a straight line of zero slope.

Symmetries and conservation laws

- A conservation law is a function $G\left(y, y^{\prime}, x\right)$ that is constant along extremals of the functional. For $y(x)$ a solution to the EL equations:

$$
\frac{d G}{d x}=\frac{\partial G}{\partial x}+\frac{\partial G}{\partial y} y^{\prime}+\frac{\partial G}{\partial y^{\prime}} y^{\prime \prime}=0
$$

- It turns out that many conservation laws can be related to continuous symmetries of J. For instance, in the previous example, J depended only on y^{\prime}, not explicitly on x and y. This led to the conservation law

$$
\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0
$$

- A translational symmetry in x or y yields a conservation law. A symmetry in the dependent variable y means $F=F\left(y^{\prime}, x\right)$ and hence for $G_{y} \equiv \partial F / \partial y^{\prime}$, using the EL equations:

$$
\frac{d G_{y}}{d x}=\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=\frac{\partial F}{\partial y}=0
$$

- Similarly for $F=F\left(y, y^{\prime}\right)$ we have conservation of $G_{x}=y^{\prime} \partial F / \partial y^{\prime}-F$

Action principle

- Returning to Newton's apple, we define the action functional

$$
S[z(t)]=\int_{0}^{T} L(z, \dot{z}) d t=\int_{0}^{T}(K-U) d t=\int_{0}^{T}\left(m \frac{\dot{z}^{2}}{2}-m g z\right) d t
$$

- The quantity L is referred to as the Lagrangian, the difference between kinetic and potential energies.
- The action principle: Newton's law is the Euler-Lagrange equation for an extremal of the action integral relative to all trajectories that have a fixed initial point $z(0)$ and a fixed terminal point $z(T)$:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{z}}=\frac{\partial L}{\partial z}, \quad \frac{\partial L}{\partial z}=-m g, \frac{\partial L}{\partial \dot{z}}=m \dot{z} \quad \Rightarrow \quad \ddot{z}=-g
$$

- As opposed to the IVP approach, here need to specify the boundary data (BVP)
- Since the Lagrangian does not explicitly depend on t, there is a conservation law (energy)

$$
G_{t}=\dot{z} \frac{\partial L}{\partial \dot{z}}-L=m \frac{\dot{z}^{2}}{2}+m g z=H(z, \dot{z})
$$

Action principle

- The Euler-Lagrange equations generalize easily to functionals that depend on more than one function $F\left(x_{1}, \ldots, x_{N}, x_{1}^{\prime}, \ldots, x_{N}^{\prime}, t\right)$

$$
\frac{d}{d t}\left(\frac{\partial F}{\partial x_{n}^{\prime}}\right)=\frac{\partial F}{\partial x_{n}}, \quad n=1, \ldots, N
$$

- The action principle is still defined as the difference between kinetic and potential energies:

$$
\begin{aligned}
& S[x(t)]=\int_{0}^{T} L(x, \dot{x}) d t=\int_{0}^{T}(K-U) d t=\int_{0}^{T} \frac{|\dot{x}|^{2}}{2}-U(x) d t=0 \\
& \frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=\frac{\partial L}{\partial x} \Rightarrow \ddot{x}+\nabla U(x)=0
\end{aligned}
$$

Coordinate invariance

- The Euler-Lagrange equations are invariant under arbitrary changes of coordinates. If \mathbf{x} satisfies the EL equations and $x=f(X)$ then X satisfies the EL equations for the action principle with Lagrangian

$$
\tilde{L}(X, \dot{X}, t)=L\left(f(X), f^{\prime}(X) \dot{X}, t\right)
$$

- To see this substitute

$$
\begin{aligned}
& \frac{\partial \tilde{L}}{\partial X}=\frac{\partial L}{\partial x} f(X)+\frac{\partial L}{\partial \dot{x}} f^{\prime \prime}(X) \dot{X}, \quad \frac{\partial \tilde{L}}{\partial \dot{X}}=\frac{\partial L}{\partial \dot{x}} f^{\prime}(X) \\
& \frac{d}{d t}\left(\frac{\partial \tilde{L}}{\partial \dot{X}}\right)=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right) f^{\prime}+\frac{\partial L}{\partial \dot{x}} f^{\prime \prime} \dot{X}=\frac{\partial L}{\partial x} f^{\prime}+\frac{\partial L}{\partial \dot{x}} f^{\prime \prime} \dot{X}=\frac{\partial \tilde{L}}{\partial X}
\end{aligned}
$$

- The same does not hold for Newton's equations.

