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Newtonian mechanics
• Newtonian mechanics addresses systems of mass points.   A mass point 

is a single point moving in space that has a finite mass m attached to it. 

• Newton’s law:

• Newton’s apple:  (a mass point with mass m and vertical             
position       at time t).   The force is          :

• Second order ODE, solving IVP requires two initial conditions:

• The state of the system is the collection of variables that completely 
specifies it at a moment in time

• If the motion is well-posed then                                   (determinism). 

mass⇥ acceleration = force
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Mechanical systems
More generally, a motion in      is a differential mapping

where I is an interval on the real axis.  The first derivative of the     
motion                      is the velocity vector.   The second derivative of the 
motion                         is the acceleration vector.

A mechanical system of n points moving in three-dimensional euclidean 
space is defined as follows: the graph         of a motion is a curve in          
A motion of n points gives n curves.   The direct product of n copies of   
is called the configuration space of the system of n points, i.e.             

We say the system has N degrees of freedom.   The phase space is 
dimension 2N.

Newton’s principle of determinacy: the initial state of a mechanical system 
(the totality of the positions and velocities of its points at some moment 
in time) uniquely determines all of its motion.
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Newtonian mechanics
• Energy conservation:  Multiply by the velocity and manipulate

• The invariant quantity is the energy functional (actually times m)

• E is determined from the initial condition

• First term is the kinetic energy, second term the potential energy.

• Phase space: the space spanned by the state coordinates
• Every state of the system corresponds to a point (space of all possible 

states)
• Solutions define nonintersecting trajectories (curves) in phase space
• Trajectories coincide with contours of constant H.

• Plotting the contours of H we can produce the solutions without 
solving the ODE (but not their parameterization in time).
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• A Galilean group is a group of transformations g of a Galilean space 
which preserve its structure:

• Uniform motion with a velocity v

• Translation of the origin

• Rotation of the coordinate axes

where                      is an orthogonal matrix.  Every Galilean 
transformation can be written as a composition of these.

g(t, x) = (t, x+ vt), t 2 R, x, t 2 R3

g(t, x) = (t+ s, x+ y)

g(t, x) = (t, Gx)

G : R3 ! R3

Galilean invariance

• Galilean space:              equipped with a distance function      for points 
in    .

R⇥ R3 | · |
R3



Galilean invariance
• Newton’s law

• If the motion is Galilean invariant (inertial coordinate system):

• Time translation:                 a solution, then                     is too,     .

• Space translations:                                        are motions of an n-
point system, then so are 

• Rotations in     : if                                       are motions satisfying 
Newton, and G is a 3x3 orthogonal matrix, then                        is 
also a solution (no preferred direction)

mẍ = F (x, ẋ, t)

x = �(t) x = �(t+ s) 8s

mẍ = F (x, ẋ)

xi = �i(t), i = 1, . . . , n
xi = �i(t) + r, i = 1, . . . , n, 8r 2 R3

ẍi = fi({xj � xk}, {ẋj � ẋk}), i, j, k = 1, . . . , n

R3
xi = �i(t), i = 1, . . . , n

xi(t) = G�i(t)

fi({Gxj�Gxk}, {Gẋj�Gẋk}) = Gfi({xj�xk}, {ẋj�ẋk}), i, j, k = 1, . . . , n



Conservative forces
• Newton’s law:

• F is a conservative force if it is the gradient of a potential function U(x)

• Example 1.  The gravitational potential 

• Example 2.  Projectile problem

• Example 3.  Pendulum 

mẍ = F (x, ẋ)

U = mgz
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n-body problems
• Example 4.  Consider n point masses in      

• Typically, the potential U is a sum of pair-potentials

• Note that this system is Galilean invariant.

• Examples:  cellestial mechanics (gravitational potential), classical 
molecular systems (Lennard-Jones potential):
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Calculus of  Variations
• Until now, we have seen the interpretation of mechanics as an initial 

value problem, where the motion q(t) is the solution taking the initial 
condition from t=0 to t=T.

• An alternative view point looks at the entire path, defining q(t) on the 
entire interval [0,T] as the solution to an integral equation.

• Consider a smooth function                         and an integral

• Derivatives of F with respect to its arguments:

• Functional J depends on the entire function y, denoted by square 
brackets.  Example: norms on function spaces.
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Calculus of  Variations
• Consider a smooth function                         and an integral

• Calculus of variations is concerned with the change of J due to small 
changes in y(x) 

• The variation          is a smooth function that is small in the sense

• Change in J (the first variation) can be computed via Taylor expansion
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Calculus of  Variations
• Consider a smooth function                         and an integral

• First variation:

• An extremal is a function        for which the first variation vanishes.  In 
particular, in the interior it must satisfy the Euler-Lagrange equation (EL)

• Boundary conditions:   
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Calculus of  Variations
• Example: shortest distance between two points             and           . 

• Euler-Lagrange equation is

• Hence the extremal is a straight line through the two endpoints.

• In a variant we do not specify                  .   Then the natural boundary 
condition comes into play                  , and the extremal is a straight line 
of zero slope.
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Symmetries and conservation laws
• A conservation law is a function                  that is constant along 

extremals of the functional.  For y(x) a solution to the EL equations:

• It turns out that many conservation laws can be related to continuous 
symmetries of J.   For instance, in the previous example, J depended only 
on y’, not explicitly on x and y.  This led to the conservation law

• A translational symmetry in x or y yields a conservation law.   A 
symmetry in the dependent variable y means                      and hence   
for                       , using the EL equations:

• Similarly for                     we have conservation of
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Action principle
• Returning to Newton’s apple, we define the action functional

• The quantity L is referred to as the Lagrangian, the difference between 
kinetic and potential energies.

• The action principle:  Newton’s law is the Euler-Lagrange equation for 
an extremal of the action integral relative to all trajectories that have a 
fixed initial point z(0) and a fixed terminal point z(T):

• As opposed to the IVP approach, here need to specify the boundary 
data (BVP)

• Since the Lagrangian does not explicitly depend on t, there is a 
conservation law (energy)
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Action principle
• The Euler-Lagrange equations generalize easily to functionals that 

depend on more than one function

• The action principle is still defined as the difference between kinetic and 
potential energies:
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Coordinate invariance
• The Euler-Lagrange equations are invariant under arbitrary changes of 

coordinates.   If x satisfies the EL equations and                  then     
satisfies the EL equations for the action principle with Lagrangian

• To see this substitute

• The same does not hold for Newton’s equations.

x = f(X) X
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