Mathematical Modelling

Lecture 5
Hurtling through space



Newtonian mechanics

* Newtonian mechanics addresses systems of mass points. A mass point
is a single point moving in space that has a finite mass m attached to it.

e Newton’s law:

mass X acceleration = force

* Newton’s apple: (a mass point with mass m and vertical
position 2(t) at time t). The force is —mg:

mz=-—-mg <= z=—g

* Second order ODE, solving IVP requires two initial conditions:

2(t) = 2(0) + 2(0)t — th

* The state of the system is the collection of variables that completely
specifies it at a moment in time

state = {position, velocity} = {z, 2}

e If the motion is well-posed then state(0) — state(f) (determinism).



Mechanical systems

More generally,a motion in R" is a differential mapping
x(t): [ — R"”

where | is an interval on the real axis. The first derivative of the
motion & (t) = dx/dt is the velocity vector. The second derivative of the
motion i(t) = d*x/dt* is the acceleration vector:

A mechanical system of n points moving in three-dimensional euclidean
space is defined as follows: the graph (¢, ) of a motion is a curve inR x R*
A motion of n points gives n curves. The direct product of n copies of R*
is called the configuration space of the system of n points,i.e. R, N = 3n

We say the system has N degrees of freedom. The phase space is
dimension 2N.

Newton’s principle of determinacy: the initial state of a mechanical system
(the totality of the positions and velocities of its points at some moment
in time) uniquely determines all of its motion.



Newtonian mechanics

* Energy conservation: Multiply by the velocity and manipulate
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* The invariant quantity is the energy functional (actually times m)
.2
H(z, z2) = % + gz = const = E

* E is determined from the initial condition
* First term is the kinetic energy, second term the potential energy.

* Phase space: the space spanned by the state coordinates (z, 2)
* Every state of the system corresponds to a point (space of all possible
states)

* Solutions define nonintersecting trajectories (curves) in phase space
* Trajectories coincide with contours of constant H.

* Plotting the contours of H we can produce the solutions without
solving the ODE (but not their parameterization in time).



Galilean invariance

e Galilean space: R x R?equipped with a distance function | - | for points
in R?

* A Galilean group is a group of transformations g of a Galilean space
which preserve its structure:
e Uniform motion with a velocity v
gt,x) = (t,x+vt), teR, z,teR
* Translation of the origin
g(t,x) = (t+ s,z +y)
* Rotation of the coordinate axes

g(t,x) = (t,Gx)

where GG : R% — R” is an orthogonal matrix. Every Galilean
transformation can be written as a composition of these.



Galilean invariance

e Newton’s law

mi = F(x,x,t)

* If the motion is Galilean invariant (inertial coordinate system):

e Time translation: x = ¢(t) a solution, then = = ¢(t + s) is too, Vs,

mi = F(x, 1)

e Space translations: z; = ¢;(t), ¢ = 1,...,n are motions of an n-
point system, then so are z; = ¢;(t) + 7, 1 =1,...,n, Vr € RS
e Rotations in R*if x; = ¢;(t), i =1,...,n are motions satisfying

Newton, and G is a 3x3 orthogonal matrix, then x;(t) = G;(t)is

also a solution (no preferred direction)

fillGrj—Grg§,{Grj—Gagy) = Gfi({rj—xp b, {T;—Tk }),

iik=1,...



Conservative forces

e Newton’s law:
mi = F(x, 1)

* Fis a conservative force if it is the gradient of a potential function U(x)

F=-VU(x)
* Example I. The gravitational potential U = mgz H = mjz Fmgz
Example 2. Projectile problem 1 mg "
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n-body problems

 Example 4. Consider n point masses in R*

oU
mzazz(t):—fn, iZl,...,n

e Typically, the potential U is a sum of pair-potentials o(r)

U=> Y mim¢(lz; — z;°)

i >
* Note that this system is Galilean invariant.

* Examples: cellestial mechanics (gravitational potential), classical
molecular systems (Lennard-Jones potential):
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Calculus of Variations

* Until now, we have seen the interpretation of mechanics as an initial
value problem, where the motion q(t) is the solution taking the initial
condition from t=0 to t=T.

* An alternative view point looks at the entire path, defining q(t) on the
entire interval [0,T] as the solution to an integral equation.

e Consider a smooth function y(z), x € |a, b] and an integral
b

Tly(@)] = / Fly,y,z)da

* Derivatives of F with respect to its arguments: oF  OF  OF

oy’ oy’ Ox
OF . OF _, OF 02 F
Oy v Oy’ Yo or v OxOy

* Functional ] depends on the entire function y, denoted by square
brackets. Example: norms on function spaces.
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Calculus of Variations

 Consider a smootlg function y(x), x € |a, bl and an integral
Ty(@)) = [ Fly.y/o)da
e Calculus of variazions is concerned with the change of | due to small
changes in y(x)
y(x) = ylz) + dy(x)

e The variation dy(x) is a smooth function that is small in the sense

d
16y(2)|leo < 1 and ||0¢[|oo < 1 oy’ = -0y

* Change in | (the first variation) can be computed via Taylor expansion

b
Tly + 6y] — Jy) = / (F(y+6y,y/ + 69/, 7) — Fly, ) do
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Calculus of Variations

 Consider a smootlg function y(x), x € |a, bl and an integral
Tyl = [ Flo.y'sa)do

¢ First variation:

b
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* An extremal is a function y(z) for which the first variation vanishes. In
particular, in the interior it must satisfy the Euler-Lagrange equation (EL)

d (OF\ OF
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* Boundary conditions:  y(a), y(b) fixed = dy(a) = dy(b) =0

y(b) not fixed = g—g(b) =0




Calculus of Variations

e Example: shortest distance between two points (2., ¥, )and (zp, yp ).

b b Ty
J:/ ds:/ Vdz? + dy? = V14 y?dr

a

* Euler-Lagrange equation is
d (817) OF Yy’

=0 = — = — const.
dz \ 0y’ 0y 1+y?

* Hence the extremal is a straight line through the two endpoints.

* In a variant we do not specify y(x») = y,. Then the natural boundary
condition comes into play v’ (x;) = 0, and the extremal is a straight line
of zero slope.



Symmetries and conservation laws

* A conservation law is a function G(y,y’, ) that is constant along
extremals of the functional. For y(x) a solution to the EL equations:
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* |t turns out that many conservation laws can be related to continuous
symmetries of |. For instance, in the previous example, ] depended only
on y’, not explicitly on x and y. This led to the conservation law

d [(OF 5
de \ oy’ ]

* A translational symmetry in x or y yields a conservation law. A
symmetry in the dependent variable y means ' = F'(y/, x) and hence
for G, = OF /0y’ using the EL equations:

dG, d (OF\ OF
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e Similarly for F' = F'(y,1y") we have conservation of G, =y 0F/0y — F



Action principle

* Returning to Newton’s apple, we define the action functional

S[2(t)] = /OT L(z, %) dt = /OT(K—U) dt = /OT (ng —mgz) dt

* The quantity L is referred to as the Lagrangian, the difference between
kinetic and potential energies.

* The action principle: Newton’s law is the Euler-Lagrange equation for
an extremal of the action integral relative to all trajectories that have a
fixed initial point z(0) and a fixed terminal point z(T):

doL oL  OL oL
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* As opposed to the IVP approach, here need to specify the boundary
data (BVP)

* Since the Lagrangian does not explicitly depend on t, there is a

conservation law (energy) .. .
G = Z% — L :m% +mgz = H(z, 2)



Action principle

* The Euler-Lagrange equations generalize easily to functionals that

depend on more than one function F(x1,...,2n,2Z7,..., 2, 1)
i (0F\ _oF
G \oz ) " om, T

* The action principle is still defined as the difference between kinetic and
potential energies:

S[az(t)]:/OTL(x,j;)dt:/OT(K—U)dt:/OT ’2‘2 Ulz)dt =0

d oL 0L



Coordinate invariance

* The Euler-Lagrange equations are invariant under arbitrary changes of
coordinates. If x satisfies the EL equations and = = f(X) then X
satisfies the EL equations for the action principle with Lagrangian

E(Xvat) — L(f(X)af/(X)Xat)

e TJo see this substitute

oL 0L OL ., . - oL oL |,
6_X_%f(X)+%f (X)X, a—X—%f (X)

d (oL\ d(oL\, oL,,. OL, OL,,. OL
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* The same does not hold for Newton’s equations.






