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Abstract. We revisit a physiological standing gradient problem of Lin and Segel from their landmark
text on mathematical modeling [C. C. Lin and L. A. Segel, Mathematics Applied to De-
terministic Problems in the Natural Sciences, SIAM, Philadelphia, 1988] with a view to
giving it an up-to-date perspective. In particular, via an alternative nondimensionaliza-
tion, we show that the problem can be analyzed using the tools of singular perturbation
theory and matched asymptotic expansions. In the spirit of the aforementioned authors,
the development is didactic in style. Solving the problem requires many of the necessary
skills of continuous modern mathematical modeling: formulation from a physical descrip-
tion of the process, scaling and asymptotic simplification, and solution using advanced
perturbation (boundary layer) techniques.
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1. Introduction. The art and science of mathematical modeling (applied math-
ematics/industrial mathematics are near synonyms) are perhaps more popular now
than ever. Certainly public awareness of the discipline has increased. Mathematics is
the invisible glue which binds our technology together. This is obvious to experts, but
less so to the man on the street, who is commonly almost proud of the fact that “I was
never any good at math,” so the argument will bear indefinite repeating. Put simply,
it is hard to think of any technology in which mathematics is not in some way inex-
tricably involved. Weather prediction, climate change, flood prevention; electricity,
water supply, sewage treatment; roads, buildings; airline scheduling, supermarket re-
stocking; they all involve mathematics at some fundamental level, but not one which is
necessarily visible to the consumer (or indeed the provider). Almost all science is built
around the concept of a mathematical model. If one wants to find out how climatic
temperatures fluctuated during the last hundred thousand years (a lot is the answer,
with some alarmingly sudden switches), one might drill an ice core in Greenland and
painstakingly measure the variation of oxygen isotopes in the ice. This variation is
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sensitive to the temperature at the time the water which forms the ice was evaporated
from the ocean. But to find that temperature, one needs a mathematical model that
tells how the two are related. Without the model, the huge expenditure to drill the
ice is pointless.

The classical models of fluid flow, heat transfer, solid mechanics, and electromag-
netism were developed in the 19th century. Early in the 20th century, mathematics
was spurred on by advances in physics. Applied mathematics became synonymous
with continuum mechanics around the time of the second world war. Fluid and solid
mechanics formed the basis of the Cambridge school, developed first by G. I. Taylor
and later George Batchelor, which flourishes to this day. More recently, fluid me-
chanics has been heavily supported by numerical analysis as computing power has
increased.

I became aware of the modeling book of Lin and Segel [12] in the late 1980s when
it was reissued as a classic in applied mathematics by SIAM. But it is only recently
that a colleague, Andrew Fowler, pointed out how new and innovative their approach
seemed at the time. This was corroborated by the recent review of Mark Holmes’ new
modeling book [7] in SIAM Review [14] by J. David Logan. Lin and Segel were using
what were then regarded as exotic tools such as nondimensionalization and scaling
to simplify real continuous problems into tractable systems of differential equations.
In so doing they espoused the philosophy that problems in all areas where quantita-
tive ideas occur can be dealt with mathematically. More or less simultaneously, Alan
Tayler [22] and Leslie Fox were following a similar avenue and, in comparison to Cam-
bridge, a different school was emerging at Oxford which focused on the applications
of mathematics in industry (or industrial mathematics). The famous Oxford Study
Groups have now been successfully exported worldwide, and the Oxford school is a
world leader in the wider applications of mathematics.

Mathematical modeling is a subject which thus developed intensively over the last
century, and since the 1960s it has widened its influence from such prewar endeavors as
aeronautics to encompass applications in increasingly diverse fields: materials science,
semiconductors, groundwater quality, ore smelting, drug design, finance, and cooking,
to name but a few. In the 1970s, mathematical biology emerged as a new and exciting
application area providing new paradigms in the study of reaction-diffusion equations.
The other most obvious recent growth area has been in financial mathematics, which
is following a similar pattern to mathematical biology. There are many other fields of
application which are thriving, and some of these are ripe for similar sorts of explosive
growth, with the right seeding. These include environmental mathematics, materials
science, bioengineering, and general methods of risk, uncertainty, and data analysis.

Much of this development has been aided by the formation of the European
Study Groups with Industry (ESGI) in Oxford in 1968 and their subsequent export
round the world, to Canada, the U.S., China, India, South Africa, Mexico, and so
on, and later the formation of the European Consortium for Mathematics in Industry
(ECMI). At an international level the establishment of SIAM consolidated the early
activities and it remains the keystone of such mathematical activity. This high-level
modeling activity provides potential benefits to industry which go far beyond the
more mundane levels alluded to earlier: a kind of super-glue. Gradually, the concept
of “industrial mathematics” has become imbedded in the mathematical community.
In this context, “industry” is interpreted in a very broad sense: the remit of these
groups includes more than collaboration with industry (for example, problems may
come from biology, finance, the environment, or energy). I do not wish to get involved
in a discussion of whether there is any difference between industrial mathematics,
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Fig. 1 The process of modeling real problems mathematically.

mathematical modeling, and indeed applied mathematics. Suffice it to say that the
area thrives when it does what it claims to do: use mathematics to solve problems
arising outside of mathematics.

The essential program of the applied mathematician is this: identify the problem
of concern, build a mathematical model, analyze and solve it, then apply the results.
The emphasis is on the science of the application, i.e., in developing an understanding
of the underlying mechanisms involved. It is an iterative procedure, since if the results
do not explain or fit the observations, one adapts the model and repeats the cycle,
although this process is not often visible in published research. This procedure of
necessity involves an active collaboration with the source of the application. The art
of modeling is a subtle one and not at all trivial, involving a thorough understanding
of many different scientific disciplines and a practical knowledge of how equations
“work.” Even the art of formulating a mathematical model is a complex interdis-
ciplinary exercise. The task of analysis of the resulting complex, nonlinear systems
often involves an array of asymptotic methods. For any particular problem, the basic
phenomena (e.g., physical, economic, etc.) are described by corresponding mathe-
matical expressions; nondimensionalization and scaling techniques are used leading
to mathematical simplification. The reduced model is then analyzed using approx-
imate or asymptotic methods where appropriate. Numerical solutions may also be
obtained to complement and extend the approximate solutions. Finally, the mathe-
matical solutions must be interpreted in the context of the original problem. Gaining
insight into, and understanding of, the original problem is at least as important as
the mathematics itself. The process is summarized in Figure 1.

Citing historical precedent, one can predict with confidence that novelty will fol-
low from the application of mathematics to real world problems [22], [19]. An obvious
example of this is Newton and the development of calculus. This arose from his
practical investigations in mechanics and geometry and the need to measure areas
under curves. Similarly, differential geometry was invented in the context of making
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maps and surveying a region of the earth. Fourier’s desire to understand heat con-
duction problems led to the development of modern Fourier theory. Fluid mechanics
has fueled perturbation techniques (Prandtl boundary layers, singular perturbation
theory, multiple scales, exponential asymptotics) which now form a deep platform for
the study of differential equations and have led to significant scientific advances in
many areas outside fluid mechanics. Indeed, our current understanding of chaos and
turbulence arose from Lorentz’s investigation of a simplified model for convection in
the atmosphere. As is typical in applied mathematics, the scientific understanding
which arose as a result has turned out to be a common (universal) feature of many
nonlinear systems.

It is in the context of the above discussion that the significance of the milestone
text of Lin and Segel [12] becomes clear. The book includes a discussion on the nature
of applied mathematics and introductory material on ODEs, PDEs, random processes,
Fourier analysis, and continuum mechanics. But the heart of the book and its most
novel aspect (at the time of publication) is a description of the process of nondimen-
sionalization, scaling, and simplification of systems of differential equations and their
subsequent solution using asymptotic methods. In particular, they demonstrate how
to deal with a real problem from a qualitative description through the mathematical
formulation, simplification, approximate solution, and, importantly, the interpretation
of the mathematical results in terms of the original process. Especially noteworthy
is the attention paid to the formulation of the problem and interpretation of the
solutions, a key element of real mathematical modeling (see Figure 1).

In the European context, in an attempt to unify mathematics syllabi across Eu-
rope, the Mathematics Subject Area Group was unanimous1 in identifying three skills
which it believes every mathematics graduate should acquire: the abilities to conceive
a proof, to solve problems using mathematical tools, and to model a situation. To this
day, this last key skill is often neglected in third-level mathematics courses. There
is still a tendency in many universities to relabel a differential equations course as a
course in mathematical modeling, paying lip service to the importance of teaching real
modeling skills. This is emphasized in [1], an extreme (but thought-provoking) view
on the mathematical needs of industry from the point of view of a pure mathematician
who moved from academia to industrial consultancy. In particular, from the point
of view of the industrialist who needs mathematical support, Beauzamy claims that
“it (mathematics) brings solutions which nobody understands to questions nobody
asked.” Of course, there are now many textbooks which have helped to popularize
and extend the skills of the mathematical modeler, for example, [4], [5], [9], [16], [19],
(all from the Oxford school), [3], [13], [10], [15], and, most recently, [7]. This list is,
of course, far from exhaustive.

One can surmize that Lin and Segel’s book has been used extensively as a course
textbook around the world. One particular problem which they study is associated
with standing gradient flow in physiology, and on closer examination it became clear
to me that this problem deserves a reappraisal from the point of view of basic modeling
techniques. The problem is presented by Lin and Segel as a physiological phenomenon
whose mechanism is not well understood. Within the body, it was known that diffu-
sion on its own could not explain the way in which solute is secreted by various tissues
into the fluid adjacent to them. Physiologists had proposed a qualitative hypothesis

1“Tuning educational structures in Europe” in Towards a Common Framework for Mathematics
Degrees in Europe, Newsletter of the European Mathematical Society, September 2002, pp. 26–28,
http://www.emis.de/newsletter/newsletter45.pdf.
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of active transport by which the solute is chemically pumped into the ends of long thin
channels, a structural feature of tissues that transport fluid. In the spirit of the dis-
cussion on climatic temperatures in the first paragraph of this introduction, what was
lacking was a quantitative mathematical model whose predictions could be compared
with experimental results. Lin and Segel formulate such a mathematical model (and
ultimately successfully match its predictions with experiment). Using scaling argu-
ments, they present the final dimensionless model as a regular perturbation problem.
Though the problem involves advection and diffusion, there is no mention of a Péclet
number. The driving force term is modeled as being small (so that leading order so-
lutions are trivial). We will show via a more informative nondimensionalization that
the problem can be treated as a singular perturbation problem. Indeed, our alterna-
tive scaling shows the power of scaling in obtaining a simple leading order solution
(where the driving force term makes an O(1) contribution) which captures the essen-
tial mechanism of the process. Matched asymptotic expansions are used to improve
on this and flesh out the details. In fact Lin and Segel’s somewhat arbitrary choice of
a step function source term also gives rise to the issue of exponentially small terms,
but these can be resolved by continuity arguments in this example.

In summary, this is an excellent didactic example which deserves a reappraisal,
and one might regard this note as an appendix to the Lin and Segel chapter on this
topic. The present paper is predominantly concerned with aspects of the technical
solution of the problem. The interpretation of the results is not discussed for the
simple reason that the original presentation of Lin and Segel is very thorough. Finally,
we note that, as is the case with most problems in applied mathematics, the model
has universal features which would allow it to be adapted to many other physical
situations, e.g., modeling the absorption of nutrients into the roots of a plant [21].

In section 2, we present the basic model; in section 3, we scale it; in section 4,
we obtain various numerical and asymptotic solutions. Finally, section 5 is a short
summary.

2. The Model. We consider the situation in Figure 2. Solutes (i.e., salts) are
secreted by various tissues into the fluid (solvent) that is adjacent to them, or “bathes”
them. For example, several different salts are secreted by the tissues of the kidney into
the fluid that flows in kidney tubules. In the cases of interest the solute concentration
in the bathing fluid is usually greater than the average concentration of solute in the
secreting tissue, so the principal mechanism for solute secretion cannot be diffusion.
Another possible mechanism is active transport by the membrane that forms the
boundary between the tissues and the bathing fluid. Here, chemical “pumps” can
expend energy to move solute across a membrane in a given direction, more or less
independently of the concentrations of solute in the fluids bathing the membrane. In
particular, an actively transporting membrane can pump solute from a region of low
concentration to a region of high concentration.

It has been shown experimentally that active transport cannot be directly involved
in the phenomenon of interest, i.e., the solute is not pumped directly into the bathing
fluid.

As explained in [12], one hypothesis proceeds from the observation that long
narrow channels are consistently a structural feature of tissues that transport fluid,
e.g., infoldings in kidney tubules. The conjecture is that solute is actively transported
in the “far” end (the closed end) of the channels, deep in the secreting tissue (see
Figure 2). The relatively high concentration in the far end is then diluted as the fluid
passes toward the opening of the channel because water is drawn into the channel by
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Fig. 2 Long thin channels, as found in secreting tissues. Solute is actively pumped into each channel
near its closed end; water is also drawn in by osmosis along the length of the channel so that
the solution that emerges at the open end of the channel (where it meets the bathing fluid)
is considerably diluted.

osmosis due to this high concentration. A standing gradient of solute concentration
is soon set up. The concentration is high at the closed “far” end of the channel (the
left-hand end in the model problem of Figure 3) and decreases to a relatively low
value at the other open “secreting” end.

Following [12], we model the problem as in Figure 3. We consider the transport
of the solute and solution in a cylinder of radius r, length L with active transport of
the solute across the boundary occurring over a short length at the tip of the cylinder
(x ∈ [0, δ]) and osmosis of water into the cylinder occurring along its length.

Solute Transport. Dimensional variables will be labeled with an asterisk. The
solute (with concentration c∗) is transported into the tube via active transport and
moves along the tube via advection and diffusion. The conservation law is

(1)
∂c∗

∂t∗
+∇ · (u∗c∗) = D∇2c∗,

where D is the diffusion constant.

Solution Transport. The solution fluid advects along the tube while solvent seeps
into the tube along its length via osmosis. The conservation law is

(2)
∂ρ

∂t∗
+∇ · (ρu∗) = 0,

where u∗ is the fluid velocity and ρ is the density. If the density is constant, this
simplifies to

(3) ∇ · u∗ = 0.
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side view

D=solute diffusivity

P=water permeability

N =rate of active transport0

L

c =ambient solute concentration0

end view

radius r

Fig. 3 The simplified standing gradient flow system. The left-hand end is closed, the right-hand
open.

One would also have to include a model for the flow in the two-dimensional case.
Active transport and osmosis through the side walls are included as flux boundary
conditions for (1) and (3), but in the one-dimensional model that we propose below
(where the side wall is no longer a boundary), this effect will be modeled as a source
term.

One-Dimensional Model. In the case of steady one-dimensional flow, (1) and
(3) reduce to

d[u∗(x∗)c∗(x∗)]

dx∗ = D
d2c∗(x∗)

dx∗2 +
2

r
N∗(x∗),(4)

du∗(x∗)

dx∗ = P
2

r
(c∗(x∗)− c0),(5)

where source terms have been added to the right-hand side of this one-dimensional
model to account for the effects of active transport and osmosis through the side
walls of the higher-dimensional model. N∗ is the active transport rate per unit area
of lateral boundary, c0 is the ambient concentration, P̂ is the rate at which solvent
enters via osmosis per unit length of perimeter, and we define P ≡ P̂ /ρ. Note that the
ratio of the cross-sectional area of the cylinder to its circumference is 2πr/πr2 = 2/r.

The appropriate boundary conditions for the one-dimensional model are

u∗(x∗ = 0) = 0,

dc∗

dx∗ (x
∗ = 0) = 0,

c∗(x∗ = L) = c0,(6)

corresponding to no flow and zero solute flux at x∗ = 0 and the solute concentration
adjusting to the ambient concentration at x∗ = L.
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The mathematical problem thus reduces to solving this coupled system of ODEs
for the solute concentration c∗(x∗) and the solution velocity u∗(x∗).

3. Scaling the Problem. In the original approach to the problem [12], Lin and
Segel went to great lengths to justify the scales at which they finally arrived via a
somewhat circuitous route. Perhaps too much attention is paid to the attempts to
find suitable scales for each individual quantity and not enough to the fact that the
ultimate aim of scaling is to bring out the balances in the equations, i.e., to make
explicit which terms dominate the process. In this problem there are only three
variables u∗, c∗, x∗ and there are a limited number of possible balances. The least
obvious is perhaps the velocity scale, as there is no single explicit velocity in the
problem. The fluid is driven by the osmosis and this in turn is driven by the active
transport of the solute so the velocity scale has to be inferred. We begin by writing

c∗(x∗) = c0 + c(x)Cs,(7)

u∗(x∗) = u(x)Vs,

x∗ = xL,

N∗(x∗) = N0N(x),

where N0 is a typical value of the dimensional active transport rate; see Table 1.
The velocity scale is then chosen by balancing the larger of the advective terms
(c∗ du∗

dx∗ ∼ c0Vs/L) and the last term in (4), i.e., balancing advection and active
transport (a similar result would be obtained if we balanced diffusion and the ac-
tive transport term). Once this has been chosen, the concentration scale is obtained
by subtracting off the ambient concentration and then balancing both sides of (5).
This is important because c0 is not a good overall scale for c∗, which will typically
show small fluctuations (as measured by Cs & c0, to be verified a posteriori) about
an “average value” c0. It also means that the two advective terms are of differing
sizes. Thus we choose

Vs =
2N0L

rc0
,(8)

Cs =
Vsr

2LP
=

N0

c0P
,

and the dimensionless system is

d(u(1 + εc))

dx
=

ε

Pe

d2c

dx2
+N(x),(9)

du

dx
= c,(10)

where Pe ≡ VsL
D ≡ 2N0L

2

Drc0
, ε ≡ Cs/c0 & 1. Pe/ε is a modified Péclet number: it is a

measure of the relative sizes of the larger advective term and diffusion (cf. the modified
Reynolds number of thin film flow [17], [18]). The parameter values suggested in [12]
are reproduced in Table 1. These will be used to inform the nondimensionalization
process although we will allow ourselves a little latitude in the development of our
approximate solutions. From the typical values, we verify that ε = 1/18 & 1, i.e.,
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Table 1 Parameter values as given in [12].

Parameter Units Minimum value Typical value Maximum value

r cm 10−6 5× 10−6 10−4

L cm 4 × 10−4 10−2 2 × 10−2

δ cm 4 × 10−5 10−3 2 × 10−3

D cm2 /sec 10−6 10−5 5 × 10−5

N0 mOsm/cm2 sec 10−10 10−7 10−5

P cm4 /sec mOsm 10−6 2 × 10−5 2 × 10−4

c0 mOsm/cm3 - 3 × 10−1 -

Cs & c0 and Pe = 4/3 = O(1). The dimensionless boundary conditions are simply

u(x = 0) = 0,

dc

dx
(x = 0) = 0,

c(x = 1) = 0,(11)

and the problem is driven by the inhomogeneous active transport term. This approach
has ignored the details of the active transport term thus far. As N∗ = N0 N(x), there
is another length scale implicit in N∗(x∗) which may be different from L. Lin and
Segel use the particular step function form

N∗(x∗) = N0, 0 ≤ x∗ ≤ δ,

= 0, δ < x∗ ≤ L,(12)

where the interval of active transport is [0, δ]. In the present formulation this becomes

N(x) = 1, 0 ≤ x ≤ γ,

= 0, γ < x ≤ 1.

Though the parameter γ ≡ δ/L ≈ 0.1 & 1, we will first seek solutions on the assump-
tion that γ = O(1). This has ramifications which we discuss later.

We thus seek a perturbation solution of (9), (10), and (11) based on ε & 1.

4. Perturbation Solutions.

4.1. A Leading Order Approximation. One of the advantages of the approach
here (in comparison with the original [12]) is that we can obtain a very simple leading
order approximation purely on the basis of one small parameter ε & 1. The leading
order approximation on 0 < x < 1 is then

du

dx
= N(x),(13)

du

dx
= c,(14)

subject to boundary conditions (11), and this yields the simple solutions

u(x) =

∫

N(x) dx = x, 0 ≤ x ≤ γ,

= γ, γ ≤ x ≤ 1,(15)

c(x) = N(x).(16)
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Fig. 4 Comparison of numerical and leading order asymptotic solution for the case ε = 1/18,
Pe = 4/3, γ = 0.1.

The simplicity of this basic result was perhaps not brought out previously, although
for the parameter values of Table 1 this should be regarded as a first step in the
development of the solutions. The whole process is driven by the active transport
terms, and the basic result is that u and c mimic N(x) and its integral. From the
point of view of elucidating the fundamental mechanism of the process, some might
regard the analysis as being finished at this point with the understanding that the
diffusion terms omitted at leading order will have a smoothing effect on the solutions.
But, of course, one can technically improve upon this leading order model. Before
proceeding we provide a comparison of the numerical solution of the full problem and
the approximation (15), (16) using the actual parameter values in Figure 4 and a
much smaller value of ε in Figure 5. In Figure 5, the approximation is not bad, but
the same cannot be said of Figure 4 particularly at the left-hand edge. In fact, as we
discuss later, this is an artifact of the actual parameter values ε & 1, γ & 1 and in
particular the fact that

√
ε ∼ γ. In the interests of generality, we will first develop

solutions on the basis that γ = O(1), noting that the typical value of δ in Table 1
is open to discussion and may in fact be five times as large. We show later for the
“typical” parameter values that there is a boundary layer of O(

√
ε) about x = γ and
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Fig. 5 Comparison of numerical and leading order asymptotic solution for the case ε = 10−4,
Pe = 1, γ = 0.1.

so the neighborhood of x = 0 requires a boundary layer rescaling. To illustrate the
basic soundness of the approach, we demonstrate that the approximation improves if
γ = O(1) = 0.5, say, or if we take much smaller values of ε (moving the boundary
layer away from x = 0). This is illustrated in Figure 5.

In the next section we show that the asymptotic error for the leading order solu-
tions (15) and (16) is expected to be O(

√
ε). By way of illustration of the consistency

of the asymptotic approach, the error in the asymptotic solution for u(x) in (15) was
computed for the parameter values illustrated in Figure 5 while varying the value of
ε. The resulting error plot is shown in Figure 6. Taking the numerical solutions to
be exact, we see that for ε = 10−2, 10−3, and 10−4 the maximum error (which occurs
at x = γ) is, respectively, 0.43

√
ε, 0.47

√
ε, and 0.45,

√
ε.

4.2. Boundary Layer Analysis. Some of the difficulty in this problem arises be-
cause of the choice of N∗(x∗) or the dimensionless N(x) as a step function in (12).
In particular, when integrating the ODEs this guarantees that c, u are not analytic
(there is a salient undergraduate-level discussion of analytic real valued functions in
[20]). Here this means that all solutions must be artificially joined at the point x = γ
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Fig. 6 Plot of E(x)/
√
ε, where E(x) is the error in the leading order asymptotic solution (15)

compared to the numerical solution. The parameter values are ε = 10−2, 10−3, 10−4, Pe = 1,
γ = 0.1.

by demanding continuity of u, c. This approach is quite similar to the continuity re-
quirements imposed at inflection points in sessile drops in [2]. The discontinuity in
N(x) = c(x) as in (16) and the corner in its integral (u(x)) cannot be completely re-
solved without a boundary layer analysis in the vicinity of x = γ. The diffusive terms
O(ε/Pe) of (9) are significant in this region. There are a couple of ways of dealing
with this issue. The obvious attempt is to develop a matched asymptotic expansions
solution with an inner layer [8] near x = γ, matching this to outer solutions to the
left and right as given by (15) and (16). In fact, the boundary layer gives rise to
exponentially small terms which are the reason that the leading order approximation
has the correct basic features. In the appendix, we discuss a model problem with the
same features. These terms are an essential component of the solution in the vicinity
of the corner: ordinarily they would be a stumbling block for the complete resolution
of the problem using matched asymptotic expansions. In the present problem the
additional continuity requirement allows these terms to be accommodated.

We now examine two distinct scenarios using matched asymptotics [6]. The first is
designed to improve on the nonsmooth solutions of the leading order approximations
(15) and (16) by the insertion of appropriate corner layers. Classical corner layers
[8] often have an analytic structure (i.e., the exact solution across the corner has a
single functional representation). That is not the case with the present problem: it is
necessary to insert a boundary layer on either side of the corner at x = γ and to impose
appropriate continuity requirements at this point. The second scenario considers
the case where the smallness of γ is taken into consideration. This is achieved by
choosing an appropriate distinguished limit based on the numerical values in Table 1.
Here we choose γ = O(

√
ε) as being appropriate (and giving a rich balance), though

other choices are possible. Each choice will give reasonable solutions provided the
asymptotic limiting process reflects the actual numerical parameters.
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4.2.1. Solutions Based on ε " 1, γ = O(1),Pe = O(1). First we construct a
smoothed version of (15) and (16). Referring to (9) and (10), it is simplest to reduce
to a single third order equation for u(x). Referring to Figure 5, we will thus construct
a solution made up of a left outer ul(x), a left inner (corner layer) ūl(x̄), a right inner
ūr(x̄), and a right outer solution ur(x). It is necessary to proceed beyond the leading
order in order to capture the details of the corner layers.

The left outer problem has the same scaling as (9) and (10). Noting that N(x) =
1, x < γ, we have

u′
l + ε(ulu

′
l)
′ =

ε

Pe
u′′′
l + 1,(17)

ul(x = 0) = 0,(18)

u′′
l (x = 0) = 0,(19)

and the extra information will be provided via asymptotic matching. In the vicinity
of the corner, we rescale via

x = γ +
√
εx̄,

u(x) = ūl(x̄),

and the left inner layer problem is

(20) ū′
l +

√
ε(ūlū

′
l)
′ =

1

Pe
ū′′′
l +

√
ε.

The right inner problem is

(21) ū′
r +

√
ε(ūrū

′
r)

′ =
1

Pe
ū′′′
r .

At x = γ, i.e., x̄ = 0, we will demand continuity of u and u′, i.e.,

ūl(x̄ = 0) = ūr(x̄ = 0),

ū′
l(x̄ = 0) = ū′

r(x̄ = 0),

and ūr will then be matched with right outer solution ur(x) governed by

u′
r + ε(uru

′
r)

′ =
ε

Pe
u′′′
r ,

u′
r(x = 1) = 0.(22)

Solutions. Proceeding first with the left outer problem (17), we seek a solution
in the form

ul ∼ ul0 + εul1 + · · ·

and we find that

ul0 = x,

ul1 = −x,(23)

satisfying the leading order version of the two boundary conditions (17), so

(24) ul ∼ x− εx . . . .

The left inner problem (20) has the solution

ūl ∼ ūl0 +
√
εūl1
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with

(25) ūl0 = d1 + d2e
√
Pex̄ + d3e

−
√
Pex̄

and

ūl1 =
d5 e

√
Pex̄

√
Pe

− d4 e−
√
Pex̄

√
Pe

− 3

4

√
Pe d1 d2 e

√
Pex̄ +

1

2
Pe d1 d2 x̄e

√
Pex̄

+ x̄+
1

3

√
Pe d2

2e2
√
Pex̄ +

1

2
Pe d3 d1 x̄e

−
√
Pex̄ +

3

4

√
Pe d3 d1 e

−
√
Pex̄

− 1

3

√
Pe d3

2e−2
√
Pex̄ + d6.(26)

Using extended van Dyke matching [23], we write the outer solution (24) in terms of
the inner variable x̄ and expand with x̄ = O(1), ε & 1, truncating after O(

√
ε). This

yields

(ul)inner ∼ x+ o(
√
ε).

Using the analogous procedure with the left inner solution (but ultimately aiming to
truncate after O(ε)), we obtain

(ūl)outer = d1 + d2 e
√

Pe(x−γ)√
ε + d3 e

−
√

Pe(x−γ)√
ε

+
√
ε

(

d5 e
√

Pe(x−γ)√
ε

1√
Pe

− d4 e
−

√
Pe(x−γ)√

ε
1√
Pe

− 3

4

√
Pe d2 d1 e

√
Pe(x−γ)√

ε

+
1

2
Pe d2 d1 (x− γ) e

√
Pe(x−γ)√

ε
1√
ε
+

x− γ√
ε

+
1

3

√
Pe d2

2e2
√

Pe(x−γ)√
ε

+
1

2
Pe d3 d1 (x− γ) e−

√
Pe(x−γ)√

ε
1√
ε
+

3

4

√
Pe d3 d1 e

−
√

Pe(x−γ)√
ε

− 1

3

√
Pe d3

2e−2
√

Pe(x−γ)√
ε + d6

)

.(27)

We examine this expression assuming that x = O(1), ε & 1, and noting that x < γ
in the matching. Using modified van Dyke matching [23], we expand as far as O(ε),
noting the presence of both exponentially small and large terms. The latter can all
be eliminated by setting

d3 = d4 = 0,

and matching with the outer solution now yields

d1 = γ, d6 = 0.

We note that the coefficients of the exponentially small terms cannot be determined
at this point: d2, d5 are still to be determined.

The solution of the right inner problem (21) is

ūr ∼ ūr0 +
√
εūr1
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with

ūr0 = c1 + c2e
√
Pex̄ + c3e

−
√
Pex̄,(28)

ūr1 =
c5 e

√
Pex̄

√
Pe

− c4 e−
√
Pex̄

√
Pe

− 3

4

√
Pe c1 c2 e

√
Pex̄ +

1

2
Pe c1 c2 x̄e

√
Pex̄

+
1

3

√
Pe c2

2e2
√
Pex̄ +

1

2
Pe c3 c1 x̄e

−
√
Pex̄ +

3

4

√
Pe c3 c1 e

−
√
Pex̄

− 1

3

√
Pe c3

2e−2
√
Pex̄ + c6.(29)

The constants ci are to be determined by matching with the right outer solution and
by the continuity requirement at x = γ. The outer solution of (22) is simply

(30) ur = b1 + εb2.

Writing the outer solution (30) in terms of the inner variable x̄ and expanding with
x̄ = O(1), ε & 1, truncating after O(

√
ε) yields

(ur)inner ∼ b1 + o(
√
ε).

Using the analogous procedure with the right inner solution we obtain

(ūr)outer = c1 + c2 e
√

Pe(x−γ)√
ε + c3 e

−
√

Pe(x−γ)√
ε

+
√
ε

(

c5 e
√

Pe(x−γ)√
ε

1√
Pe

− c4 e
−

√
Pe(x−γ)√

ε
1√
Pe

− 3

4

√
Pe c2 c1 e

√
Pe(x−γ)√

ε

+
1

2
Pe c2 c1 (x− γ) e

√
Pe(x−γ)√

ε
1√
ε
+

1

3

√
Pe c2

2e2
√

Pe(x−γ)√
ε

+
1

2
Pe c3 c1 (x− γ) e−

√
Pe(x−γ)√

ε
1√
ε
+

3

4

√
Pe c3 c1 e

−
√

Pe(x−γ)√
ε

− 1

3

√
Pe c3

2e−2
√

Pe(x−γ)√
ε + c6

)

.(31)

In this case the matching is for x > γ. We remove the exponentially large terms by
setting

c2 = c5 = 0

and matching requires

c1 = b1,

c6 = 0,

and b2 cannot be determined at this level of approximation. At this point c3 and c4,
both of which multiply exponentially small terms in the matching, are indeterminate.
To complete the solutions it remains to impose continuity of u, ux at x = γ. This
leads to

c3 = d2 = 0,

c1 = b1 = γ,

c4 =
1

2
,

d5 = −1

2
.
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Fig. 7 Composite solution for u(x) based on (32). ε = 0.001, Pe = 1.

We can construct a composite solution (in two parts) in the usual way and this leads
to

uc ∼ ul + ūl − x, 0 ≤ x ≤ γ,

∼ ur + ūr − γ, γ < x ≤ 1.(32)

For the “typical” parameter values in Table 1, this solution is not strictly applicable.
In the next section, we describe how to modify our solutions to take account of the
smallness of γ. To illustrate the basic correctness of the approach, we provide a plot
of the composite solution for u(x) in Figure 7 for a case where ε & γ so that the
smallness of γ does not interfere with the asymptotic structure of the solutions.

4.2.2. Solutions for γ " 1, ε " 1. The asymptotic development above was
based on ε & 1, γ = O(1). But, in fact, choosing the distinguished limit γ =
O(

√
ε), the boundary layer thickness will also be O(

√
ε). For ε = 1/18, we note that√

ε = 0.23, and this is comparable to γ = 0.1. Thus the boundary layer located at
x = γ is of the same order of magnitude as the left outer region. Hence, we should
not use the solutions just obtained for the “typical” parameter values of Table 1. To
consider the case of small γ, a sensible choice of distinguished limit is to put γ = γ0

√
ε

(with γ0 = 1/2.3 = O(1)). Referring to Figure 4, we will thus construct a solution
made up of a left boundary layer ūl(x̄), a right inner ūr(x̄), and a right outer solution
ur(x). There is no left outer solution in this case as the left layer solution overlaps
the left boundary at x = 0. As before, it is necessary to proceed beyond the leading
order in order to capture the details of the corner layers.

The left boundary layer scales are

x =
√
εx̄,

u(x) = ūl(x̄),
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and the left inner layer problem is

ū′
l +

√
ε(ūlū

′
l)
′ =

1

Pe
ū′′′
l +

√
ε,

ūl(x̄ = 0) = 0,

ū′′
l (x̄ = 0) = 0.(33)

The missing boundary information is provided by matching with the right inner prob-
lem:

(34) ū′
r +

√
ε(ūrū

′
r)

′ =
1

Pe
ū′′′
r .

At x̄ = γ0, i.e., x = γ = γ0
√
ε, we will demand continuity of u and u′, i.e.,

ūl(x̄ = γ0) = ūr(x̄ = γ0),

ū′
l(x̄ = γ0) = ū′

r(x̄ = γ0).

ūr will then be matched with right outer solution ur(x) governed by

u′
r + ε(uru

′
r)

′ =
ε

Pe
u′′′
r ,(35)

u′
r(x = 1) = 0.(36)

Solutions. We find first on setting

ūl = ūl0(x̄) +
√
εūl1(x̄)

that (33) has solutions

ūl0 = −f3 e
√
Pe x̄ + f3 e

−
√
Pe x̄,

ūl1 =
f5 e

√
Pe x̄

√
Pe

− f5 e−
√
Pe x̄

√
Pe

+ x̄

+
1

3
f3

2
√
Pe e2

√
Pe x̄ − 1

3
f3

2
√
Pe e−2

√
Pe x̄.

Similarly, (34) has the solution

ūr ∼ ūr0 +
√
εūr1

with

ūr0 = g1 + g2 e
√
Px̄ + g3 e

−
√
Px̄,

ūr1 =
g5 e

√
Px̄

√
Pe

− g4 e−
√
Pe x̄

√
Pe

+
1

2
Pe g2 g1 x̄e

√
Pe x̄ − 3

4

√
Pe g2 g1 e

√
Pe x̄

+
1

3

√
Pe g2

2e2
√
Pe x̄ +

3

4

√
Pe g3 g1 e

−
√
Pe x̄ +

1

2
Pe g3 g1 x̄e

−
√
Pe x̄

− 1

3
g3

2
√
Pe e−2

√
Pe x̄ + g6.

The outer solution of (35) is apparently

(37) ur = h1 + εh2.

However, without reproducing the details, on matching the right inner with the right
outer solution it becomes clear that the form of the right outer solution is not quite
right. In order to achieve matching it is necessary to include a switchback term [11].
This is a well-known device for including terms missing from an asymptotic expansion.
Here we have assumed that the relevant gauge functions for the solution are 1, ε . . . .
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Fig. 8 Comparison of numerical (solid line) and second asymptotic solution of section 4.2.2 using
the same typical parameter values ε = 1/18, Pe = 4/3, γ = 0.1 as for the leading order
solution in Figure 4.

In fact, the right outer solution should have been written in the form

ur = h1 +
√
εhs · · · ,

as (35) ensures that the solution at each order (i.e., h1, hs) must be a constant. Here
hs is referred to as a switchback term. In reality, it reflects the fact that we made an
incorrect initial assumption and this was flagged during the matching process. With
this adjustment, and imposing continuity requirements at x = γ = γ0

√
ε, x̄ = γ0, i.e.,

ūl(x̄ = γ0) = ūr(x̄ = γ0),

ū′
l(x̄ = γ0) = ū′

r(x̄ = γ0),

we find that

g1 = g2 = g5 = h1 = 0,

g6 = hs = γ0,

and

f3 = g3 = 0,

g4 = −1

2
(−e

√
Peγ0 + e−

√
Pe γ0),

f5 = − 1

2e
√
Pe γ0

.

This new asymptotic solution is graphed against the exact (numerical) solution in
Figure 8. The success of the matched asymptotics approach is clear. This solution is
an obvious improvement on the leading order solution (15) as graphed in Figure 4.
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Preferential Promotion. In this problem (see also the appendix), it is also pos-
sible to adopt an ad hoc approach and preferentially promote the diffusion terms, i.e.,
to treat the problem (9) and (10) as though the O(ε/Pe) terms are O(1). It is well
known in applied and numerical circles that diffusion terms have the effect of smooth-
ing solutions, which is precisely what is required in this problem in the vicinity of the
discontinuity. The other point is that in this example the slightly more complicated
equations can still be solved analytically. The idea of preferential promotion has often
been exploited in thin film theory [17], [18]; the justification is that if the terms really
are small, then the formal asymptotic error is unchanged. However, if these terms
play a significant role, we can obtain an improved leading order solution without re-
sorting to matched asymptotic expansions. Note that technically the error in this
approximate solution is o(1): the error in the matched asymptotic solutions is o(

√
ε).

An Improved Leading Order Approximation. We rewrite the leading order
problem in the following form:

du

dx
=

1

α2

d2c

dx2
+N(x),(38)

du

dx
= c,(39)

on defining 1
α2 ≡ ε

Pe . The exact solutions are

c = A(eαx + e−αx) + 1, 0 ≤ x ≤ γ,(40)

= E(−e−2αeαx + e−αx), γ < x ≤ 1,(41)

u = A/α(eαx − e−αx) + x, 0 ≤ x ≤ γ,(42)

= E/α(−e−2αeαx − e−αx) + γ, γ < x ≤ 1,(43)

where

A = −1

2

eα(−2+γ) + e−αγ

1 + e−2α
,

E =
1

2

eαγ − e−αγ

1 + e−2α
.

The improved approximations for c(x) and u(x) are compared with the numerical
solutions in Figure 9. The success of the simple approximation is obvious. By inspec-
tion, it is even better than the matched asymptotic solution, but this is an artifact
of the particular problem. It is not difficult to understand why this happens: if we
single out the term ε(uc)′ ≡ ε(uu′)′ in (9), we note that away from the boundary layer
u ∼ x or u ∼ 1 and so this term makes a negligible contribution at O(ε) outside the
layer. In the layer the diffusion terms play the dominant role. Thus (in this example)
the preferential promotion approach, which includes the diffusion terms but excludes
other formally O(ε) terms, plays no price for doing so. If preferential promotion is
possible, it can give impressive results if the resulting equations are integrable in
closed form. However, one must not lose sight of the fact that matched asymptotics
is a much more general and flexible tool.

5. Summary. We revisit the standing gradient problem of Lin and Segel [12].
The problem was originally presented as an exercise in regular perturbation methods.
Using an alternative nondimensionalization we show that the problem can be analyzed
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Fig. 9 Comparison of numerical and improved leading order asymptotic solution (via preferential
promotion) using typical parameter values ε = 1/18, Pe = 4/3, γ = 0.1.

using a singular perturbation approach. In doing so we demonstrate some of the tools
of modern mathematical modeling: asymptotic simplification, development of a simple
leading order solution as a regular perturbation with a corner, smoothing layers and
matched asymptotics, and the concept of preferential promotion of small terms. The
asymptotic solutions were validated by comparison with numerical solutions obtained
using the MATLAB routines ode45 and ode15s with a tolerance of 10−6.

Appendix. A Model Problem. A model linear problem with a similar structure
to the problem in the paper is

εcxx − cx = −H(1− x),(A.1)

c(0) = 0, cx(2) = 0, 0 < x < 2,

where H is the Heaviside step function. The leading order solution of this problem is
clearly

c(x) = x, 0 ≤ x ≤ 1,(A.2)

= 1, 1 < x ≤ 2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIN & SEGEL’S STANDING GRADIENT PROBLEM REVISITED 795

Fig. 10 Solution of model problem for c(x) and c′(x). ε = 0.1.

This has a corner [8] at x = 1 which can be smoothed via a boundary layer analysis
using the rescaling

x = 1 + εx̄

to reintroduce the higher derivative terms. Similar to the body of the paper we
must construct a solution in four pieces: left and right outer (cl(x), cr(x)) and left
and right smoothing inner solutions (c̄l(x̄), c̄r(x̄)) with continuity requirements at
the point x = 1 (x̄ = 0). Without reproducing the details, we obtain the following
solutions:

cl ∼ x,

c̄ ∼ 1 + ε(x̄− ex̄),

c̄r = cr ∼ 1− ε.(A.3)

Here it is also possible to preferentially promote the εcxx terms, i.e., to solve (A.1)
exactly. We find that the exact solution is

c(x) = x+ εe−
1
ε − εe

x−1
ε , 0 ≤ x ≤ 1,(A.4)

= 1− ε+ εe−
1
ε , 1 < x ≤ 2.

It is easy to see that this is approximated by (A.3) by using the appropriate limiting
processes (i.e., ε → 0 with x or x̄ fixed). We also verify that the solution has been
smoothed and c and cx are continuous at x = 1. Note that cx is now a smoothed
version of the Heaviside function H(1− x) (illustrated in Figure 10).
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