
MATHEMATICAL MODELING, PROJECT 1 (2012)

ALGAE MODEL WITH ZOOPLANKTON PREDATION

The term Zooplankton refers to a tremendously diverse class of tiny aquatic creatures. A
few of them look like this:

We like zooplankton because they eat Algae, keeping our swimming waters clean. They
exist at the foundation of the aquatic food chain and also play an important role in removing
CO2 from the environment. In this project we will study a number of mathematical models
for the population dynamics of algae and zooplankton.

Our models will ignore spatial effects, so we consider just the concentrations A(t) of al-
gae and Z(t) of zooplankton in a well-mixed lake, given in milligrams per liter water
(mg/L).

The parameters used in the problem are defined in the following table. All parameters
are assumed to be positive. Additionally, the concentrations of algae and zooplankton will
always take values in the first quadrant: A(t) > 0 and Z(t) > 0.
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symbol units value meaning
A mg/L Concentration of algae
e 1 Efficiency of food-growth conversion for Z
g day−1mg−1L 0.4 Grazing rate of Z
h mg/L 0.6 Half-concentration of A at which Z get ‘hungry’
K mg/L 10 Carrying capacity for A
m day−1 0.15 Death rate for Z
r day−1 0.5 Peak growth rate for A
Z mg/L Concentration of zooplankton

The goal of the project is to study a number of increasingly sophisticated (yet still elemen-
tary) models of algae-zooplankton dynamics (A-Z dynamics) using the techniques we have
learned during the first part of the course. The format of the project will be a short report
that addresses at least all of the following questions. The report should be well-written and
coherent (not just a list of answers) and will account for 20% of your grade. Depending
on the font size and number and size of plots, I would expect it to be under 10 pages
in length. You may submit a single report for a group of at most three students. These
should be placed in my mailbox, on the 4th floor of Science Park 904, before 9.00 on 29
October.

(1) Basic model. To begin with we consider the following model, expressed in reaction
notation:

A
r→ 2A,

A+ Z
g→ 2Z,

Z
m→ D.

The first reaction describes the growth of algae in the absence of zooplankton.
The second reaction describes the growth of the zooplankton population due to
grazing on algae. The third reaction describes the passing of zooplankton on to the
underworld (i.e. death), denoted by D(t). We are not interested in the equation
for D. The numbers above the arrows are the reaction constants.

(a) Derive the dynamical equations for A and Z.

(b) Excluding the initial conditions, what is the effective dimension of the pa-
rameter space? You may nondimensionalize A, Z and t to eliminate excess
parameters.

(c) Determine any equilibria and discuss their stability.

(d) Determine a conservation law of the following form (αj need to be determined),
and discuss the stability of the equilibria in light of this:

H = α1 lnA+ α2 lnZ + α3A+ α4Z.
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(e) Plot a few solutions of this model in the phase plane. Why might the model
not be a good model for A-Z dynamics.

(2) Saturation model. In the previous model, the growth of A is only limited by grazing
by Z. A more realistic model accounts for the fact that the lake can support only
up to a limited amount of A (otherwise there are not enough nutrients, or sunlight
does not reach deep enough for photosynthesis, etc.) To account for this, the term
rA in the previous model needs to be replaced by a logistic term

rA

(
1− A

K

)
,

where K is the carrying capacity of the lake for algae.

(a) Determine a set of kinetic reactions for this new model.

(b) We will primarily be interested in how the solutions depend on the growth
rate r and the carrying capacity K. Rewrite the equations in dimensionless
form, so that the new dimensionless groups r̄ and K̄ appear in place of r and
K. (You may ignore the initial conditions when doing this.)

(c) Examine the equilibria and their dependence on r̄ and K̄.

(3) Saturation model with overexploitation. Another model improvement ac-
counts for variation in the rate of consumption. For instance, if the population
of A is too low, Z may not be interested, and the Z have some maximum rate of
consumption. We modify the product AZ (everywhere it appears) to take the form

AZ

A+ h
,

where h is a constant parameter.

(a) Nondimensionalize this model as follows: First, introduce a rescaling t = T̄ τ ,
A = Āa, Z = Z̄z. Next divide through the differential equation for a by rĀ
and form the nondimensional groups. Similarly divide the differential equation
for z by, say, Z̄/T̄ to form nondimensional groups. Finally, choose the scalings
Ā, Z̄, and T̄ such that the only free parameters left in the model are h̄ ∝ h,
m̄ ∝ m, and r̄ ∝ r. We will fix m̄ = 1/2 throughout this problem. (The

notation h̄ ∝ h means “h̄ is proportional to h”, that is, there is some C, independent

of h, such that h̄ = Ch.)

(b) Taking r̄ = 1, determine the equilibria and their stability. How does the
stability depend on h̄ ∈ (0, 1)? Make a bifurcation plot of the locations of
any nontrivial equilibria (in phase space) as functions of h̄. Use a solid line
in the regime for which the equilibrium is stable and a dashed line where it is
unstable.



4 ALGAE MODEL WITH ZOOPLANKTON PREDATION

(c) Plot some solutions of the system (phase space and as functions of time) for
stable and unstable values of h̄. Describe the solutions.

(d) Next we want to study the asymptotic behavior of this model for large values
of r̄ (rapid algae growth). We do this by taking r̄ = ε−1, and analyzing the
behavior for lowest order in ε. Calculate one term expansions of the solutions
and compare these with numerical solutions. What conclusions can you draw
about the dependence of the solutions on r̄.

(Hints for problem 3): To gain some insight into this problem, it may help to plot the

nullclines of a and z and directions of the vector field on these lines and within the areas

they delineate. For the last part, you may also introduce a (further) rescaling of time

τ 7→ σ = τ/ε and identify ‘fast’ and ‘slow’ variables.

(4) Generally compare and contrast the three models. Under what conditions is each
model realistic? How could you make use of observations of real A and Z concen-
trations and their time dependence to choose a model?


