
MATHEMATICAL MODELING, PROJECT 2 (2012)

OPTICAL FIBER CABLE WITH INHOMOGENEITY

Throughout much of Amsterdam the copper telephone lines have recently been replaced by
optic fiber cables, which carry communication signals encoded in electromagnetic light waves.
Optic fiber cables have the advantage of providing fast, high bandwidth communications
without risk of electromagnetic interference.

In this project we will study a mathematical model for optic fiber signals. We consider light
wave propagation in a medium (e.g. glass), in which the transmission properties of the medium
play an important role. Conceptually, optic fibers consist of two layers of material having
different wave propagation speeds. Light waves are trapped in the innermost layer (core) due
to total reflection (i.e. no transmission) at the interface with the outer layer (cladding). In
this sense, optic fibers are an example of a wave guide.

The format of the project will be a short report that addresses at least all of the following
questions. The report should be well-written and coherent (not just a list of answers) and
the report itself will account for 20% of your grade for the project. Depending on the font
size and number and size of plots, I would expect it to be under 10 pages in length. You may
submit a single report for a group of at most three students. These should be placed in my
mailbox, on the 4th floor of Science Park 904, or sent to me directly by e-mail, before 9.00
on 10 December.
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Table of symbols:

symbol dependence meaning
E = (Ex, Ey, Ez) (t, x, y, z) Electric field
B = (Bx, By, Bz) (t, x, y, z) Magnetic field

J (t, x, y, z) current density
ρ (t, x, y, z) charge density
ε0 – permittivity in vacuum
ε (x, y, z) permittivity in medium
µ0 – permeability in vacuum
µ (x, y, z) permeability in medium
n (x, y, z) refraction index
c – speed of light in vacuum
ω – frequency

The propagation of light (consisting of electromagnetic waves) is described by Maxwell’s
equations. In the first part of the project, we investigate some general properties of Maxwell’s
equations in the context of wave mechanics. Next we construct a vastly reduced model that is
suitable for studying optic fibers. Finally, we investigate the solutions to the reduced model
and its application to optic fibers.

(1) Maxwell’s equations. Light consists of electric and magnetic fields E(t, x, y, z) and
B(t, x, y, z), respectively. Both of these are vector functions in R3, which is indicated
by the bold notation. The evolution of these fields is governed by Maxwell’s equations:

µ0ε0
∂E

∂t
= ∇×B − µ0J , (ME1)

0 = ∇ ·E − ρ

ε0
, (ME2)

−∂B
∂t

= ∇×E, (ME3)

0 = ∇ ·B, (ME4)

where the scalar constants ε0 and µ0 are the permittivity and permeability in a vac-
uum, and the current density J(t, x, y, z) and charge density ρ(t, x, y, z) are given func-
tions. Motivated by (ME3) and (ME4) we introduce the electric potential φ(t, x, y, z)
and magnetic vector potential A(t, x, y, z) such that

B = ∇×A, E = −∇φ− ∂A

∂t
.

(a) Using the Helmholtz decomposition from multivariable calculus, show that B
and E satisfying (ME3) and (ME4) can be written without loss of generality
in terms of such φ and A (assuming all functions are sufficiently smooth and
decaying at infinity).

(b) Demonstrate that the following Lagrangian gives rise to (ME1) and (ME2) as the
extremum of the associated action integral S[φ,A] =

∫∫∫∫
L(φ,A, t, x, y, z) dx dy dz dt:

L(φ,A, t, x, y, z) =
1

2µ0

[
µ0 ε0|E|2 − |B|2

]
− φρ+ A · J .
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(Here, E and B are to be viewed as functions of φ and A, and | · | denotes
the Euclidean norm.) You may assume that all boundary terms vanish when
integrating by parts.

(c) Assuming ρ ≡ 0 and J ≡ 0, apply Noether’s theorem to the Lagrangian to
determine conservation laws associated to the following symmetries:

(i) Time translations: (t, x, y, z) 7→ (t+ s, x, y, z),

(ii) Space translations: (t, x, y, z) 7→ (t, x+ s, y, z), (t, x, y, z) 7→ (t, x, y + s, z),
(t, x, y, z) 7→ (t, x, y, z + s),

Hint: It may be helpful to first generalize the derivation of Noether’s theorem as
given in the lecture notes (see Handout for Week 41) to the case of a Lagrangian of
two independent variables L(q, qt, qx). Also note that for a PDE, a conservation
law is an equation of the form ∂

∂tf + ∂
∂xg + ∂

∂yh+ ∂
∂z j = 0.

(2) Reduced model. For light traveling through a medium such as glass, the permit-
tivity and permeability become functions of the medium. We replace ε0 and µ0 in
(ME1)–(ME2) with functions ε(x, y, z) and µ(x, y, z). To model light waves in an op-
tical fiber, we will make a number of assumptions: (i) the charge density is constant
in time J = J(x, y, z), (ii) we work in a planar configuration such that all quantities
are independent of the coordinate y, (iii) the light is polarized in the y direction such
that E = (0, Ey, 0). In other words, we work in the (x, z) plane, and the light is
polarized in the direction normal to the plane.

(a) Derive a reduced Maxwell equation for Ey(t, x, z). You should be able to reduce
to a single partial differential equation for this variable.

(b) Construct a Lagrangian for this equation. Which of the conservation laws persist
for the reduced model? How does the existence of these conservation laws depend
on the inhomogeneity of the medium (i.e. does it matter if ε and µ depend on x
and z)?

(c) The index of refraction n(x, z) of a material is defined by n2 = εµc2, where c is the
speed of light in a vacuum. We next consider periodic solutions with frequency ω
by substituting the form Ey(t, x, z) = e−iωtE(x, z). Defining k(x, z) = k0 n(x, z),
where k0 = ω/c, derive the equation to be satisfied by the amplitude E(x, z).
This is known as the Helmholtz equation.

(3) Wave guide. An optic fiber is a wave guide. It is manufactured in such a way
that light waves within a certain range of frequencies are trapped in the medium
due to total internal reflection at the interface. To achieve this, two media are used:
an internal medium with a large index of refraction and an external medium with a
smaller index of refraction. For our simple model, we assume a 2D wave guide (instead
of a cylindrical one), that extends infinitely in the z-direction. The internal medium
extends from x = −L to x = L, and we assume that the external medium extends to
infinity in x as well (we will require that there is no wave propagation far from the
wave guide, so the extent of the external medium is not important). The index of
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refraction is

n =

{
n1, |x| ≤ L,
1, |x| > L.

(a) To solve the Helmholtz equation, make the ansatz that E can be written as a
product E(x, z) = φ(x)u(z). Insert this solution into the Helmholtz equation
and manipulate so that all functions of x are on one side of the equality and all
functions of z are on the other side. Note that if one has a relation of the form
f(x) = g(z) where x and z are independent variables, it must be the case that
both of these functions are constant, i.e. f(x) ≡ g(z) ≡ λ = const . Use this fact
to derive two independent equations for φ and u.

(b) Solve the equation for u using the Fourier transform method. What condition
must λ satisfy if the solution is to be a (plane) wave?

(c) The material in the cladding (|x| > L) is chosen such that limx→±∞E(x, z) = 0.
Find the general solution for φ(x) for x > L. An analogous solution can be
defined for x < −L. What condition must hold on λ to satisfy the boundary
condition at infinity?

(d) Assuming the above conditions hold on λ, define k1 = k0n1 and write the general
solution for φ(x) in the core |x| ≤ L.

(e) Given that at the interfaces x = ±L, both φ(x) and φ′(x) must be continuous,
determine a relation that must hold for: k1, k0, β, and the amplitudes of the
waves in the core and the cladding. It may be helpful to make a plot to illustrate
the possible solutions of this relation. Is there a unique solution and what is the
physical significance of this?

(4) Inhomogeneity in z. In general, the material in the core may have impurities which
affect the refraction index. It is important to determine if this will result in a loss of
information in the signal. We study the effects of inhomogeneity. For simplicity, we
now only consider a 1D model in the z-direction, ignoring the lateral structure.

(a) Write a Lagrangian for the 1D Helmholtz equation for the case k = k(z).

(b) Assume a solution of the form E = a(z)eiθ(z), where a is the amplitude and θ
is the phase function. Substitute this ansatz in the Lagrangian and derive the
Euler-Lagrange equations for a and θ.

(c) The phase equation takes the form of a conservation law, i.e. ∂
∂z
F (z) = 0 for

some function F (z). It follows that this function is constant, F (z) = P for some
constant P . Use this to eliminate θ in the amplitude equation.

(d) An approximate solution can be obtained by assuming the amplitude is well ap-
proximated by the steady state of the amplitude equation. Find this steady state
and use it to construct an approximate solution for E(z) up to a constant scaling
factor. How is the amplitude affected by variations in the material property k(z)?


