
MATHEMATICAL MODELING, PROJECT 3 (2012)

SIMPLE OCEAN MODEL

In this problem we will derive a model for a thin layer of fluid flowing under the influence
of gravity over a surface. You can think of this as a simplified ocean model. We will use
it to study some characteristics of approximately two-dimensional atmosphere and ocean
flows.

The format of the project will be a short report that addresses at least all of the following
questions. The report should be well-written and coherent (not just a list of answers) and
the report itself will account for 20% of your grade for the project. Depending on the font
size and number and size of plots, I would expect it to be under 10 pages in length. You may
submit a single report for a group of at most three students. These should be placed in my
mailbox, on the 4th floor of Science Park 904, or sent to me directly by e-mail, before 9.00
on 14 January.

Table of symbols:

symbol dependence meaning
v = (u, v, w) (t, x, y, z) velocity field

ρ (t, x, y, z) mass density
p (t, x, y, z) pressure
f (x, y, z) body force
H (x, y) ocean floor topography
ξ (t, x, y) height of the ocean surface

U , V (t, x, y) depth averaged velocity field
f0 – rotation parameter (1/sec)
g – gravitational acceleration
ζ (t, x, y) 2D vorticity
δ (t, x, y) 2D divergence
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(1) Thin-layer model. Our starting point is the incompressible Navier-Stokes equations.
We assume the fluid to be inviscid (µ = 0), and subject to a gravity force, (i.e. body
force f = (0, 0,−g)).

ρ
Dv

Dt
= −∇p+ ρf

0 = ∇ · v.

The topography is given as a function z = H(x, y). The upper surface of the fluid is
a time dependent function z = ξ(t, x, y) which is unknown. To simplify notation we
also define the layer height by h(t, x, y) = ξ(t, x, y)−H(x, y).

(a) We assume the domain to be unbounded in x and y. The boundary condition
at the free surface is determined as follows: Define functions F (t, x, y, z) = z −
ξ(t, x, y) and G(t, x, y, z) = z−H(t, x, y). The free surface and lower topography
coincide with the level sets F ≡ 0 and G ≡ 0. A fluid element once located on
the free surface (or topography) remains there for all time. Hence these surfaces
are material surfaces satisfying DF

Dt

∣∣
z=ξ

= 0 and DG
Dt

∣∣
z=H

= 0. In fact, these two

statements precisely describe the boundary conditions at the upper (z = ξ) and
lower (z = H) surfaces of the fluid. Rewrite the boundary conditions in terms of
partial derivatives ∂t, ∂x, ∂y, and ∂z of the functions ξ and H and the components
of the velocity field v = (u, v, w). You will need these functions for the rest of
the problem.

(b) The depth-averaged velocity components (U, V ) are defined as

U(t, x, y) =
1

h(t, x, y)

∫ ξ(t,x,y)

H(x,y)
u(t, x, y, z) dz,

V (t, x, y) =
1

h(t, x, y)

∫ ξ(t,x,y)

H(x,y)
v(t, x, y, z) dz.

(Note these are not the material velocity components.) Determine the depth-
averaged continuity equation by integrating the divergence-free condition∇·v = 0
with respect to z. Write the continuity equation in terms of the new variables U
and V . To do so, notice that the limits of integration (z = ξ(t, x, y), z = H(x, y))
are variable: you will have to make use of the Leibnitz rule and the boundary
conditions you derived in part (a). It is helpful for the rest of this project to
express the continuity in terms of the variable h by replacing ξ in the final result
by ξ = h+H wherever it occurs.

(c) We make the assumption that w ≡ 0 in the interior of the layer. We also assume
that the fluid is homogeneous, so ρ(x, y, z) = ρ0 throughout. What does the
momentum equation for Dw

Dt reduce to in this case? Integrate this relation to
determine p(t, x, y, z) assuming the pressure has value p0 uniformly at the free
surface (that is, p(t, x, y, ξ(t, x, y)) = p0).

(d) We are going to depth-average the momentum equations. Using the boundary
conditions derived in (a), show that the following relations hold (arguments t, x,
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y, z suppressed):∫ ξ

H

Du

Dt
dz =

∂

∂t
(hU) +

∂

∂x

∫ ξ

H
u2 dz +

∂

∂y

∫ ξ

H
uv dz∫ ξ

H

Dv

Dt
dz =

∂

∂t
(hV ) +

∂

∂x

∫ ξ

H
uv dz +

∂

∂y

∫ ξ

H
v2 dz.

(e) Next, we express the velocity field as a perturbation to the depth-averaged field
as follows: u(t, x, y, z) = U(t, x, y)+ũ(t, x, y, z), with a similar relation v = V + ṽ.
Show that∫ ξ

H
u2 dz = hU2 + σxx,

∫ ξ

H
v2 dz = hV 2 + σyy,

∫ ξ

H
uv dz = hUV + σxy,

where σxx, σyy, σxy are integrals depending only on products of ũ and ṽ. We
now make the modeling assumption that σxx, σyy, σxy are zero. Under this
assumption, write down the depth-averaged momentum equations in terms of U ,
V , and ξ.

(2) Properties of the model. For this and the succeeding questions, we assume for
simplicity that H ≡ 0 (no topography) so that ξ = h. The rotation of the earth has a
very significant effect on the motion of the atmosphere and ocean in regions far from
the equator. To account for rotation we add new terms to the velocity equations, i.e.

∂U

∂t
= f0V + · · · ,

∂V

∂t
= −f0U + · · · ,

where f0 is related to the rotation rate and · · · represents the terms you derived in
the previous problem. The thin layer model satisfies a number of conservation laws.
The three equations themselves express balance laws for total momentum and mass.
Additionally the total energy

E =

∫∫
ξ

2
(U2 + V 2) +

g

2
ξ2 dx dy

is conserved. The vorticity is defined as ζ = ∂V
∂x −

∂U
∂y , and the total vorticity (including

the rotation effect) ω = ζ + f0 satisfies a conservation law

∂ω

∂t
+

∂

∂x
(ωU) +

∂

∂y
(ωV ) = 0.

In fact, the ratio of the total vorticity to the layer depth q = (ζ + f0)/ξ is conserved
along material lines:

Dq

Dt
=
∂q

∂t
+ U

∂q

∂x
+ V

∂q

∂y
= 0.

Verify all three of these conservation properties, and show that the latter implies an
infinite family of conserved quantities

dCF
dt

= 0, CF =

∫∫
ξ(x, y, t)F (q(x, y, t)) dx dy,

for well-behaved functions F .
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(3) Small perturbation behavior. Consider a small disturbance to the thin layer
model. Let ξ(t, x, y) = ξ̄0 + η(t, x, y), U(t, x, y) = u(t, x, y) and V (t, x, y) = v(t, x, y),
where η, u and v and their derivatives with respect to x and y are small enough that
any quadratic terms can be neglected.

(a) Derive equations for the disturbances u, v, and η, neglecting any terms that are
quadratic in these variables and their derivatives.

(b) Rewrite these equations in terms of the vorticity ζ = ∂v
∂x −

∂u
∂y , the divergence

δ = ∂u
∂x + ∂v

∂y , and the layer depth η, and use these to determine a single wave

equation for the divergence δ.

(c) Assume the topography is flat. Making the ansatz δ(t, x, y) = exp[i(kx+`y−ωt)],
determine the dispersion relation ω(k, `), and the group velocity. Consider the

limit behavior for the wave number |k| = (k2 + `2)1/2. What does this say about
the relative propagation speeds of wave groups for |k| � 1 and |k| � 1?

(4) Limit case of slow motion. We want to understand the slow limit behavior of the
thin layer model in the limit of fast rotation. For this we ignore the topography H. To
do so, we rescale the rotating thin layer model according to x = Lx̄, y = Lȳ, velocity
U = Ūu, V = Ūv, and time scale τ = (Ū/L)t. For the layer depth we assume a mean
layer depth of H0, and rescaled perturbation ξ(t, x, y) = H0 +N0h(t, x, y).

(a) Introduce dimensionless parameters R = U(Lf0)
−1, F = U(gH0)

−1/2, and θ =
N0H

−1
0 , and write the rescaled equations for (u, v, h) in terms of these parameters.

(b) Next we want to consider a distinguished limit in which the parameters R, F ,
and θ scale as a function of the single small parameter ε:

R = ε, F = G1/2ε, θ = Gε,

for fixed G > 0 and ε� 1. Again rescaling the layer depth perturbation to define
η = G1/2h, write the new model in terms of ε.

(c) Our goal is to describe the slow motion in a simple manner. We will do this
using the materially conserved quantity q. Make an asymptotic expansion of this
variable in ε. We are interested in truncating at the lowest nontrivial terms (a
constant term is trivially conserved and can be ignored in the approximation of
q). With this approximation of q, our dynamical equation is simply

Dq

Dt
= 0,

where we now need to relate q and D
Dt = ∂

∂t + u ∂
∂x + v ∂

∂y to the lowest order

dynamics of the scaled problem.

(d) Determine the lowest order approximations of the momentum and layer depth
equations u, v, and η. Explain how these relations can be used to relate q
to v to obtain a closed system for the slow evolution. Next, show that given
any function q(x, y), your approximations for u, v and η define a steady state
for the perturbation equations of part (3). What does this imply about the
evolution of this approximate model with respect to the fast motion described by
the linearized model of part (3)?


