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Abstract

This document contains examples discussed in the lectures.

Contents

1 Economic model with adaptive expectations 2

2 Classical mechanical model of a solar system 5

1



1 Economic model with adaptive expectations

Every year a farmer has to decide how much of each crop to plant based on his available
resources and what he expects the prices to be. The choices made by all farmers determines
the total supply of a given produce. This supply, coupled with the demand of buyers,
ultimately determines the price. But the farmer has to predict the price in order to decide
on the right distribution of his resources. 1

Let pn denote the (mean) market price of a commodity, say corn, in year n, and suppose
that the demand is a linear function of price:

D(p) = a− d p, (1)

where a > 0 and d > 0 are positive constants.

It is common in economics to assume a representative agent, that is, a single meta-farmer
whose choice represents the combined behavior of all farmers. By some means, which we
will define later, the meta-farmer determines an expected price Pn for year n, and this price
determines how much corn he plants and subsequently, the supply of corn on the market.
The formula for supply is

S(P ) = c+ arctan(λ(P − p̄)), (2)

where c, λ and p̄ are all positive constants.

Because corn is a perishable commodity, we assume that the price pn adjusts such that the
market clears, that is, all of the corn is sold in year n and supply equals demand:

D(pn) = S(Pn). (3)

Substituting (1) and (2) into (3) and solving for pn we obtain an equation for the market
price as a function of the expected price

pn =
1

d
[a− c− arctan(λ(Pn − p̄))] .

The model is complete if we can now relate the meta-farmer’s expected price Pn to the ac-
tual price pn, and there are various economic theories about how our farmer does this.

At one extreme, we assume our meta-farmer is omniscient. In economics, one says he uses
rational expectations. In this case, the farmer’s expectation is precisely the market price

Pn = pn. (4)

1Example from C. Hommes, Behavioral Rationality and Heterogeneous Expectations in Complex Sys-
tems, Springer-Verlag, 2013.
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Figure 1: Supply curve S(P ), Demand curve D(p) and revenue curve p(P ) · S(P ) as
functions of the market price p and expected price P .

This seems fanciful, but economists use an evolutionary argument: any farmer whose
expectations differ consistently from the rational expectation will eventually be driven out
of the market by competition.

The simplest approach is called the naive expectation. In this case, the farmer just expects
the price this year will be the same as the market price last year:

Pn = pn−1. (5)

A point of discussion in economics is whether seemingly random market fluctuations are
purely caused by external forces, or if such behavior can follow from the internal market
dynamics. Figure 1 shows the supply and demand curves for parameter choice: a = 4.1,
d = 0.25, c = 1.5, λ = 4.8 and p̄ = 6. The intersection of the supply and demand curves is
the rational expectation equilibrium Pn = pn. We also plot the revenue curve, which is the
product of the realized market price p(P ) times the supply S(P ) (equal to demand) for
a given expected price, showing that the rational expectation equilibrium is a profitable
choice. In Figure 2 we see the time series of points Pn over a long period (100 years). The
price oscillates around the rational expectation equilibrium. This oscillatory behavior is
observed in real commodity markets, and is known as the “hog cycle” (referring to pork
prices).
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Figure 2: The “hog cycle” oscillates around the optimum price as shown, independent of
the initial expected price P0.
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2 Classical mechanical model of a solar system

A solar system consists of a sun and and a number of planets or other bodies interacting
in a gravitational potential. Classical mechanics is grounded in Newton’s laws of motion.
The most important of these is the second law, which is often written:

F = m · a,

where F represents a force, m a mass, and a the acceleration imparted to the mass by the
force. This is the essence of the second law, that the effect of applying a force to a mass is
to induce an acceleration. A more useful form of the second law is∑

i

Fi =
d

dt
(mv),

which now states that the sum of the applied forces is equal to the change in momentum.
Momentum is the product of mass and velocity.

Many forces in physics can be expressed as the gradient of a potential field. That is, the
force applied at a point X = (x, y, z)T ∈ R3 is given by

F (X) = −∇U(X) = −

∂U/∂x∂U/∂y
∂U/∂z

 , U : R3 → R.

The potential U(X) is a scalar valued function, its gradient is a vector.

For a solar system, the gravitational potential is the sum of a pairwise potential between
every pair of bodies. Let Xi(t) = (xi(t), yi(t), zi(t))

T ∈ R3, i = 1, . . . , k, be the position
of the ith body (a body is either a planet or the sun). Further let the mass of body i be
denoted Mi. The pairwise potential felt by body i due to body j (and vice versa) is

Uij(Xi, Xj) = − GMiMj

‖Xi −Xj‖
,

where G is the gravitational constant. The associated forces

Fij =
∂

∂Xi

Uij =
−GMiMj

‖Xi −Xj‖3
(Xi −Xj) = −Fji

where Fij is the force body j exerts on body i.

The second law of Newton now reads

MiẌi = −G
k∑

j 6=i

MiMj

‖Xi −Xj‖3
(Xi −Xj), i = 1, . . . , k.
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We can introduce the velocity Vi = Ẋi and write this in first order form (note that the
Mi’s cancel in the above)

Ẋi = Vi, V̇i = −G
k∑

j 6=i

Mj

‖Xi −Xj‖3
(Xi −Xj), i = 1, . . . , k.

Note that to have a unique solution, it is necessary to know both the positions Xi(0) and
velocities Vi(0) at time t = 0.
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