WISB134 Modellen \& Simulatie

Lecture 4 - Scalaire recursies

Universiteit Utrecht

Overzicht van ModSim

- Basisbegrippen dynamische modellen
- Definities recursies, DVs, numerieke methoden
- Oplossingen DVs
- Convergentie numerieke methoden
- Dynamica
\Rightarrow Scalaire dynamica
- Dynamica op $\mathbf{R}^{\text {d }}$
- Lineaire dynamica op \mathbf{R}^{2}
- Bijzondere gevallen
- Lineaire kansmodellen (Markovketens)
- Niet-autonome systemen (Resonantie)
- Hogere orde numerieke methoden

Dynamica

Dynamica gaat grotendeels over het categorizeren van de oplossingen van de modellen:

- wat is het gedrag van de oplossingen op lange tijd?
- hoe hangt dit af van de beginwaarde?
- van de parameters van het model?

Lotka Volterra equation plot

Scalaire dynamica

Vandaag en woensdag

- Recursies op \mathbf{R}^{1}
- Grafische analyse methode
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- Differentiaalvergelijkingen op \mathbf{R}^{1}
- Evenwichten en stabiliteit
- Numerieke methoden op \mathbf{R}^{1}
- Evenwichten en stabiliteit

Grafische analyse methode

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- NMs op \mathbf{R}^{1}
- Evenwicht./stab.

Logistic model, $F(x)=r x(1-x), r=1.8$

Grafische analyse methode

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- NMs op \mathbf{R}^{1}
- Evenwicht./stab.

Logistic model, $F(x)=r x(1-x), r=1.8$

Grafische analyse methode

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- NMs op \mathbf{R}^{1}
- Evenwicht./stab.

Grafische analyse methode

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- \quad NMs op \mathbf{R}^{1}
- Evenwicht./stab.

Logistic model, $F(x)=r x(1-x), r=1.8$

Evenwichten

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- NMs op \mathbf{R}^{1}
- Evenwicht./stab.
- Een baan is een rij

$$
\left\{x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right\}
$$

waarvan $\quad x_{n+1}=F\left(x_{n}\right), \quad n=0,1,2, \ldots$

- Een evenwicht of dekpunt is een triviale
baan $x_{n}=x_{n-1}=\cdots=x_{1}=x_{0}=\alpha$
- Een dekpunt voldoet dus aan

$$
\alpha=F(\alpha)
$$

Stabiliteit

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- NMs op \mathbf{R}^{1}
- Evenwicht./stab.
- Een dekpunt α is stabiel in de zin van

Lyapunov als voor elk $\varepsilon>0$ er een
$\delta>0$ te vinden is zodanig dat
$\left|x_{n}-\alpha\right| \leq \varepsilon, n=0,1, \ldots, \quad$ als $\quad\left|x_{0}-\alpha\right| \leq \delta$
Anders is het dekpunt instabiel.

- Een dekpunt α is asymptotisch stabiel als bovendien geldt $\lim _{n \rightarrow \infty} x_{n}=\alpha$

Stabiliteit

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- \quad NMs op \mathbf{R}^{1}
- Evenwicht./stab.

Stabiliteit

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- \quad NMs op \mathbf{R}^{1}
- Evenwicht./stab.

$$
F(x)= \begin{cases}1.2 x, & x<1 / 2 \\ 0, & x \geq 1 / 2\end{cases}
$$

Stabiliteit

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- \quad NMs op \mathbf{R}^{1}
- Evenwicht./stab.

$$
F(x)= \begin{cases}-\frac{1}{6} x, & x<0 \\ -5 x, & x \geq 0\end{cases}
$$

Pauze

Asymptotische stabiliteit

Scalaire dynamica

- Recursies op \mathbf{R}^{1}
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- \quad NMs op \mathbf{R}^{1}
- Evenwicht./stab.

Stelling Een dekpunt α is:

- asymptotisch stabiel als $\left|F^{\prime}(\alpha)\right|<1$,
- instabiel als $\left|F^{\prime}(\alpha)\right|>1$.

Asymptotische stabiliteit

Scalaire dynamica

- Recursies op R
- Grafische analyse
- Evenwichten
- Stabiliteit
- Periodieke banen
- Bifurcaties
- Chaos
- DVs op \mathbf{R}^{1}
- Evenwicht./stab.
- NMs op R
- Evenwicht./stab.

Internal wave focusing

Internal wave focusing

Internal wave focusing

(a) Subcritical case with starting point at $x_{0}=(0.5,0.5) . \quad \phi_{1}=\pi / 6$, $\phi_{2}=-\pi / 18$.

(b) Supercritical case with starting point $x_{0}=(0.5,0.5)$. Here $\phi_{1}=\pi / 3$, $\phi 2=5 \pi / 36$.

Theorem 1. For any $\phi_{2}<0$ and for any starting point the characteristics approach to the square's upper left or lower right corner.

Theorem 2. A simple attractor occurs if and only if $\frac{\pi}{4}<\phi_{1} \leq \frac{\pi}{2}-\phi_{2}$.

Internal wave focusing

(a) Streamfunction: $\phi_{1}=\pi / 3, \phi_{2}=5 \pi / 36$

(b) Pressure field: $\phi_{1}=\pi / 6, \phi_{2}=5 \pi / 36$

Internal wave focusing

(a) Streamfunction: $\phi_{1}=\pi / 6, \phi_{2}=\pi / 18$

(b) Pressure field: $\phi_{1}=\pi / 6, \phi_{2}=\pi / 18$

Internal wave focusing

Werkcollege voor vandaag

- Probleem 3.1 pas de grafische en analytische methoden toe om de dekpunten en stabiliteit van een recursie te bepalen. (Om meer hiermee te oefenen, kan je vraag 9a-9b van hoofdstuk 12 van Lynch ook uitwerken).
- Probleem 3.2 een recursie met twee stabiele dekpunten. Probeer achter te komen van welke begincondities welk evenwicht wordt bereikt. Dit kan deels door grafische analyse, en deels door te rekenen.
- Probleem 3.3 hebben we in de hoorcollege al voorbeelden gezien. Je kunt proberen eigen voorbeelden te verzinnen.
- Project 1: je hebt nu de voorkennis om een begin te maken. Inleveren woensdag 2 maart!

