WISB134 Modellen & Simulatie

Lecture 4 - Scalaire recursies

Overzicht van ModSim

- Basisbegrippen dynamische modellen
 - Definities recursies, DVs, numerieke methoden
 - Oplossingen DVs
 - Convergentie numerieke methoden
- Dynamica
 - Scalaire dynamica
 - Dynamica op R^d
 - Lineaire dynamica op \mathbf{R}^2
- Bijzondere gevallen
 - Lineaire kansmodellen (Markovketens)
 - Niet-autonome systemen (Resonantie)
 - Hogere orde numerieke methoden

Meeste aandacht (t/m 1 apr.)

iteration number, n

Scalaire dynamica

- Recursies op R¹
 - Grafische analyse methode
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
 - Differentiaalvergelijkingen op R¹
 - Evenwichten en stabiliteit
 - Numerieke methoden op R¹
 - Evenwichten en stabiliteit

Vandaag en woensdag

Logistic model, F(x) = rx(1-x), r = 1.8

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

Evenwichten

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

• Een *baan* is een rij

$$\{x_0, x_1, \ldots, x_n, x_{n+1}, \ldots\}$$

waarvan $x_{n+1} = F(x_n), \quad n = 0, 1, 2, ...$

• Een evenwicht of dekpunt is een triviale

baan $x_n = x_{n-1} = \dots = x_1 = x_0 = \alpha$

• Een dekpunt voldoet dus aan

 $\alpha = F(\alpha)$

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

Een dekpunt α is stabiel in de zin van Lyapunov als voor elk ε > 0 er een δ > 0 te vinden is zodanig dat |x_n - α| ≤ ε, n = 0, 1, ..., als |x₀ - α| ≤ δ Anders is het dekpunt *instabiel*.

• Een dekpunt α is asymptotisch stabiel als bovendien geldt $\lim_{n \to \infty} x_n = \alpha$

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

 $F(x) = \begin{cases} -\frac{1}{6}x, & x < 0\\ -5x, & x \ge 0 \end{cases}$

Asymptotische stabiliteit

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

Stelling Een dekpunt α is:

- asymptotisch stabiel als $|F'(\alpha)| < 1$,
- instable als $|F'(\alpha)| > 1$.

Asymptotische stabiliteit

Scalaire dynamica

- Recursies op **R**¹
 - Grafische analyse
 - Evenwichten
 - Stabiliteit
 - Periodieke banen
 - Bifurcaties
 - Chaos
- DVs op **R**¹
 - Evenwicht./stab.
- NMs op **R**¹
 - Evenwicht./stab.

Theorem 1. For any $\phi_2 < 0$ and for any starting point the characteristics approach to the square's upper left or lower right corner.

Theorem 2. A simple attractor occurs if and only if $\frac{\pi}{4} < \phi_1 \leq \frac{\pi}{2} - \phi_2$.

Werkcollege voor vandaag

- Probleem 3.1 pas de grafische en analytische methoden toe om de dekpunten en stabiliteit van een recursie te bepalen. (Om meer hiermee te oefenen, kan je vraag 9a-9b van hoofdstuk 12 van Lynch ook uitwerken).
- Probleem 3.2 een recursie met twee stabiele dekpunten.
 Probeer achter te komen van welke begincondities welk evenwicht wordt bereikt. Dit kan deels door grafische analyse, en deels door te rekenen.
- **Probleem 3.3** hebben we in de hoorcollege al voorbeelden gezien. Je kunt proberen eigen voorbeelden te verzinnen.
- Project 1: je hebt nu de voorkennis om een begin te maken.
 Inleveren woensdag 2 maart!