WISB134 Modellen \& Simulatie

Lecture 9 - Niet-lineaire differentiaalvergelijkingen in meerdere dimensies

Overzicht van ModSim

- Basisbegrippen dynamische modellen
- Definities recursies, DVs, numerieke methoden
- Oplossingen DVs
- Convergentie numerieke methoden
- Dynamica
- Scalaire dynamica
\Rightarrow Dynamica op $\mathbf{R}^{\text {d }}$
- Lineaire dynamica op \mathbf{R}^{2}
- Bijzondere gevallen
- Lineaire kansmodellen (Markovketens)
- Niet-autonome systemen (Resonantie)
- Hogere orde numerieke methoden

Dynamica op \boldsymbol{R}^{d}

- Tijdsreeks en fase ruimte
- Lineaire dynamica:
- Lineaire recursies
- Lineaire DVs
- Niet-lineaire recursies
vandaag • Niet-lineaire DVs
- Stabiliteit van numerieke methoden

Dynamica op \boldsymbol{R}^{d}

- Tijdsreeks en fase ruimte
- Lineaire dynamica:
- Lineaire recursies
- Lineaire DVs
- Niet-lineaire recursies
vandaag • Niet-lineaire DVs
- Evenwichten
- Stabiliteit
- Het geval d=2
- Voorbeelden
- Reactievergelijkingen
- Stabiliteit van numerieke methoden

Stabiliteit: scalair, lineair

	Recursie	Diff. Vgl.
Vorm	$x_{n+1}=A x_{n}$	$\frac{d x}{d t}=a x$
Eigenprobleem		
Oplossing	$x_{n}=A^{n} x_{0}$	$x(t)=e^{a t} x_{0}$
Evenwicht	$x=0$	$x=0$
Asympt. stabiel als	$\|A\|<1$	$\begin{array}{r} e^{a t}<1, \forall t>0 \\ \Rightarrow a<0 \end{array}$
Instabiel als	$\|A\|>1$	$a>0$

Stabiliteit: scalair, niet-lineair

Recursie	$x_{n+1}=F\left(x_{n}\right)$	$\frac{d x}{d t}=f(x)$
Eigenprobleem		
Oplossing	$F(\alpha)=\alpha$	$f(\alpha)=0$
Evenwicht	$\left\|F^{\prime}(\alpha)\right\|<1$	$f^{\prime}(\alpha)<0$
Asympt. stabiel als	$\left\|F^{\prime}(\alpha)\right\|>1$	$f^{\prime}(\alpha)>0$
Instabiel als		

Stabiliteit: lineair, meerdere dimensies

Recursie
 Diff. Vgl.

Vorm

$$
x_{n+1}=A x_{n} \quad \frac{d x}{d t}=A x
$$

Eigenprobleem

$$
A v_{i}=\lambda_{i} v_{i}, i=1, \ldots, d, \quad v_{i} \text { lin. onafh. }
$$

Oplossing

Evenwicht

$$
x=0
$$

$$
x=0
$$

Asympt. stabiel als
$\sigma(A) \subset \mathcal{B}_{1}$
$\sigma(A) \subset \mathbb{C}^{-}$

Instabiel als

$$
\exists \lambda \in \sigma(A):|\lambda|>1 \quad \exists \lambda \in \sigma(A): \operatorname{Re} \lambda>0
$$

Stabiliteit: niet-lineair, meedere-dim

Recursie
 Diff. Vgl.

Vorm

$$
x_{n+1}=F\left(x_{n}\right) \quad \frac{d x}{d t}=f(x)
$$

Eigenprobleem

Oplossing

Evenwicht

Asympt. stabiel als

$$
\sigma(D F(\alpha)) \subset \mathcal{B}_{1}
$$

$\sigma(D f(\alpha)) \subset \mathbb{C}^{-}$

Instabiel als
$\exists \lambda \in \sigma(D F(\alpha)):|\lambda|>1 \quad \exists \lambda \in \sigma(D f(\alpha)): \operatorname{Re} \lambda>0$

Dynamica op \boldsymbol{R}^{d}

- Tijdsreeks en fase ruimte
- Lineaire dynamica:
- Lineaire recursies
- Lineaire DVs
- Niet-lineaire recursies
vandaag • Niet-lineaire DVs
- Evenwichten
- Stabiliteit
- Het geval d=2
- Voorbeelden
- Reactievergelijkingen
- Stabiliteit van numerieke methoden

Slinger $\quad \dot{\theta}=v$

$$
\dot{v}=-\sin \theta
$$

Phase plot $(\theta(t), v(t))$

Dynamica op \boldsymbol{R}^{d}

- Tijdsreeks en fase ruimte
- Lineaire dynamica:
- Lineaire recursies
- Lineaire DVs
- Niet-lineaire recursies
vandaag • Niet-lineaire DVs
- Evenwichten
- Stabiliteit
- Het geval d=2
- Voorbeelden
- Reactievergelijkingen
- Stabiliteit van numerieke methoden

Reactievergelijkingen

$A+B \rightarrow C$

$$
\frac{d A}{d t}=\frac{d B}{d t}=-\frac{d C}{d t}
$$

$$
d A
$$

$$
\frac{\omega 1 t}{d t}=-r
$$

$$
\frac{d B}{d t}=-r
$$

$$
\frac{d C}{d t}=r
$$

We are therefore assuming that $r=r(A, B)$, where $r(A, 0)=r(0, B)=0$. To obtain a first term approximation of this function we use Taylor's theorem to obtain

$$
r=r_{00}+r_{10} A+r_{01} B+r_{20} A^{2}+r_{11} A B+r_{02} B^{2}+\cdots .
$$

In this expression

$$
\begin{array}{rlrl}
r_{00} & =r(0,0), & \\
r_{10} & =\frac{\partial r}{\partial A}(0,0), & r_{01}=\frac{\partial r}{\partial B}(0,0), \\
r_{20} & =\frac{1}{2} \frac{\partial^{2} r}{\partial A^{2}}(0,0), \quad r_{02}=\frac{1}{2} \frac{\partial^{2} r}{\partial B^{2}}(0,0) .
\end{array}
$$

All of these terms are zero. For example, because $r(A, 0)=0$ it follows that

$$
\frac{\partial r}{\partial A}(A, 0)=0 \quad \text { and } \quad \frac{\partial^{2} r}{\partial A^{2}}(A, 0)=0
$$

Similarly, because $r(0, B)=0$, it follows that $r_{01}=r_{02}=0$. What is not necessarily zero is the mixed derivative term

$$
r_{11}=\frac{\partial^{2} r}{\partial A \partial B}(0,0)
$$

M. Holmes, Introduction to the Fundamentals of Applied Mathematics, Springer, 2009

Reactievergelijkingen

$$
\alpha A+\beta B \rightarrow \gamma C+\delta D
$$

Definition 3.1. The Law of Mass Action consists of the following three assumptions:

1. The rate, r, of the reaction is proportional to the product of the reactant concentrations, with each concentration raised to the power equal to its respective stoichiometric coefficient.
2. The rate of change of the concentration of each species in the reaction is the product of its stoichiometric coefficient with the rate of the reaction, adjusted for sign (+ if product and - if reactant).
3 . For a system of reactions, the rates add.

$$
\begin{aligned}
& \frac{d A}{d t}=-\alpha r \\
& =-\alpha k A^{\alpha} B^{\beta}, \\
& r=k A^{\alpha} B^{\beta} \\
& \frac{d B}{d t}=-\beta k A^{\alpha} B^{\beta}, \\
& \frac{d C}{d t}=\gamma k A^{\alpha} B^{\beta}, \\
& \frac{d D}{d t}=\delta k A^{\alpha} B^{\beta} .
\end{aligned}
$$

M. Holmes, Introduction to the Fundamentals of Applied Mathematics, Springer, 2009

Reactievergelijkingen

$$
\begin{aligned}
A & \rightleftharpoons C+D, \\
A+B & \rightarrow 2 A+C
\end{aligned}
$$

Ziekteverspreiding

S = susceptible, I = Infected, R = Recovered

$$
\begin{aligned}
& \frac{d S}{d t}=-k_{1} S I \\
& \frac{d I}{d t}=-k_{2} I+k_{1} S I \\
& \frac{d R}{d t}=k_{2} I
\end{aligned}
$$

M. Holmes, Introduction to the Fundamentals of Applied Mathematics, Springer, 2009

Werkcollege voor vandaag

- Probleem 4.11 eenvoudige sommetjes.
- Probleem 4.12 een belangrijke wet van de ecologie.
- Probleem 4.14 meer ingewikkeld.
- Deadlines voor verslagen 2 en 3 zijn aangepast.

