WISB134 Modellen & Simulatie

Lecture 9 - Niet-lineaire differentiaalvergelijkingen in meerdere dimensies

Overzicht van ModSim

- Basisbegrippen dynamische modellen
 - Definities recursies, DVs, numerieke methoden
 - Oplossingen DVs
 - Convergentie numerieke methoden
- Dynamica
 - Scalaire dynamica
 - →Dynamica op R^d
 - Lineaire dynamica op \mathbf{R}^2
- Bijzondere gevallen
 - Lineaire kansmodellen (Markovketens)
 - Niet-autonome systemen (Resonantie)
 - Hogere orde numerieke methoden

Meeste aandacht (t/m 1 apr.)

- Tijdsreeks en fase ruimte
- Lineaire dynamica:
 - Lineaire recursies
 - Lineaire DVs
- Niet-lineaire recursies
- vandaag Niet-lineaire DVs
 - Stabiliteit van numerieke methoden

- Tijdsreeks en fase ruimte
- Lineaire dynamica:
 - Lineaire recursies
 - Lineaire DVs
- Niet-lineaire recursies
- vandaag Niet-lineaire DVs
 - Evenwichten
 - Stabiliteit
 - Het geval d=2
 - Voorbeelden
 - Reactievergelijkingen
 - Stabiliteit van numerieke methoden

Stabiliteit: scalair, lineair

	Recursie	Diff. Vgl.
Vorm	$x_{n+1} = Ax_n$	$\frac{dx}{dt} = a x$
Eigenprobleem		
Oplossing	$x_n = A^n x_0$	$x(t) = e^{at} x_0$
Evenwicht	x = 0	x = 0
Asympt. stabiel als	A < 1	$e^{at} < 1, \ \forall t > 0$ $\Rightarrow a < 0$
Instabiel als	A > 1	a > 0

Stabiliteit: scalair, niet-lineair

	Recursie	Diff. Vgl.
Vorm	$x_{n+1} = F(x_n)$	$\frac{dx}{dt} = f(x)$
Eigenprobleem		
Oplossing		
Evenwicht	$F(\alpha) = \alpha$	$f(\alpha) = 0$
Asympt. stabiel als	$ F'(\alpha) < 1$	$f'(\alpha) < 0$
Instabiel als	$ F'(\alpha) > 1$	$f'(\alpha) > 0$

Stabiliteit: lineair, meerdere dimensies

	Recursie	Diff. Vgl.
Vorm	$x_{n+1} = Ax_n$	$\frac{dx}{dt} = Ax$
Eigenprobleem	$Av_i = \lambda_i v_i, \ i = 1, \dots$	$\ldots, d, v_i \text{ lin. onafh.}$
Oplossing	$x_n = \sum_{i=1}^d \gamma_i \lambda_i^n v_i$	$x(t) = \sum_{i=1}^{d} \gamma_i e^{\lambda_i t} v_i$
Evenwicht	x = 0	x = 0
Asympt. stabiel als	$\sigma(A) \subset \mathcal{B}_1$	$\sigma(A) \subset \mathbb{C}^-$
Instabiel als	$\exists \lambda \in \sigma(A) : \lambda > 1$	$\exists \lambda \in \sigma(A) : \operatorname{Re} \lambda > 0$

Stabiliteit: niet-lineair, meedere-dim

	Recursie	Diff. Vgl.
Vorm	$x_{n+1} = F(x_n)$	$\frac{dx}{dt} = f(x)$
Eigenprobleem		
Oplossing		
Evenwicht	$F(\alpha) = \alpha$	$f(\alpha) = 0$
Asympt. stabiel als	$\sigma(DF(\alpha)) \subset \mathcal{B}_1$	$\sigma(Df(\alpha)) \subset \mathbb{C}^-$
Instabiel als	$\exists \lambda \in \sigma(DF(\alpha)) : \lambda > 1$	$\exists \lambda \in \sigma(Df(\alpha)) : \operatorname{Re} \lambda > 0$

- Tijdsreeks en fase ruimte
- Lineaire dynamica:
 - Lineaire recursies
 - Lineaire DVs
- Niet-lineaire recursies
- vandaag Niet-lineaire DVs
 - Evenwichten
 - Stabiliteit
 - Het geval d=2
 - Voorbeelden
 - Reactievergelijkingen
 - Stabiliteit van numerieke methoden

Slinger $\dot{\theta} = v$ $\dot{v} = -\sin\theta$

Phase plot $(\theta(t), v(t))$

- Tijdsreeks en fase ruimte
- Lineaire dynamica:
 - Lineaire recursies
 - Lineaire DVs
- Niet-lineaire recursies
- vandaag Niet-lineaire DVs
 - Evenwichten
 - Stabiliteit
 - Het geval d=2
 - Voorbeelden
 - Reactievergelijkingen
 - Stabiliteit van numerieke methoden

Reactievergelijkingen

We are therefore assuming that r = r(A, B), where r(A, 0) = r(0, B) = 0. To obtain a first term approximation of this function we use Taylor's theorem to obtain

$$r = r_{00} + r_{10}A + r_{01}B + r_{20}A^2 + r_{11}AB + r_{02}B^2 + \cdots$$

In this expression

$$r_{00} = r(0,0),$$

$$r_{10} = \frac{\partial r}{\partial A}(0,0), \qquad r_{01} = \frac{\partial r}{\partial B}(0,0),$$

$$r_{20} = \frac{1}{2}\frac{\partial^2 r}{\partial A^2}(0,0), \qquad r_{02} = \frac{1}{2}\frac{\partial^2 r}{\partial B^2}(0,0)$$

All of these terms are zero. For example, because r(A, 0) = 0 it follows that

$$\frac{\partial r}{\partial A}(A,0) = 0$$
 and $\frac{\partial^2 r}{\partial A^2}(A,0) = 0.$

Similarly, because r(0, B) = 0, it follows that $r_{01} = r_{02} = 0$. What is not necessarily zero is the mixed derivative term

$$r_{11} = \frac{\partial^2 r}{\partial A \partial B}(0,0).$$

M. Holmes, Introduction to the Fundamentals of Applied Mathematics, Springer, 2009

$$\begin{aligned} \frac{dA}{dt} &= -r, \\ \frac{dB}{dt} &= -r, \\ \frac{dC}{dt} &= r, \end{aligned}$$

 $A + B \rightarrow C$

 $\frac{dA}{dt} = \frac{dB}{dt} = -\frac{dC}{dt}$

Reactievergelijkingen

$\alpha A + \beta B \to \gamma C + \delta D$

Definition 3.1. The Law of Mass Action consists of the following three assumptions:

- 1. The rate, r, of the reaction is proportional to the product of the reactant concentrations, with each concentration raised to the power equal to its respective stoichiometric coefficient.
- 2. The rate of change of the concentration of each species in the reaction is the product of its stoichiometric coefficient with the rate of the reaction, adjusted for sign (+ if product and if reactant).
- 3. For a system of reactions, the rates add.

$$\begin{aligned} \frac{dA}{dt} &= -\alpha r \\ &= -\alpha k A^{\alpha} B^{\beta}, \\ \frac{dB}{dt} &= -\beta k A^{\alpha} B^{\beta}, \\ \frac{dC}{dt} &= \gamma k A^{\alpha} B^{\beta}, \\ \frac{dD}{dt} &= \delta k A^{\alpha} B^{\beta}. \end{aligned}$$

M. Holmes, Introduction to the Fundamentals of Applied Mathematics, Springer, 2009

 $r = k A^{\alpha} B^{\beta}$

Reactievergelijkingen

$$A \rightleftharpoons C + D,$$
$$A + B \to 2A + C$$

Ziekteverspreiding

S = susceptible, I = Infected, R = Recovered

$$S + I \rightarrow 2I$$

$$I \rightarrow R$$

$$\frac{dS}{dt} = -k_1 SI,$$

$$\frac{dI}{dt} = -k_2 I + k_1 SI$$

$$\frac{dR}{dt} = k_2 I,$$

M. Holmes, Introduction to the Fundamentals of Applied Mathematics, Springer, 2009

Werkcollege voor vandaag

- Probleem 4.11 eenvoudige sommetjes.
- Probleem 4.12 een belangrijke wet van de ecologie.
- Probleem 4.14 meer ingewikkeld.
- Deadlines voor verslagen 2 en 3 zijn aangepast.