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are used to construct one C. This means that the rate of change of the
concentrations of A and B are the same, and they are the negative of the
change in C. In other words,

dA

dt
=

dB

dt
= �dC

dt
. (3.10)

In the above expressions there is a mild case of notation abuse in the sense
that we are letting A, B, and C also designate the concentrations of the
respective species. This dual usage of having the letters designate individual
molecules as in (3.9) and concentrations as in (3.10) is common in kinetics
and should not cause problems in the development.

The equalities in (3.10) can be rewritten as

dA

dt
= �r, (3.11)

dB

dt
= �r, (3.12)

dC

dt
= r, (3.13)

where r is known as the rate of the reaction. Now, r depends on the collision
frequency of A and B, and this means it depends on the concentrations of A
and B. Also, if there are no A’s, or if there are no B’s, then the rate is zero.
We are therefore assuming that r = r(A,B), where r(A, 0) = r(0, B) = 0. To
obtain a first term approximation of this function we use Taylor’s theorem
to obtain

r = r00 + r10A + r01B + r20A
2 + r11AB + r02B

2 + · · · .

In this expression

r00 = r(0, 0),

r10 =
@r

@A
(0, 0), r01 =

@r

@B
(0, 0),

r20 =
1
2

@2r

@A2
(0, 0), r02 =

1
2

@2r

@B2
(0, 0).

All of these terms are zero. For example, because r(A, 0) = 0 it follows that

@r

@A
(A, 0) = 0 and

@2r

@A2
(A, 0) = 0.

Similarly, because r(0, B) = 0, it follows that r01 = r02 = 0. What is not
necessarily zero is the mixed derivative term

r11 =
@2r

@A@B
(0, 0).
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Figure 3.1 Sample domain illustrating assumptions underlying the Law of Mass
Action, where two species combine to form a third.

where S(0) = S0, I(0) = I0, R(0) = R0. In the above equations k1, k2 are
proportionality constants. Given the three groups, and the letters used to
designate them, this is an example of what is known as a SIR model in
mathematical epidemiology. This model does not account for births or deaths,
and for this reason the total population stays constant. This can be seen in
the above equations because

dS

dt
+

dI

dt
+

dR

dt
= 0,

or in other words d

dt

(S + I + R) = 0. The fact that S + I + R is constant
is an example of a conservation law, and these will play a prominent role in
this chapter.

3.2 Kinetic Equations

The common thread in the above examples is that one or more species com-
bine, or transform, to form new or additional species. This is a situation
common in chemistry and we will extend the theory developed in chemical
kinetics to describe interacting populations or species. The main result is the
Law of Mass Action and to motivate how it is derived consider a region con-
taining a large number of two species, labeled as A and B. A small portion
of this region is shown in Figure 3.1. As indicated in the figure, both species
are assumed to be distributed throughout the region. It is also assumed that
they are in motion, and when an A and B come into contact they combine
to form a new species C. The C’s are shown in the figure with an A and B
stuck together. The symbolism for this is

A + B ! C. (3.9)

The question is, can we use this information to determine the concentrations
of the three species? The reaction in (3.9) states that one A and one B
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Therefore, the first nonzero term in the Taylor series is r11AB, and from this
we have

r = kAB, (3.14)

where k is known as the rate constant. This expression, along with the rate
equations in (3.11)-(3.13), is the Law of Mass Action as applied to the reaction
in (3.9). This will be generalized to more complicated reactions in the next
section. Before doing so it is of interest to note what happens if A and B are
the same species. In this case (3.9) becomes 2A ! C and (3.14) takes the
form r = kA2. Also, we no longer have an equation for B, but because two
A’s are now lost every time a C is produced then (3.11) becomes A0 = �2r.
The equation for C stays the same. This shows that the coe�cients in the
reaction play a role in both the formula for r as well as in the rates for the
respective species in the reaction.

3.2.1 The Law of Mass Action

To state the general form of the Law of Mass Action certain terms need to be
defined. For this we generalize the above example and consider the reaction

↵A + �B ! �C + �D. (3.15)

The coe�cients ↵, �, �, � are nonnegative constants known as the stoichio-
metric coe�cients for the reaction. In e↵ect, this reaction states that ↵ of the
A’s combine with � of the B’s to form � of the C’s and � of the D’s. Said this
way, the implication is that the stoichiometric coe�cients are integers. The
fact is that they generally are, although we will not make this assumption
explicitly. The species on the left, A and B, are the reactants and those on
the right, C and D, are the products for this particular reaction. The order
of the reaction is the total number of reactants, which in this case is ↵ + �.

The Law of Mass Action, which will be given shortly, states that the rate
r of the reaction in (3.15) is

r = kA↵B� , (3.16)

where k is the rate constant or the reaction rate coe�cient. In writing down
this formula the notation has been corrupted a bit. As happened in the earlier
example, we started o↵ letting A,B designate the reactants but in the rate
formula (3.16) these same letters have been used to designate their concen-
trations.

We are now is position to state the assumptions underlying the Law of
Mass Action.

Definition 3.1. The Law of Mass Action consists of the following three as-
sumptions:
92 3 Kinetics

1. The rate, r, of the reaction is proportional to the product of the reactant
concentrations, with each concentration raised to the power equal to its
respective stoichiometric coe�cient.

2. The rate of change of the concentration of each species in the reaction is
the product of its stoichiometric coe�cient with the rate of the reaction,
adjusted for sign (+ if product and � if reactant).

3. For a system of reactions, the rates add.

To illustrate, consider the reaction in (3.15). Part 1 of the definition is simply
the formula (3.16) put into words. As for Part 2, the rate of change dA

dt

is
equal to �↵r, while dC

dt

is equal to �r. Combining this information, from the
Law of Mass Action the kinetic equations for the concentrations are

dA

dt
= �↵r

= �↵kA↵B� , (3.17)
dB

dt
= ��kA↵B� ,

dC

dt
= �kA↵B� ,

dD

dt
= �kA↵B� .

To complete the formulation, it is assumed that the initial concentrations are
known, and so, A(0) = A0, B(0) = B0, C(0) = C0, D(0) = D0 are given.

The specific units of the terms in the above equations depend on the appli-
cation. For example, if the species are chemicals then concentration, using SI
units, is measured in moles per decimeter (mol/dm3). It is not unusual, how-
ever, to find that when using liquids that concentrations are measured using
molarity (M) where 1M = 6.02 ⇥ 1023 molecules per liter. In applications
involving gases the units that are often used are moles per cubic centimeter.
If the application involves populations then population density (e.g., num-
ber per area) is used. Whatever the application, the units for the rate con-
stant depend on the specific reaction. This can be seen from (3.17) because
[A0] = [k][A↵B� ]. If A and B are concentrations then [k] = T�1L3(↵+��1).
Consequently, the units for the rate coe�cient for A + B ! C are di↵erent
than they are for the reaction A + 2B ! C.

3.2.2 Conservation Laws

We have produced four equations for the four species involved in the example
reaction in (3.15). Although they are not particularly easy to solve there
is one significant simplification we are able to make. To explain what this
is, note that it is possible to combine the first two equations to produce
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3.1.2 Predator-Prey

This involves two species and a typical situation is a population of predators,
wolves, which survives by eating another species, rabbits. To write down a
model for their interaction, let R(t) and W (t) denote the number of rabbits
and wolves, respectively. In this case, we have

dR

dt
= aR� bRW, (3.4)

dW

dt
= �cW + dRW. (3.5)

In the above equations a, b, c, d are proportionality constants. To obtain the
first equation, it has been assumed that the population of rabbits, with wolves
absent, increases at a rate proportional to their current population (aR).
When the wolves are present it is assumed the rabbit population decreases
at a rate proportional to both populations (�bRW ). Similarly, for the sec-
ond equation, the number of wolves, with rabbits absent, decreases at a rate
proportional to their current population (�cW ), but increases at a rate pro-
portional to both the rabbit and wolf populations when rabbits are available
(dRW ). To complete the formulation we need the initial concentrations, given
as R(0) = R0,W (0) = W0.

3.1.3 Epidemic Model

Epidemics, such as the black death and cholera, have come and gone through-
out human history. Given the catastrophic nature of these events there is a
long history of scientific study trying to predict how and why they occur. One
of particular prominence is the Kermack-McKendrick model for epidemics.
This assumes the population can be separated into three groups. One is the
population S(t) of those susceptible to the disease, another is the population
I(t) that is ill, and the third is the population R(t) of individuals that have
recovered. A model that accounts for the susceptible group getting sick, the
subsequent increase in the ill population, and the eventual increase in the
recovered population is the following set of equations

dS

dt
= �k1SI, (3.6)

dI

dt
= �k2I + k1SI, (3.7)

dR

dt
= k2I, (3.8)
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dA

dt
= �kAB, (3.26)

dB

dt
= �kAB, (3.27)

dC

dt
= 3kAB. (3.28)

The reaction is second order. To find the conservation laws, note that (3.26)
and (3.27) can be subtracted to yield dA

dt

� dB

dt

= 0. Writing this as d

dt

(A�B) =
0, it follows that A � B = A0 � B0. Similarly, (3.26) and (3.28) can be
combined to yield d

dt

(3A + C) = 0, from which it follows that 3A + C =
3A0 + C0. The conclusion is that B = B0 + A�A0 and C = C0 + 3(A0�A).
The resulting reduced equation is therefore

dA

dt
= �kA(B0 �A0 + A).

This is known as the logistic equation and it can be solved using separation
of variables. The steady-states are A = 0 and A = B0 � A0. The latter is
physically relevant only if B0 � A0 � 0. As before the steady-states are ev-
ident directly from the reaction. Because A and B combine to form three
molecules of C then the reaction will continue until you run out of either A
or B. If it is A then A = 0, B = B0�A0, C = C0 + 3A0 while if it is B then
B = 0, A = A0 �B0, C = C0 + 3B0. ⌅

3. As a third example we consider a system of three reactions given as

A ⌦ C + D, (3.29)
A + B ! 2A + C. (3.30)

We need to explain exactly what is written here. First, (3.29) is a compact
way to write A! C+D and C+D ! A. In this case the reaction is said to be
reversible. Each gets its own rate constant and we will use k1 for the first and
k�1 for the second. Secondly, (3.30) is an example of an autocatalytic reaction
because A is being used to produce more of itself (i.e., there is more A at the
end of the reaction even though it is one of the reactants). We will use k2 for
its rate constant. The corresponding rates are r1 = k1A, r�1 = k�1CD, and
r2 = k2AB. Now, the Law of Mass Action applies to each reaction and the
rates are added to construct the kinetic equation for each species (Part 3 of
Definition 3.1). For example, the kinetic equation for A is

dA

dt
= �r1 + r�1 � r2 + 2r2

= �k1A + k�1CD � k2AB + 2k2AB

= �k1A + k�1CD + k2AB.

S + I ! 2I

I ! R

Ziekteverspreiding  
S = susceptible, I = Infected, R = Recovered

M. Holmes, Introduction to the Fundamentals of Applied Mathematics, Springer, 2009



Werkcollege voor vandaag

• Probleem 4.11 eenvoudige sommetjes. 

• Probleem 4.12 een belangrijke wet van de ecologie.

• Probleem 4.14 meer ingewikkeld. 

• Deadlines voor verslagen 2 en 3 zijn aangepast.


