WISB134 Modellen \& Simulatie

Lecture 12 - Wrap-up stabiliteit differentiaalvergelijkingen

Overzicht van ModSim

- Basisbegrippen dynamische modellen
- Definities recursies, DVs, numerieke methoden
- Oplossingen DVs
- Convergentie numerieke methoden
- Dynamica
- Scalaire dynamica
- Dynamica op $\mathbf{R}^{\text {d }}$
\Rightarrow Lineaire dynamica op \mathbf{R}^{2}
- Bijzondere gevallen
- Lineaire kansmodellen (Markovketens)
- Niet-autonome systemen (Resonantie)
- Hogere orde numerieke methoden

Lineaire Dynamica op \boldsymbol{R}^{2}

- Klassificatie van evenwichten: zadels, knopen, spiralen
- Klassificatie van evenwichten: grensgevallen
- Stelling van Hartman-Grobman
- Faseportretten niet-lineaire DVs
- Stelling Poincaré-Bendixson

$$
\lambda_{1}=-1.5, \quad \lambda_{2}=0.8
$$

$$
v_{1}=\binom{1}{0}, v_{2}=\binom{1}{1}
$$

Vector Field

Phase portrait

Saddle point

$$
\lambda_{1}=-1.5, \quad \lambda_{2}=-0.8
$$

$$
v_{1}=\binom{1}{0}, v_{2}=\binom{1}{1}
$$

Vector Field

Phase portrait

Stable node

$$
\lambda_{1,2}=-0.5 \pm 1.0 i
$$

Phase portrait

Stable spiral (focus)

$0=0$

$d=s^{2} / 4$, case $/$

$d=s^{2} / 4$, case II

Stelling van Hartman-Grobman

- Een evenwicht a is hyperbolisch als het reële deel van elk eigenwaarde van $\operatorname{Df}(a)$ niet nul is.
- Stelling van Hartman: Als a een hyperbolisch evenwicht is, dan is er een gebied rondom het evenwicht waar de faseportret "lijkt op" die van het gelineariseerde stelsel.
- Hiermee kunnen we een aardig indruk krijgen van de fase ruimte van een niet-lineaire DV.

$$
\dot{x}=x\left(1-\frac{x}{2}-y\right), \quad \dot{y}=y\left(x-1-\frac{y}{2}\right)
$$

Stelling van Poincare-Bendixson

- Een verzameling $\mathcal{D} \subset \mathbf{R}^{d}{ }^{d}$ invariant als geldt

$$
y_{0} \in \mathcal{D} \quad \Rightarrow \quad y(t) \in \mathcal{D}, \forall t>0
$$

- Stelling Poincaré-Bendixson: als (open) $\mathcal{D} \subset \mathbf{R}^{2}$ invariant is, en er bevinden zich geen evenwichten erin, dan convergeert de oplossing naar een limietcykel: een periodieke baan die alle ander banen aantrekt.

Stelling van Poincare-Bendixson

$$
\begin{aligned}
& \frac{d x}{d t}=x-y+(-x-y)\left(x^{2}+y^{2}\right) \\
& \frac{d y}{d t}=x+y+(x-y)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d r}{d t}=r(1-r)(1+r) \\
& \frac{d \theta}{d t}=1+r^{2}
\end{aligned}
$$

Werkcollege voor vandaag

- Probleem 4.17 Klassificatie evenwichten, faseportretten DVs
- Probleem 4.18 Toepassing

