Numerical Analysis 2. Final Exam

Due: Thursday, January 8, 2009.

Submit your exam in my postbox in the Euclides building no later than 10.00 in the morning. This exam will account for 1/3 of your grade in the class (same as each of the projects). Problems 1 and 2 are worth 2.5 points each, problem 3 is worth 5 points.

- 1. Consider the class of *one-stage* Runge-Kutta methods. Prove the maximal order of accuracy p of this class. Recall that for a method of order p, the local error satisfies $le = O(h^{p+1})$. The subclass of methods of maximal order has a finite number of members. Determine this number.
- 2. Consider the class of *explicit*, two-stage Runge-Kutta methods. These have Butcher table

Taking α a free parameter, determine $b_1(\alpha)$ and $b_2(\alpha)$ to satisfy the conditions for second order. Next, determine the stability function of these methods for the scalar test problem $y' = \lambda y, \lambda \in \mathbb{C}$. Can you use α to optimize the stability? Otherwise, find α to solve one of the conditions for order three. Finally, the system of differential equations

$$x' = x(x-2) + e^y, \qquad y' = 50y(y-2)$$

has a stable equilibrium at the origin. For your choice of α , determine the maximum stepsize h for which the origin remains a stable fixed point of the numerical method.

3. Occasionally one is presented with differential equations for which there is a natural partitioning of the variables:

$$y' = f(y, z), \quad z' = g(y, z), \quad y, z \in \mathbb{R}^d$$

A generalization of Runge-Kutta methods for such systems is given by

$$Y_{i} = y_{n} + h \sum_{j=1}^{s} a_{ij}F_{j}, \qquad Z_{i} = z_{n} + h \sum_{j=1}^{s} \alpha_{ij}G_{j}, \quad i = 1, \dots, s$$
$$y_{n+1} = y_{n} + h \sum_{j=1}^{s} b_{j}F_{j}, \qquad z_{n+1} = z_{n} + h \sum_{j=1}^{s} \beta_{j}G_{j},$$

where $F_j = f(Y_j, Z_j)$ and $G_j = g(Y_j, Z_j)$. Derive the order conditions on a_{ij} , b_j , α_{ij} , β_j for a method to be of at least order 2.

Show that the following method from this class

1/2	0	0	0
 1/2	0	 1/2	1/2
1/2	1/2	 1/2	1/2

preserves arbitrary first integrals of the form

$$I(y,z) = y^T A z$$

for A a $d \times d$ matrix.