
Appendix A

Implementation Details

A.1 Solving Nonlinear Systems

There are basically two approaches that are used to solve the nonlinear algebraic equations arising
in the implementation of implicit methods. These are functional iteration and Newton iteration.
We discuss both of these below.

Functional iteration. The nonlinear systems encountered in implicit methods usually have
the form

y = τg(y) + c (A.1)

for some function g and constant vector c. For backward Euler, for example, to determine yn+1

we have such a relation with g = f and c = yn.
Functional iteration for (A.1) is given by

y(ν+1) := τg(y(ν)) + c. (A.2)

It is clear that for τ = 0 this iteration converges in one step to c. Although the nonlinear problem
(A.1) may have multiple solutions, if the Jacobian of (A.1), i.e. I − τ ∂g/∂y, is nonsingular as
τ → 0, then there is a unique solution for τ small enough (by the implicit function theorem.)

Convergence of functional iteration requires τ‖∂g/∂y‖ < 1. For stiff problems, ‖∂g/∂y‖ is
large, so this criterion severely restricts the stepsize in a similar manner as does stability. We have
gained nothing. However, for nonstiff problems functional iteration may be acceptable, if one has
another reason for using implicit methods.

Newton iteration. Given a nonlinear system G(y) = 0, Newton iteration is

y(ν+1) := y(ν) −
(

∂G
∂y

(y(ν))
)−1

G(y(ν)). (A.3)

To solve the system (A.1), we take

G(y) = y − τg(y)− c, ∂G/∂y = I − τ∂g/∂y.

in (A.3). For τ sufficiently small in magnitude, Newton iteration converges quadratically: if the
initial guess y(0) is close enough to a stationary point ȳ of the iteration (A.3), then there exists a
constant C such that

‖y(ν+1) − ȳ‖ ≤ C‖y(ν) − ȳ‖2.

Note that the ‘smallness’ of τ here is much larger than that for functional iteration just dis-
cussed. In particular, for linear G, Newton iteration converges in one iteration, regardless of
stiffness.

115

116 APPENDIX A. IMPLEMENTATION DETAILS

In practice, the evaluation of the Jacobian and its inverse in the iteration (A.3) is prohibitively
expensive. Instead, the Jacobian is usually evaluated once per timestep

J =
∂g
∂y

(y(0)),

where the initial guess y(0) is, for example, taken to be the solution from the previous time step
y(0) = yn. The Jacobian can be factored using Gaussian elimination, I − τJ = LU , and used
repeatedly in (A.3). The resulting method is sometime called ‘modified’ Newton iteration. The
computational cost of Gaussian elimination is O(d3) whereas the solution of the systems with
triangular matrices L and U can be done with a cost of O(d2) for each system. So re-using the
Jacobian results in a factor d savings in computational effort in succeeding iterations, assuming
the convergence is unaffected.

Unfortunately the convergence is affected. In fact, the the modified Newton method is simply a
functional iteration (A.2), with g(y) and c replaced with (I−τJ)−1 (g(y)− Jy) and (I−τJ)−1c,
respectively. Fortunately the reduction in computational expense by not evaluating and factoring
the Jacobian in each step usually outweighs the increase in expense due to slower convergence
rate, and furthermore the inverse of the Jacobian tends to cancel the effect of stiffness.

Since the convergence of (modified) Newton iteration depends on τ , it may be faster to take
more steps with a smaller stepsize, in each of which Newton converges in a few iterations, than
to take a fewer, large steps in which convergence is sluggish. For this reason, practical codes
usually perform a small number (say 10) modified Newton iterations, and if the convergence is
not sufficient, throw out the whole step and reduce the stepsize. Clearly this adds additional
complexity to the error control procedure we defined earlier.

A.2 Error Control

A.2.1 Error control

In this section we follow the approach to extrapolation and error control in Hairer, Nørsett &
Wanner (1993).

A constant stepsize τ may be sufficient for academic studies. However, real industrial-strength
ODE software makes use of variable steps to keep the error below a user-specified tolerance. In
this section we develop one approach to stepsize selection based on local error estimation. We
define τn := tn+1 − tn.

As mentioned before, the residual (??) obtained upon substitution of the Taylor expansion of
the exact solution into the difference equation (??) is the incremental error introduced in the nth
time step. Put another way, this is the error incurred in a single step of Euler’s method for the
initial value problem

y′ = f(y), y(0) = yn, (A.4)

The first term of the residual is a good approximation of the incremental error (improving as
τ → 0).

To control the error we first need a good estimate. The first term of the residual, while accurate,
may not be available as computer code, and indeed may be a very complicated expression, since
it involves higher derivatives of the function f . Instead we will determine a better approximation
of the solution of the local problem (A.4).

Richardson extrapolation

For the problem (A.4), a single step of size τ with a method of order p leads to a residual

r1 = Φτ yn − yn+1 = τp+1κ +O(τp+2) (A.5)

A.2. ERROR CONTROL 117

Consider instead taking two steps of size τ/2. For the first of these we again have

r̂1/2 = Φτ/2 yn − ŷn+1/2 =
(τ

2

)p+1

κ +O(τp+2),

where the hatted vectors refer to the second process with stepsize τ/2. For the second step we get

r̂1 = Φτ/2 ŷn+1/2 − ŷn+1 =
(τ

2

)p+1

κ̂ +O(τp+2) (A.6)

where κ̂ = κ+O(τ) is the residual evaluated at tn+1/2 instead of tn. Now the total error made in
the two steps is due to the propagation of r̂1/2 under the exact solution through ŷn+1/2 plus r̂1.
It can be shown that

Φτ yn − Φτ/2 ŷn+1/2 =
(τ

2

)p+1

κ +O(τp+2) (A.7)

Adding (A.6) and (A.7) gives

Φτ yn − ŷn+1 = 2
(τ

2

)p+1

κ +O(τp+2)

The constant κ can be eliminated between the above relation and (A.5) to give an O(τp+2)
approximation to y(tn+1):

y(tn+1) =
2p ŷn+1 − yn+1

2p − 1
+O(τp+2).

A stepsize selection algorithm

Given the approximate solution yn+1 and a more accurate approximation ȳn+1, obtained using
Richardson extrapolation or otherwise, we wish to determine a stepsize for which the error remains
within a user-specified tolerance. Specifically we want to check that

‖ȳn+1 − yn+1‖ ≤ tol ,

and if this is not so, we reject the result, decrease the stepsize and try again. Defining

err =
‖ȳn+1 − yn+1‖

tol
, (A.8)

the criterion becomes err ≤ 1. Since we expect err ≈ Cτp+1, the optimal stepsize stepsize is given
by Cτp+1

opt ≈ 1, we obtain an improved stepsize (by eliminating C)

τopt = τ/err1/(p+1).

Since rejected steps are expensive, we multiply the last expression by a safety factor fac, having a
value of 0.8 or 0.9 or so. Furthermore it is recommended to place a limit on how fast the stepsize
can grow and decay, giving

τnew = τ ·min(facmax ,max(facmin, fac · (1/err)1/(p+1))) (A.9)

where facmax ≈ 2 and facmin ≈ 0.5.
To apply the above formula in a code, after computing a solution at time tn, the error is

estimated using (A.8) and this is compared against 1. If the err ≤ 1, the step is accepted and
(A.9) gives an estimate for the stepsize τn+1 of the next step. If err > 1, the step is rejected, and
(A.9) gives an estimate of τn for a new attempt.

118 APPENDIX A. IMPLEMENTATION DETAILS

Example.
We integrate the Van der Pol equation with parameter µ = 5 this time. Figure A.1 shows the global
error as a function of the number of steps. The reduction in the number of steps is approximately a
factor of 3. This does not mean that the computation is a factor of 3 faster however. In the first place,
the Richardson extrapolation involves a second evaluation of the function f . For large, complex systems,
this means the expense of a single step approximately doubles compared to the method without stepsize
control. Furthermore, any discarded steps are wasted effort, so a real measure of the benefits of error
control must take those into account as well.

Code vareuler.m (http://www.cwi.nl/~jason/numwisk/vareuler.m)

function [Y,T] = vareuler(y0,tau,Tend,fun,param,tol);
%
% [Y,T] = vareuler(y0,tau,Tend,fun,param,tol);
%
% Integrates the function ’yprime = fun (y,t,param)’
% using Forward Euler.
%
% y0 is the initial condition
% tau is an initial stepsize guess
% Tend is the length of the integration interval
% tol is an absolute tolerance
%
% The output is stored columnwise in the array Y
% The array T contains the temporal grid
%

Y = y0; %% output array
y = y0; %% solution at current time level
T = 0; %% output array
t = 0; %% current time level

facmin = 0.5;
facmax = 2;
fac = 0.8;

while t<Tend, %% Note: we do not know in advance how many steps are needed
remesh = 1; %% Assume remeshing is necessary (1==true, 0==false)

while remesh

%% Euler step
F = fun(y,param);
y1 = y + tau * F;

%% Richardson extrapolation
ya = y + tau/2 * F;
yb = ya + tau/2 * fun(ya,param);
y2 = 2*yb-y1;

%% Error estimate:

http://www.cwi.nl/~jason/numwisk/vareuler.m

A.2. ERROR CONTROL 119

err = max(abs(y2-y1))/tol;

if err <= 1
remesh = 0; %% remeshing unnecessary, drop out of the loop
t = t + tau; %% increment time

end

%% Estimate next timestep
tau = min(Tend-t,tau * min(facmax,max(facmin,fac/sqrt(err))));

end

y = y1;

Y(:,end+1) = y;
T(end+1) = t;

end

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

Number of steps, N

||
y(

t N
)

−
 y

N
 ||

Forward Euler: global error in vdPol, µ=5

Variable step

Fixed step

Figure A.1: Solution to Example 1, with µ = 5, using Euler’s method with fixed and variable
stepsize.

120 APPENDIX A. IMPLEMENTATION DETAILS

	Implementation Details
	Solving Nonlinear Systems
	Error Control
	Error control

