
Chapter 11

Interlude: Linear Multistep
Methods

Main concepts: Linear multistep methods, accuracy, root condition, stability.

In this chapter we introduce one of the two main classes of numerical integrators for dynamical
systems: the linear multistep methods. The chapter contains an overview of the analytical issues
relevant to these methods. In subsequent chapters, we will address the other major class: one step
methods.

Assuming the solution has been computed for some number of time steps, the main idea of
multistep methods is to use the last k step values to approximate the solution at the next step.
A linear k-step method is defined as

k∑
j=0

αjyn+j = h
k∑

j=0

βjf(yn+j). (11.1)

For a linear k-step method, we require that αk 6= 0 and either α0 6= 0 or β0 6= 0. Furthermore, the
coefficients in (11.1) are not uniquely defined, since multiplication through by a constant defines
the same method. Usually the coefficients are normalized such that either αk = 1, or

∑
j βj = 1.

When using (11.1) in a computer code, at time step n + k − 1 it is assumed that the values
yn+j , j = 0, . . . , k− 1 are already computed, so yn+k is the only unknown in the formula. If βk is
nonzero the method is implicit, otherwise it is explicit. Since the initial value problem (1.3) only
specifies y0 = y(t0), it is necessary to first generate data yj , j = 1, . . . , k − 1 before the formula
(11.1) can be applied. This is done, for example, by using forward Euler or another one-step
method in the first k − 1 steps.

11.1 Examples

Some examples of linear multistep methods are:

• The θ-method generalizes all linear one-step methods

yn+1 − yn = h(1− θ)f(yn) + hθf(yn+1). (11.2)

Here we have α0 = −1, α1 = 1, β0 = 1 − θ and β1 = θ. Important methods are forward
Euler (θ = 0), backward Euler (θ = 1) and trapezoidal rule (θ = 1/2). For any θ > 0, this
method is implicit.

• Leapfrog is an explicit two-step method (k = 2) given by α0 = −1, α1 = 0, α2 = 1 and
β1 = 2:

yn+2 − yn = 2hf(yn+1) (11.3)

65

66 CHAPTER 11. INTERLUDE: LINEAR MULTISTEP METHODS

• The class of Adams methods have αk = 1, αk−1 = −1 and αj = 0 for j < k − 1. Adams-
Bashforth methods are explicit, additionally satisfying βk = 0. Examples of 1, 2 and 3-step
methods are (using notation fn ≡ f(yn)):

yn+1 − yn = hfn (11.4)

yn+2 − yn+1 = h

(
3
2
fn+1 −

1
2
fn

)
(11.5)

yn+3 − yn+2 = h

(
23
12

fn+2 −
4
3
fn+1 +

5
12

fn

)
(11.6)

Adams-Moulton methods are implicit, with βk 6= 0.

• The Backward differentiation formulae (BDF) are a class of linear multistep methods sat-
isfying βj = 0, j < k and generalizing backward Euler. The two-step method (BDF-2) is

yn+2 −
4
3
yn+1 +

1
3
yn = h

2
3
f(yn+2). (11.7)

11.2 Order of accuracy and convergence

Associated with the linear multistep method (11.1) are the polynomials

ρ(ζ) =
k∑

j=0

αjζ
j , σ(ζ) =

k∑
j=0

βjζ
j . (11.8)

These are important for understanding the dynamics of multistep methods, and will be used later.
The residual of a linear multistep method at time tn+k may be defined in a number of ways.

We obtain it by substituting the exact solution y(t) of (1.3) at times y(tn+j), j = 0, . . . , k into
(11.1), i.e.

rn :=
k∑

j=0

αjy(tn+j)− h

k∑
j=0

βjy
′(tn+j). (11.9)

(This is actually the residual accumulated in the (n+k−1)th step, but for notational convenience
we will denote it rn.) A linear multistep method has maximal order of accuracy p if rn = O(hp+1)
for all sufficiently smooth f .

Write the Taylor series expansions of y(tn+j) and y′(tn+j) as

y(tn+j) =
∞∑

i=0

(jh)i

i!
y(i)(tn), y′(tn+j) =

∞∑
i=0

(jh)i

i!
y(i+1)(tn),

where in this chapter y(i)(t) means the ith derivative of y(t). Substituting these into (11.9) and
manipulating,

rn =
k∑

j=0

αj

∞∑
i=0

(jh)i

i!
y(i)(tn)− h

k∑
j=0

βj

∞∑
i=0

(jh)i

i!
y(i+1)(tn)

=
k∑

j=0

αjy(tn) +
∞∑

i=1

k∑
j=0

αj
(jh)i

i!
y(i)(tn)−

∞∑
i=1

k∑
j=0

βj
(jh)i

j(i− 1)!
y(i)(tn)

=
k∑

j=0

αjy(tn) +
∞∑

i=1

1
i!

hiy(i)(tn)

 k∑
j=0

αjj
i − i

k∑
j=0

βjj
i−1

 .

Equivalent conditions for a linear multistep method to have order of accuracy p are:

11.2. ORDER OF ACCURACY AND CONVERGENCE 67

• The coefficients αj and βj satisfy (where 00 = 1)

k∑
j=0

αj = 0 and
k∑

j=0

αjj
i = i

k∑
j=0

βjj
i−1 for i = 1, . . . , p. (11.10)

• The polynomials ρ(ζ) and σ(ζ) satisfy

ρ(ez)− zσ(ez) = O(zp+1). (11.11)

• The polynomials ρ(ζ) and σ(ζ) satisfy

ρ(z)
log z

− σ(z) = O((z − 1)p). (11.12)

The first of these follows from the considerations above. For proofs of the second and third forms,
see Hairer, Nørsett and Wanner (1993).
Examples. The method (11.3) has order 2. The methods (11.5) and (11.6) have orders 2 and 3,
respectively. The method (11.7) has order 2.

11.2.1 The root condition, a counter-example

Earlier we saw that for Euler’s method, convergence follows from the fact that the residual is
O(h2), leading to a global error of O(h) on a fixed interval. For linear multistep methods, first
order accuracy is insufficient to ensure convergence. We will not prove convergence for this class
of methods, but will simply state the convergence theorem and show where it can go wrong.

The method (11.1) is said to satisfy the root condition, if all roots ζ of

ρ(ζ) = 0,

lie on the unit disc (|ζ| ≤ 1), and any root of modulus one (|ζ| = 1) has multiplicity one.
Furthermore, a linear multistep method is incomplete without a starting procedure to generate

the first k − 1 iterates y1, . . . , yk−1.

Theorem 11.2.1 Suppose a linear multistep method (11.1) is equipped with a starting procedure
satisfying limh→0 yj = y(t0 + jh) for j = 1, . . . , k − 1. Then the method converges to the exact
solution of (1.3) on a fixed interval as h → 0 if and only if it has order of accuracy p ≥ 1 and
satisfies the root condition.

The proof of this theorem will not be handled in these notes. See, e.g., the monograph of
Hairer, Nørsett, & Wanner (1993).

To illustrate the necessity of the root condition, consider the method

yn+3 + yn+2 − yn+1 − yn = h

(
8
3
f(yn+2) +

2
3
f(yn+1) +

2
3
f(yn)

)
. (11.13)

Substituting ρ(ζ) = ζ3 + ζ2 − ζ − 1 and σ(ζ) = 8
3ζ2 + 2

3ζ + 2
3 into (11.11) gives

ρ(ez)− zσ(ez) =
1
3
z4 +O(z5),

so the method is third order accurate. Now applying the method to the easiest of all initial value
problems

y′ = 0, y(0) = 1, t ≥ 0

yields the linear difference equation

yn+3 + yn+2 − yn+1 − yn = 0. (11.14)

68 CHAPTER 11. INTERLUDE: LINEAR MULTISTEP METHODS

If the roots ζ1, ζ2 and ζ3 of the characteristic polynomial ρ(ζ) = 0 were distinct, the exact solution
of such a recursion would be

yn = c1ζ
n
1 + c2ζ

n
2 + c3ζ

n
3 .

If any root ζi had modulus greater than 1, then the recursion would satisfy |yn| → ∞ unless the
corresponding constant ci were identically 0. For the current case, ρ(ζ) = (ζ−1)(ζ+1)2, and there
is a double root at −1. For a double root ζ3 ≡ ζ2, the solution of the recursion (11.14) becomes

yn = c1ζ
n
1 + c2ζ

n
2 + c3nζn

2 .

One still has |yn| → ∞ (but with linear growth), unless c3 = 0.
The constants c1, c2 and c3 are determined by the initial conditions necessary to start the

multistep method. Suppose we take y0 = y1 = y2 = 1, consistent with the exact solution. Then
this yields

c1 = 1, c2 = c3 = 0,

and the solution is yn = 1, for all n. The method is exact.
Suppose, however, that the initial conditions are perturbed slightly. We take y0 = 1 + ε,

y1 = y2 = 1. Then we find

c1 = 1 +
3
4
ε, c2 =

1
4
ε, c3 = −1

2
ε,

and the solution is unbounded. The numerical solution sequence is unstable to perturbations in the
initial conditions. As a consequence, any errors incurred will destabilize the solution. The method
works only for the trivial differential equation, y′ = 0, and then only if the starting procedure is
exact. It fails to converge for all other differential equations.

As an example we compute the solution of y′ = −y, y(0) = 1, t ∈ [0, 1.5] using (11.13) for
h = 1/10, 1/100 and 1/1000. The instability gets worse as h decreases.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
τ=1/1000
τ=1/10
τ=1/100

Figure 11.1: Solution of y′ = −y, y(0) = 1 with (11.13) for various h.

Theorem 11.2.2 The maximum order of a k-step method satisfying the root condition is p = k
for explicit methods and, for implicit methods, p = k + 1 for odd k and p = k + 2 for even k.

11.3. STABILITY 69

11.3 Stability

As we will see later in the course, an important criterion for distinguishing between different
methods is their ability to preserve the stability of a stable equilibrium. To test this, we check
under what conditions the numerical solution converges to zero when we apply (11.1) to the scalar
linear test problem y′ = λy:

k∑
j=0

αjyn+j = hλ
k∑

j=0

βjyn+j .

Letting z = hλ we write
k∑

j=0

(αj − zβj)yn+j = 0.

For any z this is a linear difference equation with characteristic polynomial

k∑
j=0

(αj − zβj)ζj = 0 = ρ(ζ)− zσ(ζ).

The stability region S of a linear multistep method is the set of all points z ∈ C such that all
roots ζ of the polynomial equation ρ(ζ) − zσ(ζ) = 0 lie on the unit disc |ζ| ≤ 1, and those with
modulus one are simple.

On the boundary of the stability region S, precisely one root has modulus one, say ζ = eiθ.
Therefore an explicit representation for the boundary of S is easily derived:

∂S =
{

z =
ρ(eiθ)
σ(eiθ)

, θ[−π, π]
}

.

Figure 11.2 shows plots of the stability regions for the Adams-Bashforth methods of orders
p = 1, 2 and 3.

A linear multistep method is called A-stable (or unconditionally stable) if the stability domain
S contains the entire left half-plane

{z ∈ C : Re z ≤ 0} ⊂ S.

Theorem 11.3.1 An A-stable linear multistep method has order p ≤ 2.

This restriction on the maximum order of a linear multistep method was an important result
in numerical analysis, proved by G. Dahlquist.

For stiff problems in which the stiff components have eigenvalues near the real axis, A-stability
is too strong a requirement. Instead a weaker concept is introduced:

The linear multistep method (11.1) is A(α)-stable, for α ∈ (0, π/2), if the stability domain
contains a wedge in the left half-plane:

{z ∈ C : | arg(z)− π| < α} ⊂ S.

The important point is that for λ lying within the wedge of stability, the method is unconditionally
stable (norm-nonincreasing for any h).

Figure 11.3 shows plots of the stability regions for the Backward differentiation formulae (BDF)
of orders p = 1, . . . , 6. The first and second order methods are A-stable. The rest are A(α)-stable
with α (approximately):

Order, p α
3 86.03◦

4 73.35◦

5 51.84◦

6 17.84◦

70 CHAPTER 11. INTERLUDE: LINEAR MULTISTEP METHODS

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
Adams−Bashforth Stability Regions, p=1,2,3

Figure 11.2: Stability regions of the Adams-Bashforth methods of orders p = 1 (blue), 2 (green)
and 3 (red).

11.4 Implementation issues

11.4.1 Starting process.

As mentioned briefly in section 11.2, a linear k-step method needs a starting procedure to generate
the first k−1 solution values. This is typically done using either k−1 steps of a one-step (Runge-
Kutta) method, or applying successively `-step methods with ` = 1, 2, For example, to start a
4-step Adams-Bashforth scheme, the methods (11.4), (11.5), (11.6) could be applied in succession,
for n = 0. For problems with discontinuous f , it is necessary to apply the starting procedure after
each discontinuity.

11.4.2 Variable stepsize implementation.

The order conditions (11.10)–(11.12) only hold for constant stepsize h. If the stepsize varies over
the interval [tn, tn+k], i.e. hj = tn+j+1−tn+j , j = 0, . . . , k−1, with distinct hj , then the coefficients
for a given order become dependent on the hj . In general the stepsize ratio qj = hj+1/hj will be
restricted to some range 0 < qmin < qj < qmax, by the root condition. There are various techniques
for implementing variable stepsize multistep methods. For more information, see Hairer, Nørsett
& Wanner (1993).

In most cases it is not desirable to store all solutions y0, . . . , yN , as this eats up computer
memory. Instead only the minimum number of ‘back-values’ necessary for the implementation
is kept. The solution is written to disk as often as desired. For this reason, variable stepsize
implementations of multistep methods are problematic. Either the coefficients have to be modified
to suit the local stepsize schedule, or the past solution values have to be interpolated onto a uniform
grid.

An exception is a variable stepsize implementation in which the stepsize is allowed to change
only by a factor of 2. In this case, provided the stepsize is not allowed to double too often, one

11.4. IMPLEMENTATION ISSUES 71

−10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20
BFD Stability Regions p=1,...,6

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Close−up

Figure 11.3: Stability regions of the BDF methods of orders p = 1, . . . , 6. For BDF-1 (blue) S is
everything outside the white region; for BDF-2 (green) it is everything outside the blue region;
etc.

can get by with storing the 2k vectors yn−k, . . . , yn+k−1. When the stepsize is doubled, the values
yn+k−2, yn+k−4, . . . are used in formula (11.1) with h replaced by 2h. When the stepsize is halved,
a pth order interpolation can be used to obtain the vectors yn+k−1/2, yn+k−3/2, . . . needed to apply
(11.1) with a stepsize of h/2.

11.4.3 Error estimation.

To estimate the error for the purpose of adaptivity, one technique makes use of a second linear
multistep method, also of order p (but perhaps not a k-step method). Denote the coefficients of
this process with α̃j and β̃j . According to formula (11.11), these methods must satisfy, assuming
the values yn, . . . , yn+k−1 are exact,

y(tn+k)− yn+k = chp+1y(p+1)(tn+k) +O(hp+2),

y(tn+k)− ỹn+k = c̃hp+1y(p+1)(tn+k) +O(hp+2),

for appropriate c, c̃ > 0. Assuming we have chosen the second linear multistep method such that
c 6= c̃, we can combine the above and eliminate y(p+1)(tn+k) to get the local error estimate

y(tn+k)− yn+k =
c

c− c̃
(ỹn+k − yn+k) +O(hp+2).

For efficiency, it is best to use an explicit method such as an Adams-Bashforth for the error
estimator ỹn+k. Since this value is thrown away after estimating the error, it cannot alter stability
to use an explicit method.

72 CHAPTER 11. INTERLUDE: LINEAR MULTISTEP METHODS

11.4.4 Nonlinear systems.

For implicit methods, the nonlinear system to be solved in each timestep is

αkyn+k = hβkf(yn+k) +

k−1∑
j=0

−αjyn+j + hβjfn+j

 ,

where the terms in brackets are explicitly known at time step (n+k−1). This system has the same
form as discussed Appendix A and is of dimension d. Furthermore, the back values yn, . . . yn+k−1

can be used with a high order extrapolation formula to generate a good initial guess for (modified)
Newton iteration, so the nonlinear solves are fairly efficient.

11.5 Exercises

1. Determine the stability region S for the Leapfrog method

yn+1 = yn−1 + 2hf(tn, yn).

2. Derive a 4th order Adams-Bashforth method using one of (11.10)–(11.12). Does it satisfy
the root condition? Determine its stability region.

3. Consider the Lorenz equations:

y′1 = σ(y2 − y1)
y′2 = ry1 − y2 − y1y3

y′3 = y1y2 − by3

Choose the parameters to be σ = 10, b = 8/3, r = 28 and the initial condition y0 = (0, 1, 0)T .
Integrate this system on the interval t ∈ [0, 100]. Use the 4th order Adams-Bashforth method
you derived in the previous problem. Start the integration with 3 steps of Euler’s method.

(a) Plot the solution in 3D using the built-in matlab function plot3. Use the rotation tool
in the figure window to observe the Lorenz attractor.

(b) Experiment with different stepsizes. Can you observe 4th order convergence? If not,
try integrating over a shorter interval, (say t ∈ [0, 10]). Hint: It may be helpful to
plot the time history of one component (say y2(t)) of the solution, for several different
stepsizes, on the same axes.

(c) Repeat the computation using forward Euler on the whole interval t ∈ [0, 100]. Do you
see any advantage to using the fourth order method for solving this problem on a long
time interval?

	Interlude: Linear Multistep Methods
	Examples
	Order of accuracy and convergence
	The root condition, a counter-example

	Stability
	Implementation issues
	Starting process.
	Variable stepsize implementation.
	Error estimation.
	Nonlinear systems.

	Exercises

