
Chapter 12

Reversibility and Composition
Methods

Main concepts: ρ-reversibility, adjoint of a method, self-adjoint methods, composition methods

Many physical processes—e.g. those on the molecular scale and on the cellestial scale—are
reversible, a symmetry property of the flow map Φt. It turns out to be useful in such a case, to
use a numerical method whose discrete flow map is also reversible. One reason for doing so is the
simple construction of higher order methods by composition, which will be treated in this chapter.
Another reason is the near preservation of invariants in integrable problems by reversible methods,
which will not be treated in these notes.

12.1 ρ-Reversibility

Let ρ be a linear, invertible transformation on Rd. The autonomous ODE (1.13) is called ρ-
reversible if

ρf(y) = −f(ρy) (12.1)

for all y.
For a ρ-reversible ODE, the solution operator Φt satisfies

ρ ◦ Φt = Φ−t ◦ ρ. (12.2)

In words, evolving the system t units in time and applying the reversal transformation, is equivalent
to applying the reversal transformation and then evolving the system t units backward in time.

As a consequence of (12.2), and since Φ−t = Φ−1
t ,

ρ−1 ◦ Φt ◦ ρ ◦ Φt = id,

the identity map. So if one evolves the system t units in time, then applies the reversal transfor-
mation, then evolves it t more units in time and again applies the inverse reversal transformation,
the system is returned to its initial state. This situation is illustrated in Figure 12.1.
Example. Mechanical systems. A large class of reversible problems are those given by Newton’s
second law of motion (5.2)

Mq̈ = F (q), (12.3)

where q ∈ Rd is a position vector, F : Rd → Rd is a vector of forces, and M is a symmetric,
positive definite (mass) matrix. Introducing the momentum p ≡ Mq̇, this becomes

q̇ = M−1p, ṗ = F (q).
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Figure 12.1: Illustration of a ρ-reversal symmetry. Here, ρ is a simple reflection about the hori-
zontal axis. The black lines represent phase trajectories of the dynamical system in question.

This system can be written as a first order system (1.3) of dimension 2d:

y =
(

q
p

)
, f(y) =

(
M−1p
F (q)

)
The time-reversal transformation just negates the momentum:

ρ =
[
I

−I

]
.

One can easily check that (12.1) holds. Evolving a mechanical system t units in time, reversing
its momentum, evolving it again t units in time, and again reversing its momentum, returns it to
its initial state.

12.2 Adjoint of a Method

The adjoint of a one-step method Ψh such as a Runge-Kutta method, which takes the solution
of (1.3) from tn to tn+1, i.e.

yn+1 = Ψh(yn),

is the method Ψ∗
h := Ψ−1

−h, i.e. the inverse of the method with negative time step. We can derive
this method by setting y∗n+1 = yn with y∗n = yn+1 and stepping backward with stepsize −h,

y∗n = Ψ−h(y∗n+1).

Solving for y∗n+1:
y∗n+1 = Ψ−1

−h(y∗n) = Ψ∗
h(y∗n).

Example. The adjoint of Euler’s method is

y∗n = y∗n+1 − hf(y∗n+1).
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Rearranging gives:
y∗n+1 = y∗n + hf(y∗n+1),

an implicit method known as backward Euler or implicit Euler.
For a general s-stage Runge Kutta method with coefficients A = (aij) and b = (bi), we can

calculate

y∗n = y∗n+1 − h
s∑

j=1

bjf(Yj),

Yi = y∗n+1 − h
s∑

j=1

aijf(Yj),

or,

y∗n+1 = y∗n + h
s∑

j=1

bjf(Yj),

Yi = y∗n + h
s∑

j=1

(bj − aij)f(Yj).

However, the abscissae ci =
∑

j aij have become reversed (c∗i = 1− ci), so we replace Yi by Ys+1−i

(to recover the chronological ordering of the stage vectors) and obtain the coefficients a∗ij and b∗i
of the adjoint method:

a∗ij = bs+1−j − as+1−i,s+1−j , b∗i = bs+1−i.

This is again an s-stage Runge-Kutta method. The adjoint of an explicit Runge-Kutta method
is always implicit.

The order of the adjoint of method is the same as the order of the original method. In fact,
the truncation error of the adjoint method satisfies

le∗(y, h) = (−1)ple(y, h),

where p is the order of the method (i.e. le(y, h) = O(hp+1).)
A method whose adjoint is equivalent to itself (Ψ∗

h = Ψh) is called self-adjoint. The implicit
midpoint rule (8.5) is self-adjoint. For a self-adjoint Runge-Kutta method, the coefficients satisfy

as+1−i,s+1−j + aij = bj

for all i, j. Self-adjoint methods are necessarily implicit and have even order.
A numerical method is called symmetric or time-reversible if it satisfies Ψ−1

h = Ψ−h. Therefore,
self-adjoint methods are time-reversible. More generally, if a numerical method applied to a ρ-
reversible system satisfying (12.1) satisfies

ρ ◦Ψh = Ψ−h ◦ ρ

(and mostly they do), then the method is ρ-reversible if and only if Ψh is symmetric.

12.3 Composition Methods

Recall that the group property of flow maps Φt ◦Φs = Φs+t does not hold in general for numerical
methods. It turns out we can use this to our “advantage” as follows:

Given a one-step method Ψh and a set of s real numbers γi, i = 1, . . . , s that sum to one∑s
i=1 γi = 1, the method obtained by composing s steps of size γih is called a composition method

Ψ̄h = Ψγsh ◦ · · · ◦Ψγ1h
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If Ψh is of order p, then if
γp+1
1 + · · ·+ γp+1

s = 0,

the composition method is at least of order p + 1.
This relation has no real solution for p odd. For even p, there is a solution for s = 3. A popular

choice is

γ1 = γ3 =
1

2− 21/(p+1)
, γ2 = − 21/(p+1)

2− 21/(p+1)
, (12.4)

which is of order p + 1. If Ψh is a symmetric method, then this composition is also symmetric,
and the resulting method is actually of order p + 2.

The approach can be applied recursively. For example, if Ψh is of order 2 and symmetric, then
the Ψ̄h is of order 4 and symmetric. Applying the method recursively (32 = 9 steps of Ψh) we
obtain order 6. Applying it recursively again (33 = 27 steps of the original method) we obtain
order 8. And so on.

However, other, possibly more efficient, compositions may be constructed directly (without
using this recursion), and the above is really only intended to illustrate the possibilities.

Instead of composing the same methods with different stepsizes, we could also imagine com-
posing different methods. The composition of two steps of equal size with a method Ψh and its
adjoint Ψ∗

h, yields a self-adjoint method since

(Ψh ◦Ψ∗
h)∗ = Ψh ◦Ψ∗

h.

For example, the composition of a half-step of backward Euler with a half-step of forward Euler
gives either the implicit midpoint rule (8.5) or the trapezoidal rule (2.2) depending on the order
of composition. Because the Euler methods are first order, the composition must also be at least
first order. But since it is symmetric, it must have even order, so we conclude that it must be at
least second order.

Note that (12.4) has γ2 negative. This means that the method must regularly take backward
steps. For some problems backward steps are ill-defined. For this reason, one would like to avoid
them. Unfortunately it has been shown that to obtain order greater than 2, backward steps are
unavoidable. For this reason, higher order composition methods are almost exclusively used only
with reversible problems.

12.4 Exercises

1. Find a ρ-reversible symmetry for the Lotka-Volterra model (1.6) in the case r = 1.

2. Construct the adjoint of Heun’s method (8.3).

3. Show that a self-adjoint Runge-Kutta method must have |R(iy)| = 1 on the imaginary
axis. Use analyticity of the stability function to prove that a symmetric RK method with
Butcher matrix A whose eigenspectrum lies strictly in the positive half of the complex plane
is A-stable.

4. Discuss the relationship between a (long) numerical solution computed with implicit mid-
point, and one computed with trapezoidal rule.
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