
Chapter 13

Splitting Methods

Main concepts: Linear systems, nonlinear systems, BCH theorem, order conditions

In this section, we present a natural approach to “method building” which is based on splitting a
vector field into integrable parts. This approach is remarkably general and can be used to construct
methods with properties very similar to those of the flow map of the dynamical system.

13.1 Introduction to Splitting Methods

The idea is simple: divide et impera (divide and conquer). It is probably the most important
systematic technique for the development of algorithms in general. Suppose we wish to solve the
differential equation

dz/dt = f(z) ≡ f1(z) + f2(z),

where each of two differential equations

dz/dt = f1(z)

and
dz/dt = f2(z)

happen to be completely integrable (i.e. analytically solvable). [Note that dz/dt = f(z) is not
solvable just because the two pieces are! ]

The way this is done is diagrammed in Figure 13.1, below. We first note that at any point in
phase space, the vector field (hence the tangent vector to the solution curve) can be broken up
into the two components f1 and f2. A method can then be constructed by stepping forward along
first one, then a second, solution curve, each time for a small timestep h.

That is, we start from some point zn and solve first the initial value problem

dz/dt = f1(z), z(0) = zn

for a time h. This means to compute the exact solution of this part of the system, which is possible,
since f1 is assumed integrable. This takes us to a point z∗ = z1(h; zn), where z1 represents the
exact solution of the differential equations on vector field f1.

Next we start from z∗ and solve the second differential equation initial value problem

dz/dt = f2(z), z(0) = z∗

for a time h. This takes us to the point zn+1 = z2(h; z∗). Denoting the flow maps of the vector fields
f1 and f2 as Φt,f1 and Φt,f2 , we have just computed zn+1 = Φh,f2(Φh,f1(zn)) = (Φh,f2 ◦Φh,f1)(zn).
Such a method is referred to as a splitting method.
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Figure 13.1: Divide and Conquer: An approximation to the solution is constructed by following
the solutions of the two parts of the vector field

13.1.1 Linear ODEs

As a first step to understanding splitting methods, consider the linear ODE

dy

dt
= Ay

Let A = B + C, then the splitting method defined by solving first

dy

dt
= By

followed by
dy

dt
= Cy

can be written
Ψh(y) = eCheBh

The local error is
le(y;h) = Ψh(y)− Φh(y) = eCheBh − eAh

Let us work out these formulas in order to estimate the local error. Using the exponential series,
we have

le(y;h) = (I + Ah +
1
2
A2h2 + . . .)− (I + Ch +

1
2
C2h2 + . . .)(I + Bh +

1
2
B2h2 + . . .)

= (I + Ah +
1
2
A2h2)− (I + h(B + C) + h2(CB +

1
2
C2 +

1
2
B2)) + O(h3)

= h2(
1
2
(C + B)2 − (CB +

1
2
C2 +

1
2
B2) + O(h3)

= h2[
1
2
C2 +

1
2
CB +

1
2
BC +

1
2
B2 − CB − 1

2
C2 − 1

2
B2] + O(h3)

=
h2

2
(BC − CB) + O(h3)

=
h2

2
[B,C] + O(h3)

the matrix [B,C] = BC − CB is called the “commutator” of the matrices B and C. If the
commutator is zero, we say that the matrices commute. In that case, it can be shown that not
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only the 2nd order term in the local error vanishes, but moreover

ehBehC = eAh

i.e. the splitting method is exact. However, this is a rare situation and in general we expect that
a splitting method defined in this way is convergent by Theorem 6.2.1 with p = 1.

More complicated splitting methods for linear systems can be constructed in several ways.
First, we could imagine splitting the into more parts: A = B + C + D + . . .. Second, we could
imagine writing

B =
s∑

i=1

βiB

C =
s∑

i=1

γiC

then we could define a splitting method that is based on solving successively

dy

dt
= β1By

dy

dt
= γ1Cy

dy

dt
= β2By

dy

dt
= γ2Cy

etc., each for a step of size h.
This is equivalent to approximating the exponential ehA by

eγsCheβsBheγs−1Cheβs−1Bh · · · eγ1Cheβ1Bh

It turns out that this composition gives at least a first order method, but the order can be higher.
For example, it can be shown that the so-called Strang splitting (named for the mathematician
Gil Strang)

Ψh(y) = e
h
2 CehBe

h
2 Cy

defines a 2nd order method.

13.1.2 Nonlinear ODEs

Now let f = f1 + f2 be a real-valued function. We will denote the flow map on f by Φh,f and on
each of the two parts by Φh,f1 and Φh,f2 . The question we would like to answer is: what is the
local error associated to the map

Ψh,f = Φh,f2 ◦ Φh,f1?

As before, let z(h) = (Φh,f2 ◦ Φh,f1)(y) = Φh,f2(Φh,f1(y)). Noting that Φ0,•(y) = y, we see that

z(0) = y

We know that
Φh,f1(y) = y + hf1(y) +

1
2
h2f ′1(y)f1(y) + . . .

and
Φh,f2(y) = y + hf2(y) +

1
2
h2f ′2(y)f2(y) + . . .
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Hence,

Φh,f2(Φh,f1(y)) =
[
y + hf1(y) +O(h2)

]
+ hf2

[
y + hf1(y) +O(h2)

]
+O(h2)

= y + hf1(y) + hf2(y) +O(h2),

that is,

z(h) = y + hf(y) +O(h2)

This shows that the method is at least first order.
More generally, it is possible to prove the following result:

Theorem 13.1.1 (Splitting Methods) The splitting method Φh,f2 ◦ Φh,f1 , where f = f1 + f2

has local error

le(y;h) =
h2

2
[f1, f2] + O(h3)

where [f, g] is the commutator of the vector fields f and g, which is another vector field

[f, g] =
∂f

∂y
g − ∂g

∂y
f

The more general form of this result follows from the Baker-Campbell-Hausdorff theorem,
which tells how to compute all the terms in the expansion of the product of the two flow maps.
In fact, one can show

Theorem 13.1.2 (Baker-Campbell-Hausdorff) The splitting method Φh,f2 ◦Φh,f1 , where f =
f1 + f2 has local error

le(y;h) =
h2

2
[f2, f1] +

h3

12
([f2, [f2, f1]]− [f1, [f2, f1]]) + . . .

If the vector fields commute, i.e. [f2, f1] = 0, then the splitting is again exact (however, such flow
are not usually very interesting).

Consider the vector field obtained by writing the second order equation ẍ = g(x) in first order
form:

f(x, u) =
[

u
g(x)

]
.

Let f1 and f2 be defined by

f1(x, u) =
[

0
g(x)

]
, f2(x, u) =

[
u
0

]
,

It is easy to see that each of the differential equation systems

d

dt

[
x
u

]
= f1(x, u)

and
d

dt

[
x
u

]
= f2(x, u)

is integrable (Euler’s method gives the exact solution). A first order method arises by composing
the two flows.

With the same vector field decomposition, we can construct a second order method based on
Strang splitting by solving successively

d

dt

[
x
u

]
=

1
2
f1(x, u)
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and, then
d

dt

[
x
u

]
= f2(x, u)

and, finally,
d

dt

[
x
u

]
=

1
2
f1(x, u)

This method is referred to as the Leapfrog method. Note that by reversing the order of the flows,
we are actually composing a half-step of the first order splitting with its adjoint (the adjoint
of an exact flow is the flow itself), so the Leapfrog method (and Strang splitting in general) is
self-adjoint.
Example. For u the population of predators and v the population of prey, an alternative Lotka-
Volterra model can be written

u′ = u(v − 2), v′ = v(1− u)

A simple splitting with y = (u, v)T is

f(y) =
(

u(v − 2)
0

)
, g(y) =

(
0

v(1− u)

)
The exact solution of y′ = f(y) on [0, h] is

u(h) = eh(v(0)−2)u(0), v(h) = v(0).

The exact solution of y′ = g(y) on [0, h] is

u(h) = u(0), v(h) = eh(1−u(0))v(0).

Combining these flows gives the first order method

un+1 = eh(vn−2)un,

vn+1 = eh(1−un+1)vn

A second order, self-adjoint method can be derived by composing a half step of the above method
with its adjoint. Noting that the exact solution of a subproblem is self-adjoint:

un+1/2 = e
h
2 (vn−2)un,

vn+1 = eh(1−un+1/2)vn,

un+1 = e
h
2 (vn+1−2)un+1/2.

With initial conditions u(0) = 6 and v(0) = 2, the solution is periodic with approximate period
T = 6.336. The solution at time t = 6.4 is u(6.4) ≈ 5.89200351, v(6.4) ≈ 1.45888866. In Figure
13.2, the solution is illustrated using the 2nd order splitting with h = 0.1. Also the error behavior
for the first and second order splittings is shown.

Clearly, a multiple term splitting is also possible. For example, for the ODE

y′ = f1(y) + · · ·+ fk(y),

the splitting method
yn+1 = Φh

fk
◦ · · · ◦ Φh

f1
yn (13.1)

is first order in general.
It is not necessary that the split subproblems be solved exactly. Since the composition is only

first order, the subproblems may also be approximated by a first order method. However, one
often looks for an exactly solvable splitting.
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Figure 13.2: One-period of the Lotka-Volterra model: solution (top) and error (bottom).

The prudent choice of the splitting can make or break a splitting method. For one thing,
if the splitting is such that the exact solution of a subproblem is not known, then it must be
approximated with, for example, an RK method, and there will be approximation errors in addition
to the splitting errors. Furthermore, if two terms are strongly coupled, then splitting them apart
could cause large errors. For example, consider a mechanical system with two strong opposing
forces that nearly balance each other out. The combined effect of the forces is small. However,
each force by itself is large and would cause big accelerations if split apart. Normally one chooses
the splitting based on physical or other (structural) considerations.

13.2 Exercises

1. Write out the formulas for the splitting method for the differential equation system

dy

dt
= ay +

[
0 −1
1 0

]
y

where a is a scalar, based on solving
dy

dt
= ay
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followed by
dy

dt
=

[
0 −1
1 0

]
y

Comment on the order of the resulting method. Repeat the exercise for

dy

dt
=

[
a 0
0 b

]
y +

[
0 −1
1 0

]
y

solving first
dy

dt
=

[
a 0
0 b

]
y

followed by
dy

dt
=

[
0 −1
1 0

]
y

2. Prove that the Strang splitting gives a 2nd order integrator (for nonlinear problems).

3. Discuss the preservation of equilibrium points by splitting methods. Can you think of a
splitting that preserves equilibrium points exactly?

4. Compare the first and second order splittings for the Lotka-Volterra model and and Heun’s
method (8.3) for a long numerical simulation (say, 10 to 100 periods). Can you discern any
qualitative differences in the solutions? Use a range of step sizes.
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