
Chapter 14

First Integrals

Main concepts: First integrals, linear, quadratic, discrete gradients.

14.1 First Integrals

In Chapter 5 we said defined the space Rd to be the phase space of the differential equation (1.13).
Each point in Rd defines a state of the system, and a solution of (1.13) traces a curve in Rd. Given
a function I(y) : Rd → R, we can evaluate this function along a solution to (1.13), i.e. sampling
I(y(t)). For some special functions I we may find that that I is constant along solutions to (1.2).
Such a function is called a first integral of (1.2).

For example, many models from physics are designed to incorporate energy conservation. In
the case of the harmonic oscillator (5.4) the energy is just

E(x, p) =
1
2
p2 +

1
2
ω2x2.

You can easily check that this is constant along solutions of (5.4) by differentiation of the expression
with respect to time, and use of the differential equations:

d

dt
E(x(t), p(t)) = pṗ + ω2xẋ

= p(−ω2x) + ω2xp = 0.

The energy of a conservative mechanical system is one example of a first integral.
We say that for any differential equation of the form (1.13), a function I(y) is a first integral

if the function I is constant when evaluated along any solution of the differential equation. Using
the equation (1.13), we can easily see that I is a first integral provided, whenever y = y(t) is a
solution of (1.13),

d

dt
I(y(t)) ≡ 0.

Using the chain rule, this just means

∇I(y(t)) · dy

dt
(t) ≡ 0,

or (since dy/dt = f(y) for any solution of (1.13)), simply

∇I · f(y) = 0 or, (∇I)T f(y) = 0.

Other names for first integrals include: invariant, constant of motion, and conserved quantity.

85
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First integrals play several crucial roles in studies of dynamical systems. For example it is often
the case that first integrals help to define the problem; their values can be viewed as constants
that have specific physical significance. First integrals may confine the solution to a bounded
region of phase space. In many systems, the first integrals are the only computable measures of
the performance of the numerical method – we cannot plot the error in the solution unless the
exact solution is available, but we can almost always compute and monitor the energy or another
first integral, and use this to assess the quality of the approximation.

Example. The rigid body equations describe the motion of a rotating object in the absence
of external forces. The equations are

dy

dt
= y × Γy, (14.1)

where y(t) = (y1(t), y2(t), y3(t))
T ∈ R3 and Γ = diag(I−1

1 , I−1
2 , I−1

3 ) is a diagonal matrix and
Ij > 0, j = 1, . . . , 3 are the moments of inertia about the principle axes of the object.

For any solution to the rigid body equations the functions:

H(y1, y2, y3) =
1
2

(
y2
1

I1
+

y2
2

I2
+

y2
3

I3

)
and

K(y1, y2, y3) = y2
1 + y2

2 + y2
3

are constant (and equal to H(y(0)) and K(y(0)), respectively). Note that the solution is con-
strained to the intersection of the surfaces of a sphere and an ellipsoid, i.e. a closed one-dimensional
submanifold of R3. The preservation of either of these first integrals guarantees the boundedness
of the solution as t →∞.

In this chapter, we discuss the conservation of first integrals by numerical methods.

14.2 First Integrals Under Discretization

Suppose d = 1 in (1.13) then preservation of a first integral means that the scalar equation
I(y) = I0 is satisfied. Such a nonlinear equation, for smooth I, generally has at most just some
discrete set of point solutions there can be no dynamics. Thus it is clear that in order to have
interesting dynamics with a first integral we must consider systems of dimension d ≥ 2. In this
case, {y|I(y) = I0} defines a manifold, a point set with a continuous structure. The solution of
the differential equations evolves on this manifold. We can write this, compactly, as

I ◦ Φt = I.

Now consider the preservation of such a first integral by a numerical method, which we assume to
be represented as a map Ψh. Under what circumstances do we have

I ◦Ψh = I?

We will discuss several examples to show that it is possible to have exact conservation. First
suppose a system has a linear first integral. Such an integral can be represented by

I(y) = r + s · y,

where r is a scalar, and s a vector in Rd. We assume that ∇I · f(y) = 0 which just means that
s · f(y) = 0.

If we are given a Runge-Kutta method described by the equations

yn+1 = yn + h
∑

i

biFi, Fi = f(Yi) = f(yn + h
∑

j

aijFj), i = 1, . . . , s,



14.2. FIRST INTEGRALS UNDER DISCRETIZATION 87

we can compute the first integral at time tn+1:

I(yn+1) = r + s · yn+1

= r + s · (yn + h
∑

i

biFi)

= r + s · yn + h
∑

i

bis · Fi

= I(yn).

Thus, Runge-Kutta methods preserve arbitrary linear first integrals.
Next consider the Kepler problem

dx

dt
= u

dy

dt
= v

du

dt
= − x

(x2 + y2)3/2

dv

dt
= − y

(x2 + y2)3/2

We know that the angular momentum

L = xv − yu

is a conserved quantity. To see this, differentiate L to obtain

dL

dt
= xv′ + x′v − yu′ − y′u,

where prime is used to denote differentiation with respect to t. Using the differential equation, we
have

dL

dt
= − xy

(x2 + y2)3/2
+ uv +

yx

(x2 + y2)3/2
− vu = 0.

The Kepler problem can be written more compactly by introducing vectors q = (x, y), p =
(u, v), then the equations of motion become

dq

dt
= p

dp

dt
= − q

‖q‖3

Define
L = q × p

as the cross product of q and p, where these vectors are viewed as extended to vectors in R3. Only
the third component here is nonzero, and

d

dt
L = q × p′ + q′ × p = 0

Discretizing with, say, Euler’s method, does not result in conservation of L. (Check this!) But
if we use the one-sided Euler method, we have

qn+1 = qn + hpn+1

pn+1 = pn − h
qn

‖qn‖3
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Now compute

Ln+1 = qn+1 × pn+1

= (qn + hpn+1)× pn+1

= qn × pn+1 + hpn+1 × pn+1

= qn × pn+1

= qn × (pn − h‖qn‖−3qn)
= qn × pn − h‖qn‖−3qn × qn

= qn × pn

= Ln

Thus the one-sided Euler method exactly conserves the angular momentum in the Kepler problem.
This is quite a remarkable property in itself, but does this hold in more general cases?

14.2.1 Conservation of quadratic first integrals by Runge-Kutta meth-
ods

The angular momentum above is an example of a quadratic first integral. It is natural to ask if the
one-sided Euler method preserves all such integrals. Unfortunately this cannot be the case. For
example for the harmonic oscillator with frequency ω = 1, the exact solutions are circles satisfying
x2 + p2 = 2E, where E is the energy. It can be easily checked that the solution using the one-
sided Euler method is not a circle, however. Applying the method, we have xn+1 = xn + hpn+1,
pn+1 = pn − hxn, so

x2
n+1 + p2

n+1 = (xn + hpn − h2xn)2 + (pn − hxn)2

= x2
n + 2hxnpn + h2p2

n + h4x2
n − 2h2x2

n − 2h3xnpn + p2
n − 2hxnpn + h2x2

n

= x2
n + p2

n + h2(p2
n − x2

n) + O(h3).

The second order term does not vanish identically, so the energy cannot be conserved.
Remarkably, however, the implicit midpoint rule (8.5) does conserve all quadratic invariants

I(y) = yT Cy, yT Cf(y) = 0, CT = C

This is easily seen by writing (8.5) as

yn+1 − yn

τ
= f(

yn+1 + yn

2
)

and multiplying both sides with 1
2 (yn+1 + yn)T C to get

1
2τ

(I(yn+1)− I(yn)) = (
yn+1 + yn

2
)T Cf(

yn+1 + yn

2
) = 0.

More generally, we prove the following theorem:

Theorem 14.2.1 (Quadratic First Integrals) Let dy/dt = f(y) have a quadratic first integral.
A Runge-Kutta method preserves this quadratic first integral if

bibj − biaij − bjaji = 0 (14.2)

We prove this by assuming that I(y) = r + s · y + yT Ty is such a first integral, where r is a
scalar, s is a vector of dimension d and T is a symmetric d × d matrix. Note that the condition
for I to be a first integral is that ∇I · f ≡ 0, or

s · f + 2yT Tf ≡ 0.
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This implies that
s · f ≡ −2yT Tf. (14.3)

Applying an RK method to the system we have

yn+1 = yn + h
∑

i

biFi; Fi = f(yn + h
∑

j

aijFj)

thence
I(yn+1) = r + s · (yn + h

∑
i

biFi) + (yn + h
∑

i

biFi)T T (yn + h
∑

i

biFi)

Expanding this out, we have

I(yn+1) = I(yn) + h
∑

i

bis · Fi + 2h
∑

i

biy
T
n TFi + h2(

∑
i

biFi)T (
∑

i

biFi)

We need to show that, assuming (14.2),

J = +
∑

i

bis · Fi + 2
∑

i

biy
T
n TFi + h(

∑
i

biFi)T (
∑

i

biFi) = 0

Now, by virtue of (14.3),

s · Fi = s · f(Yi) = −2Y T
i Tf(Yi) = −2Y T

i TFi

hence

J =
∑

i

bi(−2)Y T
i TFi + 2

∑
i

biy
T
n TFi + h(

∑
i

biFi)T (
∑

i

biFi)

=
∑

i

bi(yn − Yi)T TFi + h(
∑

i

biFi)T (
∑

i

biFi)

= −h
∑

i

bi

∑
j

aijF
T
j TFi + h(

∑
i

biFi)T (
∑

i

biFi)

Let FT
i Fj = Bij . In general we assume that these terms, which depend on the vector field, are

uncorrelated. In that case J will vanish identically provided each of the coefficients multiplying
the Bij vanishes. This coefficient is

biaij + bjaji − bibj

which concludes the proof.
One class of method which satisfies the conditions (14.2) is the class of Gauss-Legendre meth-

ods, which we have already learned are the optimal order methods for a given number of stages
(they are also fully implicit, and therefore, often, too expensive to use in many practical examples).

In terms of finding methods that conserve all first integrals of a given class, this is as good as
it gets: we do not have broad classes of methods which preserve cubics, quartics, etc. Fortunately,
quadratics are an important case.

If we are concerned with preserving a first integral, an alternative approach is to design a
method that has this as its specific goal.

14.3 Discrete Gradient Methods

The conservation of quadratic invariants by Gauss Runge-Kutta methods is automatic. Any and
all such invariants will be conserved whether or not one is aware of them. In this section we
describe a method for conserving a known invariant I(y).
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Define the exterior product of two vectors f and v:

f ∧ v = fvT − vfT , (f ∧ v)ij = fivj − vifj .

If I(y) is a first integral of (1.3), then, except at points y∗ where ∇I(y∗) = 0, f can be written
as

f(y) = B(y)∇I(y) =
1

‖∇I(y)‖2
(f ∧∇I)∇I(y),

where B(y) is skew-symmetric: BT = −B.
Let B̄(y, z) satisfy:

• skew-symmetric structure: B̄(y, z)T = −B̄(y, z),

• symmetry with respect to its arguments: B̄(y, z) = B̄(z, y),

• consistency B̄(y, y) = B(y).

Similarly, define v(y) := ∇I(y) and let v̄(y, z) be a discrete gradient of I, i.e. satisfying

v̄(y, z)T (y − z) = I(y)− I(z),

and consistent v̄(y, y) = v(y).
Then the method

yn+1 = yn + τB̄(yn+1, yn) v̄(yn+1, yn)

satisfies
I(yn+1) = I(yn),

since

I(yn+1)− I(yn) = v̄(yn+1, yn)T (yn+1 − yn)

= τ v̄(yn+1, yn)T B̄(yn+1, yn)v̄(yn+1, yn) = 0.

One discrete gradient is the midpoint discrete gradient. Denote yn+1/2 := (yn+1 + yn)/2 and
∆y := yn+1 − yn. Then

v̄(yn+1, yn) := v(yn+1/2) +
I(yn+1) + I(yn)− v(yn+1/2)T ∆y

‖∆y‖2
∆y.

A possible realization of the matrix B̄ is given by

B̄(y, z) = B(
y + z

2
).

Example. Mechanical systems (12.3) can be written (using a change in variables to eliminate
the mass matrix M) in the form

q̇ = p, ṗ = ∇V (q),

where F (q) = −∇V (q). For y = (qT , pT )T , this defines a gradient system with skew-symmetric,
constant matrix

B =
[

0 id
−id 0

]
,

and first integral
I(q, p) =

p · p
2

+ V (q).

Define the discrete gradient v̄(q̄, p) by

v̄q(qn+1, pn+1, qn, pn) =
I(qn+1, pn)− I(qn, pn)

qn+1 − qn
,

and

v̄p(qn+1, pn+1, qn, pn) =
I(qn+1, pn+1)− I(qn+1, pn)

pn+1 − pn
,

where in both cases the division is understood component-wise.
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14.4 Splitting Methods

Consider a skew-gradient system
y′ = B(y)∇I(y),

where B(y)T = −B(y), and suppose we can find a splitting of the form

y′ = (B1(y) + · · ·+ Bk(y))∇I(y),

where Bi(y)T = −Bi(y), and each subproblem

y′ = Bi(y)∇I(y), i = 1, . . . , k

is exactly integrable.
Then the splitting method (13.1) with

fi = Bi(y)∇I(y), i = 1, . . . , k

exactly conserves I.
Example. Consider the rigid body equations (14.1). Let us derive a splitting method that

exactly conserves the energy

H(y1, y2, y3) =
1
2

(
y2
1

I1
+

y2
2

I2
+

y2
3

I3

)
The rigid body equations can be written in the form

y′ = B(y)∇H(y),

with skew-symmetric B(y) split as

B(y) =

 0 −y3 y2

y3 0 −y1

−y2 y1 0

 =

0 0 0
0 0 −y1

0 y1 0

+

 0 0 y2

0 0 0
−y2 0 0

+

 0 −y3 0
y3 0 0
0 0 0

 = B1(y)+B2(y)+B3(y).

Each of the split sub-systems

y′ = Bi(y)∇H(y), i = 1, . . . , 3

is exactly solvable as a harmonic oscillator, and preserves the manifold H = const .

14.5 Exercises

1. What is the energy function for the pendulum? Use the fact that energy is conserved (and
Matlab or a graphing calculator) to sketch the phase portrait for the pendulum.

2. Prove that the Lotka-Volterra system has a first integral:

K(Y, R) = C log Y −DY + A log R−BR.

3. Assume an autonomous differential equation system is given (??)and is known to have a
first integral. Show that any time-rescaling of this differential equation has the same first
integral. To rescale time, we introduce a time-transformation, such as

dt

dτ
= g(y),

where g is a scalar-valued function.

4. Show that the implicit midpoint method and the 2-stage Gauss-Legendre scheme satisfy the
condition (14.2).

5. Can you think of a splitting that conserves the other first integral of the rigid body, i.e. the
total angular momentum I = 1

2yT y? Can you recall a method that conserves both H and
I?
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