
Chapter 15

Constraints and Projection

Main concepts: Constrained dynamics, projection, first integrals via projection

15.1 Weak Invariants

In the previous sections we have looked at the case where ∇I(y) · f(y) = 0, so that I(y) is a
conserved quantity associated to any initial condition. Another case of conservation is one in
which there exists an invariant submanifold M of dimension d − m defined by g(y) = 0, where
g : Rd → Rm, such that if the initial condition satisfies y0 ∈M, then y(t) ∈M for all t.

The elements gi(y), i = 1, . . . ,m are weak invariants, satisfying ∇g(y) · f(y) = 0 for all y ∈M
(as opposed to all y ∈ Rd for strong invariants.)

Weak invariants can be conserved by projection.

15.2 Projection

The straightforward way to obtain methods to preserve a given first integral is by projection. To
motivate this, consider a vector u ∈ Rd and a linear subspace (a hyperplane P ) defined by the
condition

s · y = 0

for some vector s ∈ Rd. We can in general project u into the hyperplane by solving the following
system involving a Lagrange multiplier λ:

y = u + λs,

0 = s · y.

Plugging the first equation into the second, we have

0 = s · (u + λs)

so that
λ = −(s · s)−1s · u,

where we have assumed that s is not the zero vector so that s · s = ‖s‖2 6= 0. Now

y = u− ‖s‖−2s · u.

y is called the orthogonal projection of u onto the hyperplane P .
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This technique can be extended to the case where the surface of interest is not a hyperplane
but instead some more general manifold of dimension Rd−1 defined by the condition

I(y) = 0

Then, as before, we introduce a Lagrange multipler, λ and solve the (now nonlinear) equation
system

y = u + λ∇yI,

0 = I(y).

Solving this system corresponds to minimizing the functional

K(y) = ‖y − u‖2

subject to the condition I(y) = 0. Thus, what we are doing is finding the nearest point to u on
the constraint set M = {y|I(y) = 0}. It can be shown that this projection is orthogonal in the
sense diagrammed in Figure 15.1a.
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Figure 15.1: Orthogonal (a) and Oblique (b) projections onto a manifold.

There is a broader class of projections which do not necessarily find the nearest point (which
is not always the essential requirement), but some other point on the constraint manifold. For
example, if we know that B is any vector such that s · B 6= 0, then we can solve the hyperplane
projection problem by finding y and λ (which will be different than before) such that

y = u + λB,

0 = s · y

This type of oblique projection can also be of use for nonlinear manifolds. We can then use the
equations

y = u + λB,

0 = I(y).

(See Figure 15.1b.)

15.3 Numerical Methods with Projection

Now consider a point in space y0 satisfying I(y0) = 0. We take a step using any pth order numerical
method

ŷ1 = Ψh(y0)

How much error can be introduced in the first integral I(y) = 0 by this step? Since the numerical
method has local error p, we know that ŷ1 differs from Φh(y0) by at most O(hp+1). Assuming I
is a smooth function, and since we know that I ◦ Φh = I, we must have

I(ŷ1) = I(ŷ1)− I(Φh(y0)) = O(hp+1).
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The idea in projection methods is that we try to eliminate the small integral error by calculating
the projection of the numerical solution using Ψ onto the integral manifold.

In an orthogonal projection method, we solve for y1 so that

y1 = ŷ1 + λ∇I(y1)
0 = I(y1)

Here we can see already a problem: even if our original numerical method was explicit, the
method obtained in this way will be implicit, since we must solve this nonlinear equation system
to obtain y1.

There is no way around solving some equations, but we can simplify our lives in many cases by
using an oblique projection. The natural way to define this is to use the direction ∇I(ŷ1) which
is available to us after the numerical method step. Thus we think of solving for λ and y1 from the
equations

y1 = ŷ1 + λB(ŷ1) (15.1)
0 = I(y1) (15.2)

where B is a suitable vector valued function of y. The advantage here is that we are able to compute
the step by solving a single scalar nonlinear equation instead of a system of such equations (as
would be the case if we used the orthogonal projection). Once y1 is found, we use this as the
starting point for the new step.

To explain, we use the example of the Lotka-Volterra model (1.6)

du/dt = u(1− v)
dv/dt = v(u− 1)

which has the first integral (as we know)

K(u, v) = lnu + ln v − u− v.

An Euler step gives ûn+1, v̂n+1. We then may project this onto the constraint manifold K(u, v)−
K0 = 0 by solving

un+1 = ûn+1 − λ[1− û−1
n+1]

vn+1 = v̂n+1 − λ[1− v̂−1
n+1]

K0 = ln un+1 + ln vn+1 − un+1 − vn+1.

After introducing the first two equations into the third, we are left with a nonlinear equation to
solve for λ. This could be done by Newton iteration.

Define a map Ωh from yn to yn+1 by the equations

ŷn+1 = Ψh(yn)
yn+1 = ŷn+1 + λB(ŷn+1)

I(yn+1) = 0.

It is then a substantial exercise to analyse the conditions under which this map is well-defined
and the convergence and order of accuracy of the resulting iteration scheme. However, this can
be done and under mild assumptions on I and B, it can be shown that Ωh generally retains the
order of accuracy of Ψh.

15.4 Preserving Weak Invariants Under Discretization

We introduce the Lagrange multiplier λ ∈ Rm and augment (1.3)

y′ = f(y) + g′(y)T λ

0 = g(y)
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.
Let Ψτ be any one-step method for (1.3), and let y∗n+1 be the output of a single step of the

method with input yn:
y∗n+1 = Ψτyn

In general y∗n+1 6∈ M and so must be projected onto M by solving a nonlinear problem for λ:

g(y∗n+1 + g′(y∗n+1)
T λ) = 0

and correcting:
yn+1 = y∗n+1 + g′(y∗n+1)

T λ.

For a pth order method, the distance from y∗n+1 to M is O(τp+1), so convergence of Newton
iteration is quite fast.

Example. Consider a particle of unit mass in an electric field V (x), constrained to a sphere.
The equations of motion of the free particle are:

ẍ = −∇V (x)

The constraint is
g(x) = ‖x‖2 − 1 = 0.

The constrained equations are

ẋ = v + 2xλ

v̇ = −∇V (x)
0 = g(x)

The constrained version of Euler’s method is

x∗n+1 = xn + τvn

vn+1 = v∗n+1 = vn − τ∇V (xn)
xn+1 = x∗n+1 + 2x∗n+1λ = (1 + 2λ)x∗n+1

0 = g(xn+1)

where the last two equations are solved simultaneously to give λ and xn+1, i.e.

‖xn+1‖2 = 1 = (1 + 2λ)2‖x∗n+1‖2 ⇒ λ =
1
2
(

1
‖x∗n+1‖

− 1),

and xn+1 follows by substitution.

Remark 15.4.1 An important point should be made regarding such projection methods: we have
mentioned in the introduction to the section that a first integral is often our only way of monitoring
the quality of a solution. If we design a numerical method to exactly conserve the first integral or
first integrals of a system, we may destroy our only way of knowing whether the solution is correct.
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