
Chapter 16

Symplectic Flows and Maps and
Volume Preservation

Main concepts: Liouville’s equation, cat wash cycles, volume preservation, symplectic maps,
symplectic RK methods, symplectic splitting methods

16.1 Hamiltonian Systems

Hamiltonian systems are pervasive in chemical and physical simulation. These systems arise
at very large scales (celestial mechanics, cosmology) and at small scales (atomic and molecular
simulation).

Suppose that the configuration of some (mechanical) system with d degrees of freedom can be
represented by a set of d real numbers q = (q1, . . . , qd)T . (Think of the positions of all nine planets
and the sun in our solar system. In some reference frame, the positions are specified by three real
numbers for each body, so d = 3× 10 = 30.)

The motion of the system is given by q(t), a curve in Rd.
Lagrange’s theory of mechanical systems is based on two real (scalar) valued functions, the

kinetic and potential energies
T (q(t), q̇(t)), U(q(t)).

The Lagrangian L is the difference of these

L(q, q̇) = T − U,

and Lagrange’s equations of motion are

d

dt

(
∂L

∂q̇
(q, q̇)

)
=
∂L

∂q
(q, q̇).

Hamilton’s equations of motion are derived from Lagrange’s equations by introducing a new
variable

p =
∂L

∂q̇
(q, q̇), i.e., pi =

∂L

∂q̇i

and the Hamiltonian
H(q, p) = pT q̇ − L(q, q̇), (16.1)

where it is implied that the defining relation for p above is invertible for q̇ for every q, so that we
can express

q̇ = q̇(q, p).
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Hamilton’s equations of motion have the antisymmetric form

q̇i =
∂H(q, p)
∂pi

, ṗi = −∂H(q, p)
∂qi

, (16.2)

or simply

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
.

We can check that these equations are consistent with Lagrange’s equations by differentiating
(16.1)

∂H

∂p
= q̇ + pT ∂q̇

∂p
− ∂L

∂q̇

∂q̇

∂p
= q̇,

∂H

∂q
= p

∂q̇

∂q
− ∂L

∂q
− ∂L

∂q̇

∂q̇

∂q
= −∂L

∂q
= − d

dt

(
∂L

∂q̇

)
= −ṗ

Example. The equation for the mathematical pendulum is q̈ = − sin(q). The kinetic energy is
given by T (q̇) = q̇2

2 and the potential energy by U(q) = − cos q. The Lagrangian is L(q, q̇) =
q̇2

2 + cos q, and Lagrange’s equation is

d

dt
q̇ = − sin q.

For Hamilton’s formulation we find

p = q̇, H = pq̇ − L = p2 − (
p2

2
+ cos q) =

p2

2
− cos q

with equations of motion

q̇ =
∂H

∂p
= p, ṗ = −∂H

∂q
= − sin q.

Example. A particularly important class of Hamiltonians is the N-body problem (here formulated
with qi ∈ Rd, i.e. the full configuration space is of dimension Nd):

H(q, p) =
N∑

i=1

‖pi‖2

2mi
+ V (q1, q2, . . . , qN ).

m1,m2, . . . ,mN are the masses of the N bodies, and V is a potential energy function that describes
their interactions. This type of model is routinely used in drug design and materials modelling.

The Hamiltonian is a first integral of (16.2). This is easily checked

dH

dt
=

∑
i

∂H

∂qi
q̇i +

∂H

∂pi
ṗi =

∑
i

∂H

∂qi

∂H

∂pi
+
∂H

∂pi
(−∂H

∂qi
) = 0.

In most cases, this first integral can be identified with the energy of the system, so that its
invariance corresponds to the physical principle of conservation of total energy. Indeed, one often
finds H = T (q, p) + U(q).

Sometimes we write (16.2) in the form (1.13) by defining y = (q1, . . . , qd, p1, . . . pd)T ∈ R2d,
whence

dy

dt
= J∇H(y),

with the skew-symmetric matrix J defined by

J =
[

0 I
−I 0

]
, (16.3)

where I is the identity matrix of dimension d. Here, the conservation of H is immediate from the
skew-gradient form introduced in Chapter 14.
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16.2 Divergence-Free Vector Fields

Another category of vector field with interesting dynamical features are those with zero divergence.
Let f = f(y), f : Rd → Rd be a vector field. Recall that the divergence of f is

divf =
∂

∂y1
f1 +

∂

∂y2
f2 + . . .+

∂

∂yd
fd.

It happens in certain situations that divf ≡ 0. As an illustration, the vector field of the system

dx

dt
= h1(y)

dy

dt
= h2(x)

is clearly divergence free, as is the following one:

dx

dt
= x+ h1(y)

dy

dt
= h2(x)− y

A very important special case of divergence-free vector fields are those associated to Hamilto-
nian systems, since, from (16.2), we find

divf =
∂

∂q1

∂H

∂p1
+

∂

∂q2

∂H

∂p2
+ . . .+

∂

∂qk

∂H

∂pk
− ∂

∂p1

∂H

∂q1
− ∂

∂p2

∂H

∂q2
− . . .− ∂

∂pk

∂H

∂qk

which vanishes due to equality of mixed partial derivatives.
The remarkable feature of divergence-free vector fields is that the flow maps associated to these

vector fields are volume preserving.

16.2.1 Volume-preserving flows and Liouville’s theorem

Recall the change of variables theorem tells us that, if we are given a map Φ : Rd → Rd, and a
suitable domain V ⊂ Rd, then

vol V =
∫

V

dx, vol Φ(V ) =
∫

V

∣∣∣∣det
∂Φ
∂x

∣∣∣∣ dx =
∫

V

|detM | dx

where M = Φ′ is the Jacobian of Φ. It follows that the map Φ preserves volume provided
|detM | = 1. We would like to examine the Jacobian determinant of the flow map of a system.
The flow map itself satisfies

d

dt
Φt(y) = f(Φt(y))

On each side of this equation, we have a vector valued function of y and t; compute the Jacobian
matrix of each side, and swap the order of differentiation with respect to t and y:

d

dt
Φ′

t(y) = f ′(Φt(y))Φ′
t(y)

Or dM/dt = f ′(Φt(y))M . Assuming M is invertible, multiply on the right on both sides by M−1.
Compute the trace of each side:

tr(ṀM−1) = tr[f ′(Φt(y))]

It is a short exercise to show that trf ′ = divf . Jacobi’s formula for the derivative of a determinant
gives

tr(ṀM−1) =
d
dtdetM
detM
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Since M(0) = Φ′
0(y) = I, it follows that

det Φ′
t(y) ≡ 1

Thus we have proved the following theorem:

Theorem 16.2.1 (Liouville’s Theorem) Let a vector field f be divergence free. Then Φt is a
volume preserving map (for all t).

In particular, all Hamiltonian flow maps preserve volume in phase space. This is a sort of
(qualitative) invariant property, but not a first integral.

16.2.2 Volume-preserving numerical methods

We now ask if there are numerical methods that preserve volume in phase space, i.e. mimicking
the corresponding property for the flow map.

The obvious requirement for such a numerical method Ψh is that

divf = 0 ⇒ det(Ψ′
h) = 1.

Let us start with Euler’s method, yn+1 = yn + hf(yn). The Jacobian matrix of the flow map
is

Ψ′
h = I + hf ′(yn)

which only has unit determinant in extraordinary situations. For example, the determinant is one
for Euler’s method applied to the following example:

dx

dt
= 0

du

dt
= f(x)

However, it is not one when Euler’s method is applied to the harmonic oscillator:

dx

dt
= u

du

dt
= −x

On the other hand, there are certain methods that do conserve volume, sometimes under special
conditions.

16.3 Symplectic Structure

It can be shown that Hamiltonian flows possess an even deeper property than volume preservation:
the flow map is a symplectic map. Given any two vectors ξ and η in R2d, define the quantity

ωi(ξ, η) = ξiηd+i − ξd+iηi.

This quantity can be given a geometric interpretation. The vectors ξ and η span a 2-dimensional
parallelogram in R2d. The quantity ωi is the oriented area of the orthogonal projection of this
parallelogram on the (qi, pi) plane. Here, the word oriented means that the sign of ωi may be
either positive or negative, based on the ‘right-hand rule’ convention for vector multiplication.

Next, define the bilinear form

ω(ξ, η) =
d∑

i=1

ωi(ξ, η).
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which is the sum of the projected oriented areas of ξ and η. This form can also be written, making
use of the matrix J from (16.3), as

ω(ξ, η) = ξTJη

A symplectic matrix A is one that preserves the bilinear form ω in the sense that

ω(Aξ,Aω) = ω(ξ, ω).

In other words,
ξTATJAη = ξTJη.

Since this must hold for arbitrary vectors ξ and η in R2d, it follows that the condition for a matrix
to be symplectic is

ATJA = J.

Similarly, a map g(y) : R2d → R2d is said to be a symplectic transformation if its Jacobian g′(y)
satisfies

g′(y)TJg′(y) = J.

The fundamental property of Hamiltonian systems is that the flow map is a symplectic trans-
formation:

(Φ′
t)

TJΦ′
t = J

Such a map is said to be symplectic. To see that this holds, recall that, with M = Φ′
t,

Ṁ = f ′(Φt(y))M

In the case of a Hamiltonian system, we have

f(y) = J∇H(y)

hence
f ′(y) = JHyy,

with Hyy the (symmetric) Hessian matrix of second derivatives ∂2H
∂yi∂yj

, and

Ṁ = JHyyM

Differentiate the matrix
R = MTJM

with respect to time:
Ṙ = ṀTJM +MTJṀ

so
Ṙ = MTHyyJ

TJM +MTJJHyyM

Noting that J2 = −I and JTJ = I, we have

Ṙ = MTHyyM −MTHyyM = 0.

Since M(0) = Φ′
0(y) = I, we must have

R(0) = M(0)TJM(0) = J

Since the matrix R is constant for all time, we must have the desired identity

MTJM = J.
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16.4 Symplectic Integrators

It is possible to verify by direct computation that certain numerical methods are symplectic
whenever the differential equation being solved is Hamiltonian; in general this means checking
that

(Ψ′
h)TJΨ′

h = J.

Within the class of Runge-Kutta methods, it can be shown that the subclass of symplectic
methods is equivalent to the subsclass of methods that conserve arbitrary quadratic invariants.
That is, the methods which satisfy (14.2). In particular, the implicit midpoint rule is symplectic.

An especially fruitful means of constructing symplectic integrators is considered next.

16.4.1 Symplectic splitting methods

The idea of splitting has many practical uses. In some instances it allows us to construct methods
with some desirable property. In this section we illustrate this for Hamiltonian systems, where
splitting may be used to construct symplectic integrators.

Consider a Hamiltonian system

dy

dt
= J∇H(y), H(y) = H1(y) +H2(y)

and suppose the flows
dy

dt
= J∇H1(y),

dy

dt
= J∇H2(y)

can be exactly integrated. Define the corresponding flow maps φt,1(y) and φt,2(y). Since the exact
solution of a Hamiltonian system defines a symplectic map, we have

φ′t,1(y)
TJφ′t,1(y) = J, φ′t,2(y)

TJφ′t,2(y) = J.

Next consider the numerical method defined by composing these two exact flow maps:

ψh := φt,2 ◦ φt,1

This map is also symplectic, since

ψ′h(y)TJψ′h(y)T = (φ′t,2(y
∗)φ′t,1(y))

TJφ′t,2(y
∗)φ′t,1(y)

= φ′t,1(y)
Tφ′t,2(y

∗)TJφ′t,2(y
∗)φ′t,1(y)

= φ′t,1(y)
TJφ′t,1(y) = J.

That is, the composition of symplectic maps is again a symplectic map.
Example. A separable Hamiltonian system is one for which H(q, p) = T (p)+U(q). For this case,
the splitting method based on splitting the Hamiltonian into kinetic and potential energy terms
is given by

qn+1 = qn + hT ′(pn), pn+1 = pn + hU ′(qn+1).

This scheme is referred to as symplectic Euler.
The second order, symmetric variant is called the Störmer-Verlet method

qn+1/2 = qn +
h

2
T ′(pn), pn+1 = pn + hU ′(qn+1/2), qn+1 = qn+1/2 +

h

2
T ′(pn+1).

16.5 Exercises

1. Show that the Harmonic oscillator and the Kepler problem are all expressible as Hamiltonian
systems. [ Hint: in each case, start by reformulating the differential equations in terms of
positions and momenta, by using the relation p = mv where m is mass and v is velocity.]

2. Write the differential equations for the N-body problem.
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