
Chapter 2

Simulation

Main concepts: In this first chapter we introduce numerical integrators and time stepping.
Keywords are: Euler’s method, trapezoidal rule, Matlab code

2.1 Computational modelling

A solution to a differential equation may exhibit very complex behavior, as we will see later. The
complexity increases with the dimension d, and problems becomes more and more difficult to treat
by purely analytical means. Instead, in this course we will discuss the approximation of solutions
of differential equations on a computer.

The most fundamental property of the numerical approximation is that it must be computable
in a finite number of operations (unless you are willing to wait an eternity for the solution). The
process of replacing the continuous solution by a finite one is called discretization.

To do so, we replace the interval D = [t0, t0 + T ] by a finite number N of discrete times
tn = t0 +nh, n = 0, 1, . . . , N , where h = T/N is the step size. Similarly, we replace the continuous
solution y(t) on D with the numerical solution yn ≈ y(tn), n = 0, 1, . . . , N . The yn can be thought
of as snapshots of the system state at the discrete times, and the sequence {y0, y1, . . . , yN} as
a movie. Finally, we need a procedure to generate the yn for n > 0 (y0 is the given initial
condition). In this course, we will consider methods that approximate yn+1 recursively given yn,
h, and the explicit form of f(y). Such methods are termed one-step methods to distinguish them
from multistep methods which use information from several preceding time steps. A time-stepping
procedure is referred to as a numerical integratoror scheme.

There are several approaches to the construction of integrators. The simplest and oldest
method is based on the rectangle rule for approximation of an integral. Consider the special case
of (1.2) with f(t, y) = f(t) (f is independent of y). The rectangle rule is just yn+1 = yn + hf(tn).
Generalizing this to y-dependent problems is straightforward, and results in Euler’s method

yn+1 = yn + hf(tn, yn). (2.1)

Euler’s method can be interpreted in several other ways: (1) as the direct extrapolation of the
local slope through (tn, yn), (2) as the single term truncation of a Taylor expansion, or (3) as a
finite difference. For the last case, consider the definition of the derivative:

dy

dt
= lim

h→0

y(t + h)− y(t)
h

= f(t, y),

and to approximate, simply do not take the limit. Different interpretations can be used to gener-
alize Euler’s method and construct other methods. We will see some of these in later chapters.

To program this method, we write a loop and compute the successive iterates as follows:

9



10 CHAPTER 2. SIMULATION

Algorithm 2.1.1 (Euler’s Method) Given: initial time t0, initial value y0, stepsize h, a vec-
tor field f , and a number of time steps N ,
Output: y1, y2, . . . , yN approximating the solution of dy

dt = f(y, t) at equally spaced points t1 :=
t0 + h, t2 = t0 + 2h, . . ..
for n = 0, 1, . . . , N − 1

tn+1 := t0 + nh;
yn+1 := yn + hf(yn, tn);

end �

Let us apply Euler’s method to solve the Lotka-Volterra model (1.6) with r = 2. Take the
initial value to be (n, p) = (0.5, 0.5). The relationship between predators and prey is shown in
Figure 2.1. This figure is troublesome because it appears to show a trajectory which spirals out,
which seems to suggest a problem with the model (if this trend continues, both populations may
grow unbounded, which is not the kind of behavior we would expect from an isolated ecological
system.) The cause of this behavior becomes more clear if we consider the effect of decreasing the
stepsize, as shown in the right panel of Figure 2.1, where stepsizes h = 0.1, h = 0.01 and h = 0.001
are compared. Evidently the growth of the solution is in fact a consequence of growing solution
error. A solution with a small stepsize of h = 0.001 appears to close up, suggesting the correct
trajectory is a periodic orbit.

This obviously raises a very serious question. Since many studies of dynamical systems now rely
heavily on computer experiments, there is a serious risk of drawing completely wrong conclusions,
when the numerical dynamics and the true continuous dynamics are doing different things. A goal
of this course is to understand what sort of properties a numerical method should have so that we
can trust the computed results.

0 2 4 6
0

1

2

3

4

aphids, n

la
dy

bu
gs

, p

0 2 4 6
0

1

2

3

4

aphids, n

la
dy

bu
gs

, p

 

 

h=0.1
h=0.01
h=0.001

Figure 2.1: The locus curve of predators and prey for the Lotka-Volterra model, left with h = 0.1
and right, with h = 0.1 (100 steps), h = 0.01 (1000 steps) and h = 0.001 (10000 steps).

2.2 Trapezoidal rule

Before concluding this chapter with some example codes in Matlab, we introduce a second nu-
merical method. From elementary calculus, you may remember that a better approximation than
the rectangle rule is the trapezoidal rule. Again consider the equation dy

dt = f(t). The trape-
zoidal rule approximation is yn+1 = yn + h

2 (f(tn+1) + f(tn)). Generalizing to the ODE (1.2), the
trapezoidal rule is

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1)) . (2.2)



2.3. MATLAB CODE 11

Notice that this method is of a character very different from Euler’s method. It is not possible to
evaluate the last term in the equation without knowing yn+1, and it is not possible to compute
yn+1 without evaluating this term. The trapezoidal rule defines yn+1 implicitly as function of yn.
In other words, we must solve the typically nonlinear system of algebraic equations

0 = r(y) := y − yn +
h

2
(f(tn, yn) + f(tn+1, y)) (2.3)

for y to determine yn+1. Such methods are termed implicit methods, and generally demand much
more work from the computer per time step than an explicit method such as Euler’s method.
Methods for solving systems of algebraic equations are covered in an appendix to these notes.
Obviously an implicit method must be significantly advantageous in some other sense to justify its
increased computational cost. We will say more about this in later chapters. Also, it is uncertain
if (2.3) will have any real solutions, and if so, how many. For h = 0, there is the unique solution
y = yn, and for h small enough, the implicit function theorem assures us there is a unique solution.
For larger h, uniqueness and existence are not guaranteed.

2.3 Matlab Code

The following m-file computes the value of the vector field of the Lotka-Volterra model (1.6) at a
given point.
lv.m

function yprime = lv(t,y)
% lotka volterra vector field
r=2; %coefficient
yprime =[0;0]; %creates a column vector with two elements
yprime(1) = r*y(1)*(1 - y(2));
yprime(2) = y(2)*(y(1) - 1);

The following m-file implements Euler’s Method.
euler.m

function [ylist,tlist] = euler(y0, t0, m, vf, h, N)
% solves dy/dt = f(y,t) in R^m starting from y(t0)=y0, using N steps of size h
% the initial condition should be an m-dimensional column vector
% vf(y,t) should evaluate the vector field f at the point (y,t)
% results are returned in tlist and ylist, the latter in the form of a matrix, each
% of whose columns represent the numerical solution at a timestep

tlist = zeros(1,N+1);
ylist = zeros(m, N+1);
tlist(1) = t0;
ylist(:,1) = y0;

for nn=1:N,
tlist(nn+1) = t0 + nn*h;
ylist(:,nn+1) = ylist(:,nn) + h*feval(vf, tlist(:,nn), ylist(:,nn));
end

A typical run would be performed and plotted as follows.

>> t0 = 0; y0=[0.5; 0.5];
>> [ylist,tlist] = euler(y0,t0,2,’lv’,0.1,100);
>> plot(tlist,ylist,’o-’);



12 CHAPTER 2. SIMULATION


	Simulation
	Computational modelling
	Trapezoidal rule
	Matlab Code


