
Chapter 4

The Matrix Exponential

Main concepts: In this chapter we solve systems of linear differential equations, introducing the
matrix exponential and related functions, and the variation of constants formula.

In general it is possible to exactly solve systems of linear differential equations with constant
coefficients using the variation of constant forumula. Because linear systems are of both theoretical
and practical importance, will delve into this in some detail. Some numerical techniques for
nonlinear problems that we will encounter later require integrating linear systems exactly. To
begin, we derive the solution in the scalar case.

4.1 The general scalar, linear equation in the complex plane.

Consider the linear, scalar ODE with constant coefficients in C

ẋ = λx + c, (4.1)

λ, c ∈ C, x(t) : R → C.
We solve this equations as follows:

(ẋ(s)− λx(s)) e−λs = ce−λs,

d

dt

(
x(s)e−λs

)
= ce−λs,∫ t

0

x(s)e−λs ds = c

∫ t

0

e−λs ds,

x(t)e−λt − x(0) = − c

λ
(e−λt − 1),

yielding

x(t) = eλtx(0) +
1
λ

(eλt − 1)c. (4.2)

4.2 Systems of linear ODEs

Next we consider linear differential equations of the form

ẏ = Ay + b (4.3)

where y(t) : R → Cd, A ∈ Cd×d, b ∈ Cd.
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4.2.1 Diagonalizable systems

First, let us suppose that the eigenvectors of A span Cd. Thus, there are d linearly independent
eigenvectors zi ∈ Cd, i = 1, . . . , d, and corresponding eigenvalues λi ∈ C satisfying

Azi = λizi, i = 1, . . . , d (4.4)

We can construct a square matrix Z whose columns are the zi:

Z = [z1| . . . |zd]

and, since the zi are linearly independent, Z is invertible. Let Λ = diag(λ1, . . . , λd) be the diagonal
matrix with the ordered eigenvalues on the diagonal. Equation (4.4) is equivalent to

AZ = ZΛ,

from which is follows from the invertibility of Z that

A = ZΛZ−1.

Inserting this into (4.3) gives
ẏ = ZΛZ−1y + b.

Next let us introduce the transformation x(t) = Z−1y(t), c = Z−1b. The equation above trans-
forms to

ẋ = Λx + c.

However, since Λ is diagonal, the above differential equation can be written as the folowing system
of decoupled scalar equations

ẋ(i) = λix
(i) + c(i), i = 1, . . . , d.

These are of the form (4.1) and so we can make use of the exact solution (4.2) to determine
x(i)(t). Given the time evolution of the x(i) we can then reconstruct the solution from the relation
y(t) = Zx(t).

The case for general A is not much more difficult. But we need some background on the matrix
exponential function first.

4.2.2 The matrix exponential

The exponential of a square matrix A ∈ Cd×d is defined as

expA :=
∞∑

k=0

1
k!

Ak, (4.5)

where A0 = I, the identity matrix on Cd.
The series in (4.5) converges for any matrix A. To see this, let M > 0 satisfy

|Aij | ≤ M, i, j = 1, . . . , d.

Note that for all i, j,
|(A2)ij | ≤ dM2

and in fact
|(Ak)ij | ≤ dk−1Mk ≤ (dM)k

It follows that

| expAij | ≤
∞∑

k=0

(dM)k = edM < ∞.

We also use the notation eA for expA.
You can check that the matrix exponential satisfies the following properties:
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• Commutativity with A: AetA = etAA

• For any A, eA is nonsingular and (eA)−1 = e−A.

• For t ∈ R, d
dte

tA = AetA.

4.2.3 Variation of constants formula

Now we return to (4.3). Equipped with the matrix exponential, we basically construct the solution
as in the scalar case. We can also handle the case of time dependent b = b(t)

(ẏ −Ay)e−As = e−Asb,

d

dt
(e−Asy) = e−Asb,∫ t

0

d

dt
(e−Asy) ds = (

∫ t

0

e−Asb(s) ds),

e−Aty(t)− y(0) = (
∫ t

0

e−Asb(s) ds),

resulting in the variation of constants formula

y(t) = eAty(0) + (
∫ t

0

e(t−s)Ab(s) ds) (4.6)

When b is constant, this simplifies to

y(t) = eAty(0) + tθ(At)b, (4.7)

where for invertible A and t 6= 0 the function θ(At) can be written

θ(At) = (At)−1(eAt − I)

For singular A, θ is given by the series expansion

θ(A) =
∞∑

k=0

1
(k + 1)!

Ak.

You can check that this series also converges for any matrix A.
Example. We calculate exp(At) for the matrix

A =
[

0 ω
−ω 0

]
.

The eigenvectors of A are z1 = (1, 1)T , z2 = (1,−1)T , with corresponding eigenvalues λ1 = iω,
λ2 = −iω. Thus,

Z =
[
1 1
1 −1

]
, Z−1 =

[
1
2

1
2

1
2 − 1

2

]
,

and Λ = diag{iω,−iω}. We compute

exp(At) = exp(ZΛZ−1t) = Z exp(Λt)Z−1

[
1 1
1 −1

] [
cos ωt + i sinωt 0

0 cos ωt− i sinωt

] [
1
2

1
2

1
2 − 1

2

]
, or

exp(At) =
[

cos ωt sinωt
− sinωt cos ωt

]
(4.8)
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Exercise. Consider the system(
dq
dt
dp
dt

)
=

[
0 1
−k2 0

](
q
p

)
= A

(
q
p

)
.

Show that the exponential of A in this example is

exp tA =
[

cos kt k−1 sin kt
−k sin kt cos kt

]
. (4.9)

4.3 Computing the exponential of a matrix

Scaled and squared Padé approximation, exercise caution, counterexample . . .


	The Matrix Exponential
	The general scalar, linear equation in the complex plane.
	Systems of linear ODEs
	Diagonalizable systems
	The matrix exponential
	Variation of constants formula

	Computing the exponential of a matrix


