
Chapter 6

Convergence of One-Step Methods

Main concepts: In this chapter we prove the convergence of a large class of one-step methods
to the exact flow map. Keywords are: Taylor series, local error, convergence theory for one-step
methods.

6.1 Approximation

A numerical method is an approximation of the exact flow map of a differential equation. As
such, there is always an element of error in the numerically generated solution. If the method is
to be useful, we must be able to control this error, at least on short enough time intervals. In this
chapter we consider convergence of the numerical flow map Ψh to the exact flow map Φh in the
approximation limit h → 0.

We define the global error after n time steps to be the difference between the discrete approx-
imation and the exact solution

en := yn − y(tn). (6.1)

For an approximation we want the error to be small in norm at each step of simulation, that is,
we would like to satisfy

max
n=0,1,...N

‖en‖ ≤ δ,

for some user-specified tolerance δ. For a given vector field f , initial value y0 and time interval
T , we have only one free parameter, the timestep h = T/N , which we can vary to make sure the
norm of the error meets our tolerance. If the method is going to be useful, we must be able to
vary h to meet any tolerance we choose.

Given a Lipschitz vector field f , a method is said to be convergent if, for every T ,

lim
h→0,

h=T/N

max
n=0,1,...,N

‖en‖ = 0.

(Note that this definition considers only discrete values of h which are integral fractions of the
time interval. Equivalently we could take the limit as N →∞ with h = T/N .) In this chapter we
establish conditions for the convergence of a large class of one-step methods.

A tool of singular importance in numerical analysis is Taylor’s series, for which the relevant
form here is

y(t + τ) = y(t) + τy′(t) +
τ2

2
y′′(t) + · · · (6.2)

for a perturbation τ > 0 around t. For a scalar function (d = 1), assuming y(t) is ν-times
continuously differentiable, Taylor’s theorem says there is a point t∗ ∈ [t, t + τ ] such that

y(t + τ) =
ν−1∑
i=0

τ i

i!
diy

dti
(t) +

τν

ν!
dνy

dtν
(t∗).
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For a vector function (d > 1), such a statement holds for each component, but in general the
mean value will be attained at a different t∗ for each component. Nonetheless the norm of the last
(remainder) term is bounded on [t, t + τ ], and we have

‖τν

ν!
dνy

dtν
(t)‖ ≤ Cτν

so we write

y(t + τ) =
ν−1∑
i=0

τ i

i!
diy

dti
(t) +O(τν). (6.3)

in general.

6.2 Convergence of generalized one-step methods

Define the local error of a numerical method as the difference between the flow-map and its
discrete approximation:

le(y, h) = Ψh(y)− Φh(y).

The local error measures just how much error is introduced in a single timestep of size h. Let us
assume that, on our (invariant) domain of interest D, we can expand le in powers of h (typically
using Taylor series), and that it satisfies

‖le(y, h)‖ ≤ Chp+1, (6.4)

where C is a constant that depends on y(t) and its derivatives, and p ≥ 1. A method that meets
this criterion is said to be consistent.

We will further suppose that f is Lipschitz with constant L.
The error can be viewed as the difference between n iterations of Ψh and n iterations of Φh,

thus we define it to be
en = yn − y(tn),

so
en+1 = yn+1 − y(tn+1) = Ψh(yn)− Φh(y(tn)).

To this expression we subtract and add Φh(yn), which is the exact solution started from a point
on the numerical trajectory, then take norms to obtain

‖en+1‖ = ‖Ψh(yn)− Φh(yn) + Φh(yn)− Φh(y(tn))‖
≤ ‖Ψh(yn)− Φh(yn)‖+ ‖Φh(yn)− Φh(y(tn))‖.

Now we use assumption (6.4) to bound the first term, and the Gronwall Lemma (3.2.1) to bound
the second term (cf. 3.5), obtaining

‖en+1‖ ≤ Chp+1 + ehL‖yn − y(tn)‖
= ehL‖en‖+ Chp+1.

Next applying the discrete Gronwall Lemma (3.2.2) yields

‖en‖ ≤ eLhn‖e0‖+
Chp+1

eLh − 1
(eLhn − 1).

Note that for positive h and L,
1

ehL − 1
≤ 1

hL
.
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Furthermore, on our integration interval 0 ≤ nh ≤ T implies eLnh ≤ eLT . If we assume the initial
condition is exact e0 = 0, we get the uniform bound

‖en‖ ≤ hp C

L
(eLT − 1), (6.5)

which proves convergence at order p. We summarize this result in an important convergence
theorem:

Theorem 6.2.1 (Convergence of One-Step Methods) Given a differential equation (1.13)
with Lipschitz vector field f and a consistent one-step method Ψh, the global error satisfies

max
n=0,...,N=T/h

‖Ψn
h(y0)− Φhn(y0)‖ = O(hp).

This theorem is powerful. Without specifying anything about the structure of the method, it
guarantees the convergence of any consistent one-step method.

As an example, let us use Theorem 6.2.1 to prove the convergence of Euler’s method (2.1) for
smooth vector fields f . Consider a compact domain D ⊂ Rd and suppose f is smooth on D and
has Lipschitz constant L on D (since f is smooth, we can take L = maxD ‖∂f

∂y ‖).
The exact solution satisfies

Φh(y) = y + h
dy

dt
+

h2

2
d2y

dt2
+O(h3) = y + hf(y) +

h2

2
d2y

dt2
+O(h3)

Therefore the local error is

le(y, h) = y + hf(y)−
[
y + hf(y) +

h2

2
d2y

dt2
+O(h3)

]
= O(h2),

and we can apply Theorem 6.2.1 with C = maxD ‖d2y
dt2 ‖ to show that Euler’s method is convergent

with order p = 1.
In the proof of the Theorem 6.2.1, the relation (6.5) indicates that the magnitude of the global

error bound will be reduced in proportion to hp. For example, when using Euler’s method in
practice, we typically observe that halving the stepsize reduces the error by a factor of two. We
say for this reason that Euler’s method is 1st order accurate. The error incurred in each time step
is O(hp+1), and in fact this bound holds for any fixed number of time steps. The loss of one order
of h occurs because the number of time steps needed to cover a fixed interval of length T increases
as h → 0 at a rate proportional to 1/h.

Note the proof suggests that—although in the approximation limit h → 0, T fixed, the error
can be made as small as possible—in the dynamics limit T → ∞, h fixed, the global error may
grow at an exponential rate.

6.3 Exercises

1. Use Theorem 6.2.1 to establish convergence of the trapezoidal rule (2.2) and the explicit
trapezoidal rule:

yn+1 = yn +
h

2
[f(yn) + f (yn + hf(yn))]

for a vector field f with Lipschitz constant L.
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