Chapter 7

Collocation Methods

Main concepts: Polynomial interpolation, quadrature, collocation methods

7.1 Construction of one-step methods

One-step methods for (1.3) can be constructed in a variety of ways. A natural approach is to
integrate both sides of the differential equation over one timestep,

t+h
y(t+h) — y(t) = / F(y(r))dr,

and then to approximate the integral on the right by a finite sum. For example, the simplest
approximation is

t+h
/t Fy(r)dr ~ hf (y(1)). (7.1)

The general idea in discretization is to replace the approximate relation satisfied by the true
solution

y(t+h) —y(t) ~ hf(y(t))

by an exact equation relating the approximate values,

Ynt1 = Yn = hf(yn).

In this case, we see that the choice leads to Euler’s method (2.1)).

A numerical method to approximate a definite integral of one independent variable is known
as a numerical quadrature rule. We can approximate the integral by any of a variety of differ-
ent numerical quadrature methods, yielding in this way various methods which may have better
accuracy, or other favorable properties. For example, the trapezoidal rule approximation to the
integral is

t+h h
| Hein = Sw®) + s+ 1),
t
which results in the trapezoidal rule numerical method (2.2).
In this chapter we introduce one-step methods derived using quadrature over polynomial in-
terpolants, using collocation. We begin with a review of polynomial interpolation.

7.2 Polynomial interpolation

Let Ps; denote the space of real polynomials of degree < s. Given and set of s distinct abscissa
points ¢1 < --- < ¢s, ¢; € R, and corresponding data ¢1,...,gs, there exists a unique polynomial
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P(z) € Ps_; satisfying P(¢;) = ¢;, ¢ = 1,...,s. This polynomial is called the interpolating
polynomial.

The Lagrange interpolating polynomials ¢;, i = 1,...,s for a set of abscissae are defined by
*r—cj
li(x) = £ .
o =[] =2 (7.2
Jj=1
J#i

The ith Lagrange interpolating polynomial ¢; is the interpolating polynomial corresponding to the
data {g; = 1;9; = 0,7 # i}, The set of Lagrange interpolating polynomials form a basis for Ps. In
this basis, the interpolating polynomial P(x) assumes the simple form

Pl) = Y 0ii(@) (73)

7.3 Numerical quadrature

Now consider a smooth function g on the real line. We can approximate the definite integral of g
on the interval [0, 1] by exactly integrating the interpolating polynomial of order s — 1 based on s
points 0 < ¢ < ¢ < ... < ¢g < 1. The points ¢; are then known as quadrature points. The data
are the values of g at the quadrature points g; = g(¢;), i =1,...,s.

Defining the weights

1
blz/ fl(l‘)dl‘,
0

the quadrature formula becomes

1 1 s
/0 g(z) da ~ /0 P(z)dz = ;big(ci). (7.4)

To approximate the integral | ot 0 (t) dt, we define a function t(z) = to + ha. Then dt = hdz,

to
and (|7.4]) becomes

to+h 1 S
/ o(t) dt = / 9(to + ha) bz ~ 1S big(to + hey). (7.5)
to 0

i=1

By construction, a quadrature formula using s distinct abscissa points will exactly integrate any
polynomial in P;_;. However, with a judicious choice of the abscissae we can do even better. We
say that a quadrature rule has order p if it exactly integrates any polynomial in PP,_;. It can be
shown that p > s always holds, and, for optimal choice of the ¢;, one has p = 2s.

7.4 Omne-step collocation methods

A very elegant approach to constructing one-step methods of given order of accuracy uses the idea
of collocation. We will construct the method for the first time step interval [tg, tg + h].

Let 0 < ¢1 < ¢g < --- < ¢s < 1 be distinct nodes on the unit interval. The collocation
polynomial u(t) € R% is a (vector-valued) polynomial of degree s satisfying

u(to) = yo
u/(to—f—CZ‘h) = f(u(t()+cih))7 1= ].,...,S (76)

and the numerical solution of the collocation method over the interval [tg,to + h] is given by
y1 = u(to + h). In other words, we contruct a polynomial that passes through yo and agrees with
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Figure 7.1: The collocation polynomial u(t).

the ODE (1.3) at s nodes on [to,t1]. Then we let the numerical solution be the value of this
polynomial at ¢1. See Figure[7.1]
Let F; be the values of the (as yet undetermined) interpolating polynomial at the nodes:

Fi = U/(t0+6ih), iil,...,S.

Now we use the Lagrange interpolation formula (7.3)) to define the polynomial u'(¢) passing through
these points:

W (t) = Zmi(t _hto) (7.7)

Integrating this equation over the intervals [0,¢;] (and introducing the change of variables z =
(t —to)/h, i.e., dt = hdzx) gives

u(t0+cih):y0+hZFj/ li(z)dx, i=1,...,s. (7.8)
=1 70
Let us denote )

Qi S:A EJ(IE) d:l?, bl = /0 gl(l’) dI]C, Z,] = 1,...78.

Substituting (7.8)) into the collocation conditions (7.6]) gives
Fi=fo+h apF),  i=1...s
j=1
Similarly integrating over [0, 1] gives

s 1 s
i=1 0 i=1
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To summarize, the collocation method is written

s
Fz:f yn—i—hZa”Fj ; 221,,57 (79&)
j=1
Ynt1 =Yn +h Z bi F;. (7.9b)

=1

One first solves the coupled, sd-dimensional nonlinear system (7.9al). Subsequently, the update

(7.9b) is explicit.

Remark 7.4.1 Collocation methods have the useful feature that we obtain a continuous approxi-
mation of the solution u(t) on each interval [t,,tny1].

Remark 7.4.2 In terms of order of accuracy, the optimal choice is attained by using so-called
Gauss-Legendre collocation methods and placement of the nodes at the roots of a shifted Legendre
polynomial. For s =1, 2 and 3, the quadrature points are:

1
€1 = 3, p:27

1 V3 _ 1 V3 _
a=3-%.e2=31t%, p=4,

1 V15 _ 1 _ 1, V15 _
01*57 10702*5;63*54’ 10 p*6

In the next chapter, we consider the class of Runge-Kutta methods, of which the collocation
methods presented here are but a small subclass. For this reason, the convergence analysis of
collocation methods is postponed to the next chapter.

7.5 Exercises

1. Find the coefficients a;;, b; of the two-stage (s = 2) Gauss-Legendre collocation method.
(Use Maple to evaluate the integrals).
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