
Chapter 7

Collocation Methods

Main concepts: Polynomial interpolation, quadrature, collocation methods

7.1 Construction of one-step methods

One-step methods for (1.3) can be constructed in a variety of ways. A natural approach is to
integrate both sides of the differential equation over one timestep,

y(t + h)− y(t) =
∫ t+h

t

f(y(τ))dτ,

and then to approximate the integral on the right by a finite sum. For example, the simplest
approximation is ∫ t+h

t

f(y(τ))dτ ≈ hf(y(t)). (7.1)

The general idea in discretization is to replace the approximate relation satisfied by the true
solution

y(t + h)− y(t) ≈ hf(y(t))

by an exact equation relating the approximate values,

yn+1 − yn = hf(yn).

In this case, we see that the choice (7.1) leads to Euler’s method (2.1).
A numerical method to approximate a definite integral of one independent variable is known

as a numerical quadrature rule. We can approximate the integral by any of a variety of differ-
ent numerical quadrature methods, yielding in this way various methods which may have better
accuracy, or other favorable properties. For example, the trapezoidal rule approximation to the
integral is ∫ t+h

t

f(y(τ))dτ ≈ h

2
(f(y(t)) + f(y(t + h))),

which results in the trapezoidal rule numerical method (2.2).
In this chapter we introduce one-step methods derived using quadrature over polynomial in-

terpolants, using collocation. We begin with a review of polynomial interpolation.

7.2 Polynomial interpolation

Let Ps denote the space of real polynomials of degree ≤ s. Given and set of s distinct abscissa
points c1 < · · · < cs, ci ∈ R, and corresponding data g1, . . . , gs, there exists a unique polynomial
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P (x) ∈ Ps−1 satisfying P (ci) = gi, i = 1, . . . , s. This polynomial is called the interpolating
polynomial.

The Lagrange interpolating polynomials `i, i = 1, . . . , s for a set of abscissae are defined by

`i(x) =
s∏

j=1
j 6=i

x− cj

ci − cj
. (7.2)

The ith Lagrange interpolating polynomial `i is the interpolating polynomial corresponding to the
data {gi = 1; gj = 0, j 6= i}, The set of Lagrange interpolating polynomials form a basis for Ps. In
this basis, the interpolating polynomial P (x) assumes the simple form

P (x) =
s∑

i=1

gi`i(x). (7.3)

7.3 Numerical quadrature

Now consider a smooth function g on the real line. We can approximate the definite integral of g
on the interval [0, 1] by exactly integrating the interpolating polynomial of order s− 1 based on s
points 0 ≤ c1 < c2 < . . . < cs ≤ 1. The points ci are then known as quadrature points. The data
are the values of g at the quadrature points gi = g(ci), i = 1, . . . , s.

Defining the weights

bi =
∫ 1

0

`i(x) dx,

the quadrature formula becomes∫ 1

0

g(x) dx ≈
∫ 1

0

P (x) dx =
s∑

i=1

big(ci). (7.4)

To approximate the integral
∫ t0+h

t0
g(t) dt, we define a function t(x) = t0 +hx. Then dt = h dx,

and (7.4) becomes ∫ t0+h

t0

g(t) dt =
∫ 1

0

g(t0 + hx) hdx ≈ h
s∑

i=1

big(t0 + hci). (7.5)

By construction, a quadrature formula using s distinct abscissa points will exactly integrate any
polynomial in Ps−1. However, with a judicious choice of the abscissae we can do even better. We
say that a quadrature rule has order p if it exactly integrates any polynomial in Pp−1. It can be
shown that p ≥ s always holds, and, for optimal choice of the ci, one has p = 2s.

7.4 One-step collocation methods

A very elegant approach to constructing one-step methods of given order of accuracy uses the idea
of collocation. We will construct the method for the first time step interval [t0, t0 + h].

Let 0 ≤ c1 < c2 < · · · < cs ≤ 1 be distinct nodes on the unit interval. The collocation
polynomial u(t) ∈ Rd is a (vector-valued) polynomial of degree s satisfying

u(t0) = y0

u′(t0 + cih) = f(u(t0 + cih)), i = 1, . . . , s (7.6)

and the numerical solution of the collocation method over the interval [t0, t0 + h] is given by
y1 = u(t0 + h). In other words, we contruct a polynomial that passes through y0 and agrees with
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Figure 7.1: The collocation polynomial u(t).

the ODE (1.3) at s nodes on [t0, t1]. Then we let the numerical solution be the value of this
polynomial at t1. See Figure 7.1.

Let Fi be the values of the (as yet undetermined) interpolating polynomial at the nodes:

Fi := u′(t0 + cih), i = 1, . . . , s.

Now we use the Lagrange interpolation formula (7.3) to define the polynomial u′(t) passing through
these points:

u′(t) =
s∑

i=1

Fi`i(
t− t0

h
) (7.7)

Integrating this equation over the intervals [0, ci] (and introducing the change of variables x =
(t− t0)/h, i.e., dt = h dx) gives

u(t0 + cih) = y0 + h
s∑

j=1

Fj

∫ ci

0

`j(x) dx, i = 1, . . . , s. (7.8)

Let us denote

aij :=
∫ ci

0

`j(x) dx, bi :=
∫ 1

0

`i(x) dx, i, j = 1, . . . , s.

Substituting (7.8) into the collocation conditions (7.6) gives

Fi = f(y0 + h
s∑

j=1

aijFj), i = 1, . . . , s.

Similarly integrating (7.7) over [0, 1] gives

y1 := u(t0 + h) = y0 + h
s∑

i=1

Fi

∫ 1

0

`j(t) dt = y0 + h
s∑

i=1

biFi.
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To summarize, the collocation method is written

Fi = f

yn + h
s∑

j=1

aijFj

 , i = 1, . . . , s, (7.9a)

yn+1 = yn + h
s∑

i=1

biFi. (7.9b)

One first solves the coupled, sd-dimensional nonlinear system (7.9a). Subsequently, the update
(7.9b) is explicit.

Remark 7.4.1 Collocation methods have the useful feature that we obtain a continuous approxi-
mation of the solution u(t) on each interval [tn, tn+1].

Remark 7.4.2 In terms of order of accuracy, the optimal choice is attained by using so-called
Gauss-Legendre collocation methods and placement of the nodes at the roots of a shifted Legendre
polynomial. For s = 1, 2 and 3, the quadrature points are:

c1 = 1
2 , p = 2,

c1 = 1
2 −

√
3

6 , c2 = 1
2 +

√
3

6 , p = 4,

c1 = 1
2 −

√
15

10 , c2 = 1
2 , c3 = 1

2 +
√

15
10 , p = 6.

In the next chapter, we consider the class of Runge-Kutta methods, of which the collocation
methods presented here are but a small subclass. For this reason, the convergence analysis of
collocation methods is postponed to the next chapter.

7.5 Exercises

1. Find the coefficients aij , bi of the two-stage (s = 2) Gauss-Legendre collocation method.
(Use Maple to evaluate the integrals).
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