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1. Introduction and review of literature

For time-separable utility with exponential discounting, the social cost of carbon (SCC) is a Pigouvian tax:
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1. Review of literature on the optimal risk-adjusted SCC 

Two strands:

• Numerical studies using: 

• Monte-Carlo simulations (e.g., Ackerman and Stanton, 2012; Dietz and Stern, 2015).

• Dynamic programming with advanced numerical methods (e.g., Crost and Traeger, 2013; Traeger, 2014a; 
Jensen and Traeger, 2014; Hambel et al., 2017).

• Analytical literature on discounting under uncertainty (typically deals with one uncertainty at a time, e.g., Gollier, 
2012; Traeger, 2014b):

• Golosov et al. (2014): simple rule using logarithmic utility, Cobb-Douglas production, 100% depreciation of 
capital each period, damages exponential function of the atmospheric carbon stock.

• More simple rules: Gerlagh and Liski (2016), Van den Bijgaart et al. (2016), Bretschger and Vinogradova
(2018).

• Jensen and Traeger (2016), Lemoine (2017), Dietz et al. (2018): exogenous consumption, prudence and climate 
betas.

• Traeger (2017): many uncertainties but strong restrictions on functional form. 

• Complementary literature on tipping.
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2. Model: welfare function

Continuous-time recursive preferences (Duffie and Epstein, 1992) with value function:

𝛾 = IIA = 1/EIS intergenerational inequality aversion or inverse of elasticity of intertemporal 
substitution

𝜂 = CRRA coefficient of relative risk aversion

J = Et f C(s), J (s)( )ds
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2. Model: capital accumulation and GDP uncertainty

AK growth with adjustment costs based on Pindyck and Wang (2013). Aggregate capital K as a GBM:

Add fossil fuel use F as a production factor:

Production cost of fossil fuel b constant:

Total factor productivity A function of climate damage ratio (i.e. damages ∝ to GDP):

14

dK = Φ(I ,K )dt +σ KKdW1    with   Φ(I ,K ) = I − 1
2
ω I

2

K
−δK .

I = Y −C − bF.

Y = AKαF1−α  with 0 <α <1.

A ≡ A*(1− D).



2. Model: carbon stock and uncertainty

A 1-box model for the atmospheric carbon stock associated with man-made emissions:

Uncertainty of carbon stock projections for a given emission scenario modelled by a BM:

(technicality: negative E not allowed).
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2. Model: carbon stock and uncertainty

To calibrate:

• Use 17 impulse response functions from survey in Joos et al. (2013):

• Use 90% confidence range 794-1149 ppmv in 2100 predicted for RCP 8.5 (IPCC, AR5):

16

d !E = (µFe−gt −ϕ !E)dt +σ EdW2    and   E = max(0, !E).

Impulse response function Atmospheric carbon stock

µ = 0.65,   ϕ = 0.35% / year.

σ E = 13 ppmv/year1/2.



2. Model: temperature and uncertainty

Power-law temperature model:

Climate sensitivity: with skewness (to leading-order):

Ornstein-Uhlenbeck process:

17

T (E,χ ) = χ1+θχ (E / SPI )
1+θE    with   θE ≥ −1   and   θχ ≥ −1.

T2 ≡ T (E = SPI ,χ ) = χ1+θχ , skew T2⎡⎣ ⎤⎦ = 3θχ (1+θχ )
3µχ

3(1+θχ )
Σχ
4

µχ
4 .

d !χ = νχ (χ − !χ )dt +σ χdW3   with  χ = max(0, !χ ).



Properties of the Ornstein-Uhlenbeck process 
(mean-reverting arithmetic Brownian motion)

Normally distributed:

Time-varying mean: Long time:

Time-varying variance: Long time:

cv
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2. Model: temperature and uncertainty

Power-law temperature model:

Climate sensitivity: with skewness (to leading-order):

Ornstein-Uhlenbeck process:
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2. Model: damage function and uncertainty

Power-law damage ratio function: 

Ornstein-Uhlenbeck process:

Combined: 
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D(T ,λ) = T 1+θTλ1+θλ    with   θT ≥ −1   and   θλ ≥ −1.

d !λ = νλ (λ − !λ)dt +σ λdW4   with  λ = max(0, !λ).

D(E,χ ,λ) = χ1+θχTλ1+θλ E
SPI
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Ornstein-Uhlenbeck process:

Combined: 

21

D(T ,λ) = T 1+θTλ1+θλ    with   θT ≥ −1   and   θλ ≥ −1.

d !λ = νλ (λ − !λ)dt +σ λdW4   with  λ = max(0, !λ).

D(E,χ ,λ) = χ1+θχTλ1+θλ E
SPI

⎛

⎝⎜
⎞

⎠⎟

1+θET

  with  
θχT ≡ θχ +θT +θχθT
θET ≡ θE +θT +θEθT

 

Proportional damages Convex damagesθT = 0.56,  θET = 0( ) θT = 1,  θET = 0.28( )

STEADY-STATE 
DISTRIBUTIONS



2. Dynamic Stochastic General Equilibrium Model 

ECONOMIC
WELFARE 
MODEL

ATMOSPHERIC CO2
MODEL

TEMPERATURE 
MODEL

CLIMATE DAMAGE 
MODEL

22



3. Asymptotic solutions

Small parameter is share of damages in GDP:

Truncated series solution:

Social costs of carbon or ‘risk-adjusted carbon price’:

23

J (K , !E, !χ , !λ,t) = J (0) (K ,εD( !E, !χ , !λ))+ εJ (1) (K , !E, !χ , !λ,t,εD( !E, !χ , !λ))+O(ε2 ),

ε ≡ D(E0 ,χ ,λ) = λ
1+θλ χ

1+θχT E0
SPI

⎛

⎝⎜
⎞

⎠⎟

1+θET

.

P = −
µ J !E

(0) + εJ !E
(1)( )

φ′(i(0) )JK
(0)

.

‘slow’ dependence on climate states

Taylor-series expansion



3. Asymptotic solutions

Small parameter is share of damages in GDP:

Truncated series solution:

Social costs of carbon or ‘risk-adjusted carbon price’:

Three results:

Result 1: no additional assumptions. Solution in the form of multi-dimensional integral.

Result 2: proportional damages (𝜃)* = 0, 𝐷 ∝ 𝐸), leading-order effects of uncertainty and temperature and 
damage ratios 𝜒 and 𝜆 are at their steady-states.

Result 3: leading-order effect of uncertainty, but with other two assumptions relaxed.
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3. Result 2 

The optimal risk-adjusted carbon price:

Uncertainty correction factors:

• Climate sensitivity (or temperature) uncertainty:

• Climate damage uncertainty:

• Climate ‘beta’ terms:

26

P =
µ  ΘY

P=0

r* +ϕ
(1+ Δχ + Δλ + ΔCK ) with Θ =

DE
1− D

 and r* = ρ + (γ −1)(g (0) − 1
2
ησ K

2 ),
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1
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.
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.

ΔCK = −(η −1)σ K (1+θχT )
ρKχσ χ χ
r* +νχ +ϕ

+
ρKλσ λ λ
r* +νλ +ϕ

⎛

⎝
⎜

⎞

⎠
⎟ . (I will skip today)



3. Result 2: economic growth uncertainty and the climate beta

Including economic but not climatic uncertainty, Result 2 gives:

The optimal risk-adjusted discount rate:

𝛾 = IIA = 1/EIS intergenerational inequality aversion or inverse of elasticity of intertemporal 
substitution,

𝜂 = CRRA coefficient of relative risk aversion,

(see also Dietz et al. (2018) for damages that are not proportional to GDP).
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P =
µ  ΘY

P=0

r* +ϕ
 with Θ =

DE
1− D

.

! ! ! !
* (0) (0) 2 2
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‘Built-in’ climate beta of 1 due to 
damages being proportional to GDP



3. Result 2: climate and damage uncertainties

Climate sensitivity risk correction:

Climate damage risk correction:

28

Δχ =
1
2
θχT (1+θχT )

(Σχ
∞ χ )2

1+ r
* +ϕ
2νχ

.

P =
µ  ΘY

P=0

r* +ϕ
1+ Δχ( )  with Θ =

DE
1− D

.

θχT ≡ θχ +θT +θχθT

Combines positive skewness of the (equilibrium) 
climate sensitivity and the convex dependence of 

damages on temperature.

P =
µ  ΘY

P=0

r* +ϕ
1+ Δχ + Δλ( )  with Θ =

DE
1− D

.

Ratio of discount rate and ‘arrival rate’ of 
equilibrium climate sensitivity uncertainty

Equilibrium climate sensitivity uncertainty
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1
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(Σλ
∞ λ )2

1+ r
* +ϕ
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Parameter that measures skewness 
of climate damage ration



4. Calibration
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4. Estimates of the optimal risk-adjusted carbon price
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5. Conclusions and context

• We have derived analytical expressions for the risk-adjusted social cost of carbon using perturbation 
methods:
• Economic uncertainty: huge if based on market volatility and CRRA = EIS ≠ 1.
• Carbon stock uncertainty: small and zero for proportional damages.
• Temperature uncertainty: only for equilibrium climate sensitivity and depends on its timescale.
• Damage uncertainty: only if skew, for which there is some evidence.

• Although we have Epstein-Zin preferences, the non-climatic part of the model remains primitive (AK 
model + Geometric Brownian Motion). 

• Future work should:
• Distinguish volatility of equity returns and GDP growth;
• Include long-run risk in economic growth and a downward-sloping term structure (Bansal and 

Yaron, 2004; Gollier and Mahul, 2017);
• Allow for compound Poisson shocks to temperature and damages (cf. Hambel et al., 2018; 

Bretschger and Vinogradova, 2018; Bansal et al., 2016).
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Thank you for your attention!
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