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In fact, as Freeman, Wagner and Zechauser (2015) have shown,
over the past decade our uncertainty over climate sensitivity has
actually increased

Robert S. Pnidyck, The Use and Misuse of Models for Climate Policy
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Physicists like dynamical systems

dx

dt
= F (x ,E (t), ψ)

dx = F (x ,E (t), ψ) dt + G (x ,E (t), ψ) ◦ dω

I Physicists construct and interpret F , G in terms of causal processes
and feedbacks (mechanisms)

I They consider that the vector x contains enough information about
itself for predicting its evolution
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Assumptions 6= Judgements

Modelling requires idealisations, abstractions and approximations

These are not judgements on uncertainty,
not even judgements on the real world !

Model critique requires out of the box thinking

I information on sensitivity (robustness / fragility)

I knowledge on the development history, purpose, implementation
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Bayesian Analysis

We may chose to communicate uncertainty on climate forecasts with
Bayesian probabilities.

Posterior =
Likelihood× Prior

Marginal Likelihood

I Can be thought of as an extension of Aristotelian logic
I Updates probabilities in a coherent way
I It does not say what probability should be !

Bayesian inference guarantees coherence, not good judgements.

It is easier to get a precise probability in a closed world
It is tricky to quantify the probability of a surprise
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shapes over time. AOGCM results for multi-gas mitigation scenarios
were not available for assessment in the IPCC AR4 Working Group I
Report22. Consequently, IPCC AR4 Working Group III23 provided
equilibrium warming estimates corresponding to 2100 radiative
forcing levels for some multi-gas mitigation scenarios, using simpli-
fied regressions (Supplementary Fig. 6). Thus, 15 years after the first
pioneering mitigation studies11,12, there is still an important gap in
the literature relating emission budgets for lower emission profiles to
the probability of exceeding maximal warming levels; a gap that this
study intends to fill.

We compute time-evolving distributions of radiative forcing and
surface air temperature implications for the set of 26 IPCC SRES21

and 20 EMF-21 scenarios20 shown in Fig. 2a and b. We complement
these with 948 multi-gas equal quantile walk emission pathways24

that share—by design—similar multi-gas characteristics (Supplem-
entary Fig. 5) but represent a wide variety of plausible shapes, ranging
from early moderate reductions to later peaking and rapidly declin-
ing emissions towards near-zero emissions (Supplementary Infor-
mation). Whereas Fig. 2e shows a standard plot of global-mean tem-
perature versus time for two sample scenarios, Fig. 2f highlights the
strong correlation between maximum warming and cumulative
emissions. The fraction of climate model runs above 2 uC (dashed
line in Fig. 2f) is then our estimate for the probability of exceeding
2 uC for an individual scenario (as indicated by the dots in Fig. 3a).
We focus here on 2 uC relative to pre-industrial levels, as such a
warming limit has gained increasing prominence in science and
policy circles as a goal to prevent dangerous climate change25. We
recognize that 2 uC cannot be regarded as a ‘safe level’, and that (for
example) small island states and least developed countries are calling
for warming to be limited to 1.5 uC (Supplementary Information).

We chose the twenty-first century as our time horizon, as this time
frame is sufficiently long to determine which emission scenarios will
probably lead to a global surface warming below 2 uC. Under these
scenarios, temperatures have stabilized or peaked by 2100, while
warming continues under higher scenarios.

For our illustrative distribution of climate system properties, we
find that the probability of exceeding 2 uC can be limited to below
25% (50%) by keeping 2000–49 cumulative CO2 emissions from
fossil sources and land use change to below 1,000 (1,440) Gt CO2

(Fig. 3a and Table 1). If we resample model parameters to reproduce
18 published climate sensitivity distributions, we find a 10–42%
probability of exceeding 2 uC for such a budget of 1,000 Gt CO2. If
the acceptable exceedance probability were only 20%, this would
require an emission budget of 890 Gt CO2 or lower (illustrative
default). Given that around 234 Gt CO2 were emitted between
2000 and 2006 and assuming constant rates of 36.3 Gt CO2 yr21

(ref. 3) thereafter, we would exhaust the CO2 emission budget by
2024, 2027 or 2039, depending on the probability accepted for
exceeding 2 uC (respectively 20%, 25% or 50%).

To contrast observationally constrained probabilistic projections
against current AOGCM and carbon-cycle models, we ran each emis-
sion scenario with all permutations of 19 CMIP326 AOGCM and 10
C4MIP carbon-cycle model emulations16. The allowed emissions are
similar to the lower part of the range spanned by the observationally
constrained distributions, suggesting that the current AOGCMs do
not substantially over- or underestimate future climate change com-
pared to the values obtained using a model constrained by observa-
tions, although no probability statement can be derived from the
proportion of runs exceeding 2 uC (black dashed line in Fig. 3a).
Using an independent approach focusing on CO2 alone, Allen et al.27
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Figure 1 | Joint and marginal probability distributions of climate sensitivity
and transient climate response. a, Marginal probability density functions
(PDFs) of climate sensitivity; b, marginal PDFs of transient climate response
(TCR); c, posterior joint distribution constraining model parameters to
historical temperatures, ocean heat uptake and radiative forcing under our

representative illustrative priors. For comparison, TCR and climate
sensitivities are shown in c for model versions that yield a close emulation of
19 CMIP3 AOGCMs (white circles)16. Data sources for curves 1–25 are given
in Supplementary Information.
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The IPCC quote:

This [CMIP] range provides a basis for quantifying uncertainty in
the projections

but

“because the number of models is relatively small, and the contri-
bution of model output to public archives is voluntary, the spread
of the projections is neither systematic nor comprehensive”

Collins et al. 2013, AR5WGI chapter 12, p. 1036
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The population of model ensembles cannot be sampled
efficiently

I A GCM is effectively an assemblage of modules and parameterisations
I GCM = {Oi ,Aj , Lk ,Cl} where Oi = {t, s, . . .}

POSTERIOR ∝ LIKELIHOOD× PRIOR (1)
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We also need to sample “values”

I Philosophers (Parker, Winsberg, and others) tell us that climate
models are value-loaded

I (non-traceable) history of tuning, quality check, release cycle, metrics,
priorities load models with non-estemic values

Climate models are becoming evermore complex and increasingly
relied upon to inform climate change adaptation. Yet progress in
model development is lagging behind in many of the regions that
need the information most, including in Africa

R. James et al. In: Bulletin of the American Meteorological Society
(2018). DOI: 10.1175/bams-d-16-0090.1

Michel Crucifix (with Jonty Rougier and Julie Jebeile), 16 July 2019, p. 12.

https://doi.org/10.1175/bams-d-16-0090.1


Plan

Uncertainty in climate science and climate policy

Climate Model Ensembles

Tipping points

Michel Crucifix (with Jonty Rougier and Julie Jebeile), 16 July 2019, p. 13.



We use to call these: bifurcations

Michael Ghil, informal
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The autonomous bifurcation

Xe

ψ

early warning
signals
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The non-autonomous bifurcation

ψ1

ψ2

time

x
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The history of the tipping point metaphore

I Mainly used in the 1960’s in the context of political intervention
related to racial segregation

I Popularised in this context by Gladwell (2000) who uses the language
of epidemics

I Used around 2005 (Katerina)

I a critical decision with disastrous consequences (Michael Brown)
I a tipping element (J. Schellnhuber)
I a non-return point (J. Hansen)
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I T. M. Lenton et al. In: Proceedings of the National Academy of
Sciences (2008). DOI: 10.1073/pnas.0705414105 introduces a
definition of tipping point with a political time and an ethical time.
List of tipping points are obtained by expert ellicitation

I Increasingly used in the mass-media. Criticised for conveying fear and
anxiety (the “global tipping point”) (e.g., Russil et al.)

ref.: C. Russill. In: Wiley Interdisciplinary Reviews: Climate Change
(2015). DOI: 10.1002/wcc.344 and previous works by this author
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A decision management proposal

I “Surprise events” challenge the decision-making strategy
I By definition, they are not expected
I Hard, even dangerous to take probabilities too seriously / estimate

cost
I What is important is to recognise and anticipate action

(cf. aeoroplane instructions)
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