Complementing CO2 emission reduction by geoengineering might strongly enhance future welfare

Henk A. Dijkstra, IMAU & Centre for Complex Systems Studies, Department of Physics, Utrecht University, The Netherlands

> work with Claudia Wieners (UU, now at Pisa), Koen Helwegen (former UU, now in London) and J. Frank (UU)

Current Climate Policy

Even if all states keep their intended contributions, we are NOT on the right path to reach the Paris agreement!

Cooling the Planet?

Pinatubo explosive eruption, 1991: 8-10Mt S into stratosphere

-> global cooling ca 0.5K (1year)

e.g. Robock et al., 2000

Sulfur-aerosol Solar Radiation Management (SRM)

- -- put SO₂ (or other precursor gas) into stratosphere
- -- will react to H₂SO₄ and this leads to growth of aerosol droplets
- -- these reflect sunlight
- -- residence time: about 1-2 years (tropics)
- -- cost estimate (very rough) 2-10 x 10⁹ US\$/Mt at injection height 20 km (GDP 2017: 80 x 10¹² US\$)
 - e.g., Moriyama et al., 2017)

What is needed?

High injection rate

- -> coagulation
- -> fewer, bigger droplets
- -> less sunlight reflection

Radiative forcing changes only sublinearly with injection rate!

Counterbalancing RCP8.5 in 2100 requires 10 Pinatubos/year !

Still uncertainty about effectiveness!

Tilmes et al., 2018, Kleinschmidt et al., 2018

Niemeyer & Timmreck, 2015

Sulphate-aerosol SRM: a cool plan or megalomania?

Potential benefits

-- Cool down Earth: Stay below 2K warming (avoid dangerous "tipping points")

-- cheap to implement (?)

Caveats

-- Will not solve all problems: --- precipitation changes --- ocean acidification

-- effectiveness?

Dangers

- -- environmental damages:
 - --- ozone hole
 - --- tropospheric chemistry
 - --- acid rain
- -- unknown unknowns?
- -- political conflict?

e.g. Robock et al., 2009

Is SRM an economically sound option?

DICE: Model Structure

The Dynamic Integrated model of Climate and the Economy (W. Nordhaus)

Economic production /GDP

spent for Consumption + Capital

Decision makers' problem: maximise Welfare (time-integrated, discounted utility)

DICE: Model Structure

The Dynamic Integrated model of Climate and the Economy

Damage

reduces

Carbon emission CO2 accumulation Global warming spent for spectrum spent for spectrum spectrum spent for spectrum spectru

Utility ^U e -Rt dt Utility Welfare

Damage function: $D = k T^2$ (T=2.5K -> econ. loss of 1.75%)

DICE: Model Structure

new Climate Model Component: LRT model

• Perturbation theory

$$\Delta T_{\Delta F}(t) = \Delta T_0 + \sum_{n=1}^{\infty} \Delta T_{\Delta F}^{(n)}(t) \tag{1}$$

• Linear Response Theory: stop series at n = 1

$$\Delta T_{\Delta F}^{(1)}(t) = \int_0^t G_T(t') \Delta F(t-t') \, dt'$$
 (2)

• Take a forcing-response pair $\Delta F_{abrupt}(t) = A\theta(t), \Delta T_{abrupt}(t)$

$$G_T(t) = \frac{1}{A} \frac{d}{dt} \Delta T_{abrupt} \tag{3}$$

Using LRT one can determine the response to any forcing! Aengenheyster et al. (2018)

Stochastic State Space Model

Carbon

Temperature

$$dC_P = a_0 E dt$$

$$dC_1 = \left(a_1 E - \frac{1}{\tau_1} C_1\right) dt$$

$$dC_2 = \left(a_2 E - \frac{1}{\tau_2} C_2\right) dt$$

$$+ \sigma_{C2} \ dW_t$$

$$dC_3 = \left(a_3 E - \frac{1}{\tau_3} C_3\right) dt$$

$$C_{CO2} = C_P + \sum_{i=1}^3 C_i$$

$$\begin{split} \Delta F &= A \ \alpha \ln(C_{CO2}/C_0) \\ d\Delta T_0 &= \left(b_0 \Delta F - \frac{1}{\tau_{b0}} \Delta T_0 \right) dt \\ &+ \sigma_{T0} \ dW_t \\ d\Delta T_1 &= \left(b_1 \Delta F - \frac{1}{\tau_{b1}} \Delta T_1 \right) dt \\ d\Delta T_2 &= \left(b_2 \Delta F - \frac{1}{\tau_{b2}} \Delta T_2 \right) dt \\ &+ \sigma_{T2} \Delta T_2 \ dW_t \\ \Delta T &= \sum_{i=0}^2 \Delta T_i \\ & \text{Aengenheyster et al. (2018)} \end{split}$$

Results: RCP responses

Aengenheyster et al. (2018)

DICE - > GeoDICE

Geo-DICE: Model Structure

Geo-DICE: Model Structure

Geo-DICE: Model Structure

Planning under Uncertainty

The social planner does not know...

- 1. whether damaging "climate tipping" will occur
 - -- If T>2K, irreversible "tipping" can occur (stochastic process) Once climate is tipped, 10% of GDP will be lost in *each* future year
- 2. whether SRM will work well

-- At each time step, probability that SRM is banned forever (cumulative probability: 20% in 400 years)

-> find optimal policy under uncertainty (dynamic programming)
 -> run Monte-Carlo Ensemble (5000) with this policy to assess outcome

following: Cai et al. 2016

Optimal Policy: Scenarios

1. Abate + SRM

Social planner may use abatement and SRMin case of SRM ban: only abatement

2. Abate - Only

-- Social planner may only use abatement

3. SRM - Only

-- Social planner may use only SRM-- in case of SRM ban: may use only abatement

Optimal Policy: Deterministic results

-- SRM delays abatement by ca 30 years, but does not replace it

-- With abatement, SRM remains limited to \approx 3 Pinatubos / year (30Mt(S)/yr)

Optimal Policy: Deterministic results

-- SRM delays abatement by ca 30 years, but does not replace it

- -- With abatement, SRM remains limited to \approx 3 Pinatubos / year (30Mt(S)/yr)
- -- Only combination of SRM+Abate keeps T<2K

Summary: deterministic case

$$\zeta(\pi) = 100 \% \times \frac{W_{\pi} - W_0}{W_{\text{AD}} - W_0},$$

AD: Abatement-only, deterministic0 : no-action policy

Policy	ζ	Peak SRM	Ab. 50 %	Ab. 99 %	SCC
Abatement-only scenario	100 %	n/a	2114	2212	35
SRM-only scenario	186 %	*	n/a	n/a	21
Abatement+SRM scenario	238 %	35.1	2134	2243	20

* SRM does not peak but keeps increasing until the upper limit of $100 \text{ Mt}(S) \text{ yr}^{-1}$. n/a means not applicable.

Optimal Policy: Abate + SRM

Use of abatement + (modest) SRM stabilises T below 2K (unless SRM fails)

Optimal Policy: Abate+SRM vs Abate-only

Abate+SRM

Abate-Only

Allowing SRM does not replace abatement, but delays by 30-40 years

Optimal Policy: Abate+SRM vs Abate-only

Abate+SRM

Abate-Only

Abatement-only does not stabilise T below 2K.

Optimal Policy: Abate+SRM vs SRM-only

For SRM-only, very high injection rates are needed

Optimal Policy: Abate+SRM vs SRM-only

For SRM-only, CO2 concentrations keeps increasing beyond 2000 ppmv

Optimal Policy: Abate+SRM vs SRM-only

Abate+SRM

SRM-Only

For SRM-only, CO2 concentrations keeps increasing beyond 2000 ppmv, and temperature exceeds 2K and is never stabilised!

Optimal Policy: Comparison

-- Abate+SRM keeps T<2K (unless failure occurs) Neither Abate-Only nor SRM-Only achieve this (cost-efficiently)

-- Abate+SRM reaches 50% abatement by 2139
 Abate-Only is faster by 45 years
 -> SRM delays abatement, but does not replace it!

-- Abate+SRM limits SO2 injections to 30Mt(S)/yr
 SRM-Only goes beyond 80Mt(S)/yr (without stabilising T!)
 -> Abatement needed to limit warming in long-term.

Summary: stochastic case

$$\zeta(\pi) = 100 \% \times \frac{W_{\pi} - W_0}{W_{\text{AD}} - W_0},$$

AD: Abatement-only, deterministic0 : no-action policy

Policy	ζ	ζ10	ζ90	SRM fail	Tipping	Peak SRM	Ab. 50 %	Ab. 99 %	SCC
No-action case	0%			n/a	96.2 %	n/a	n/a	n/a	45
Abatement-only case (det. $policy^2$)	100%			n/a	49.5 %	n/a	2114	2212	42
Abatement-only case	105%	77 %	121 %	n/a	37.8 %	n/a	2095	2215	41
SRM-only case	181%	179 %	185 %	19.8 %	60.96 %	none ¹	n/a	n/a	23
Abatement+SRM case	219%	220%	223 %	20.2~%	6.2 %	35.0	2139	2242	20
realistic storyline	125 %	78%	190 %	79.9%	30.1 %	31.4	2106	2234	37

¹ SRM does not peak but keeps increasing until the upper limit of $100 \text{ Mt}(S) \text{ yr}^{-1}$. ² Tipping can occur but the policy maker ignores this and chooses the policy which would be optimal in the deterministic (det.) case. n/a means not applicable.

Conclusions

Sulphate SRM has the potential to greatly enhance future welfare and should therefore be taken seriously as possible policy option. It is crucial to reduce/quantify the considerable uncertainties by future research.

Even if successful, SRM does not replace CO2 abatement, but only supplements it.

Further reading

Earth Syst. Dynam., 10, 453–472, 2019 https://doi.org/10.5194/esd-10-453-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

 \odot \odot

Complementing CO₂ emission reduction by solar radiation management might strongly enhance future welfare

Koen G. Helwegen¹, Claudia E. Wieners^{2,3,a}, Jason E. Frank¹, and Henk A. Dijkstra^{2,3}

¹Mathematical Institute, Utrecht University, Utrecht, the Netherlands ²Institute for Marine and Atmospheric research, Utrecht University, Utrecht, the Netherlands ³Centre for Complex Systems Studies, Utrecht University, Utrecht, the Netherlands ^anow at: Institute of Economics, Sant'Anna School of Advanced Studies, Pisa, Italy

Correspondence: Claudia E. Wieners (c.wieners@santannapisa.it)

Received: 28 January 2019 – Discussion started: 30 January 2019 Revised: 6 June 2019 – Accepted: 17 June 2019 – Published: 15 July 2019

Sensitivity of results

Scenario	Abate 50%	Peak SRM	SCC
Abatement-only scenario, standard	2095	n/a	41
Ab.+SRM, standard	2139	35.0	20
Abatement-only scenario, low rate of pure time preference ($\rho = 0.5\%$)	2068	n/a	70
Ab.+SRM scenario, low rate of pure time preference ($\rho = 0.5\%$)	2116	31.1	30
Faster decline abatement cost ($\lambda_2 \rightarrow 2$; $\lambda_3 \rightarrow 0.015$)	2112	29.0	21
Ab.+SRM scenario, less temp. damage, more precip.damage ($\psi_T \rightarrow \psi_T/2, \psi_P \rightarrow \psi_P \times 2$)	2143	32.6	17
Ab.+SRM scenario, lower tipping threshold $(T_{tipp} = 2 \text{ K} \rightarrow 1 \text{ K})$	2139	35.6	21
Ab.+SRM scenario, double damage from tipping ($\Omega = 0.8$)	2136	34.8	20
Ab.+SRM scenario, double climate tipping probability ($\kappa_{tipp} \rightarrow \kappa_{tipp} \times 2$)	2137	34.9	20
Ab.+SRM scenario, quadrupled SRM failure probability ($\kappa_{fail} \rightarrow \kappa_{fail} \times 4$)	2121	34.3	23
Ab.+SRM scenario, double damage from SRM ($\psi_S \rightarrow \psi_S \times 2$)		26.8	22
Ab.+SRM scenario, half damage from SRM ($\psi_S \rightarrow \psi_S/2$)		43.6	20