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Current Climate Policy
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Even if all states
keep their
intended
contributions,
we are NOT
on the right path
to reach the Paris
agreement!



Cooling the Planet?

SR

Sulfur-aerosol
Solar Radiation Management (SRM)

-- put SO2 (or other precursor gas) into
stratosphere

-- will react to H2SO4 and this leads to growth of
aerosol droplets

-- these reflect sunlight

Pinatubo explosive eruption, 1991:

8-10Mt S into stratosphere -- residence time: about 1-2 years (tropics)
-> global cooling ca 0.5K (1year) -- cost estimate (very rough)

2-10 x 109 US$/Mt at injection height 20 km
e.g. Robock et al., 2000 (GDP 2017: 80 x 1012 US$)

e.g., Moriyama et al., 2017)



What is needed?

High injection rate

-> coagulation

-> fewer, bigger droplets
-> less sunlight reflection

Radiative forcing changes only
sublinearly with injection rate!

Counterbalancing RCP8.5 in 2100
requires 10 Pinatubos/year !

Still uncertainty about
effectiveness!

Tilmes et al., 2018,
Kleinschmidt et al., 2018
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Sulphate-aerosol SRM:
a cool plan or megalomania?

Potential benefits

-- Cool down Earth:

Stay below 2K warming
(avoid dangerous
“tipping points”)

-- cheap to implement (?)

Caveats

-- Will not solve all
problems:
--- precipitation changes
--- ocean acidification

-- effectiveness?

Dangers

-- environmental damages:
--- ozone hole
--- tropospheric chemistry
--- acid rain

-- unknown unknowns?

-- political conflict?

e.g. Robock et al., 2009

Is SRM an economically sound option?




DICE: Model Structure

The Dynamic Integrated model of Climate and the Economy

(W. Nordhaus)

Consumption+ Capital

Economic production /GDP
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Decision makers’ problem:
maximise Welfare
(time-integrated, discounted utility)




DICE: Model Structure

The Dynamic Integrated model of Climate and the Economy
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(T=2.5K -> econ. loss of 1.75%)



DICE: Model Structure

The Dynamic Integrated model of Climate and the Economy
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new Climate Model Component: LRT model

CO, >@ = AT
e Perturbation theory
ATAp(t) = ATy + > ATSA(t) (1)
n=1

e Linear Response Theory: stop series at n =1

t
AT () = / Gr(t)AF(t —t) dt (2)
0
o Take a forcing-response pair AF prupt(t) = AO(t), ALgprupt(t)
1d
GT(t) Ad ATabr‘upt (3)

Using LRT one can determine the response to any
fOrCing! Aengenheyster et al. (2018)



Stochastic State Space Model

Carbon

dCp = aogE/dt

dCl = (alE — lCH) dt

1
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Temperature

AF = A 05111(0002/00)
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Aengenheyster et al. (2018)



Results: RCP responses
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Geo-DICE: Model Structure

The Dynamic Integrated model of Climate and the Economy

Economic production /GDP
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reduces
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% Need to adapt damage function!

Global warming ¥ Assume: Residual climate change

= precipitation change



Geo-DICE: Model Structure

The Dynamic Integrated model of Climate and the Economy
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Geo-DICE: Model Structure

The Dynamic Integrated model of Climate and the Economy

y Economic production /GDP
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Global warming




Planning under Uncertainty

The social planner does not know...

1. whether damaging “climate tipping” will occur

-- If T>2K, irreversible “tipping” can occur (stochastic process)
Once climate is tipped, 10% of GDP will be lost in each future year

2. whether SRM will work well

-- At each time step, probability that SRM is banned forever
(cumulative probability: 20% in 400 years)

-> find optimal policy under uncertainty (dynamic programming)

-> run Monte-Carlo Ensemble (5000) with this policy to assess outcome
following: Cai et al. 2016



Optimal Policy: Scenarios

1. Abate + SRM

-- Social planner may use abatement and SRM
-- in case of SRM ban: only abatement

2. Abate - Only

-- Social planner may only use abatement

3. SRM - Only

-- Social planner may use only SRM
-- in case of SRM ban: may use only abatement



Optimal Policy: Deterministic results

Abatement Solar Radiation Management
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SRM delays abatement by ca 30 years, but does not replace it
-- With abatement, SRM remains limited to =3 Pinatubos / year (30Mt(S)/yr)



Optimal Policy: Deterministic results

Atmosperic CO2 Temperature (above pre-industrial)
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-- SRM delays abatement by ca 30 years, but does not replace it
-- With abatement, SRM remains limited to =3 Pinatubos / year (30Mt(S)/yr)
-- Only combination of SRM+Abate keeps T<2K



Summary: deterministic case

W, — Wy
AD — Wo'

C(m)=100% x

AD: A eterministic

0 : no-action policy

IR —

Policy ¢ Peak SRM Ab.50% Ab.99% SCC

Abatement-only scenario 100 % n/a 2114 2212 35
SRM-only scenario 186 % * n/a n/a 21
Abatement+SRM scenario 238 % 35.1 2134 2243 20

* SRM does not peak but keeps increasing until the upper limit of 100 Mt(S) yr_] . n/a means not applicable.




Optimal Policy: Abate + SRM

Ensemble members (few) Deterministic results
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Optimal Policy: Abate + SRM

Atmosperic CO2 4Temperature (above pre-industrial)
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Use of abatement + (modest) SRM stabilises T below 2K  (unless SRM fails)




Optimal Policy: Abate+SRM vs Abate-only
Abate+SRM Abate-Onl
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Allowing SRM does not replace abatement, but delays by 30-40 years




Optimal Policy: Abate+SRM vs Abate-only
Abate+SRM Abate-Only
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Abatement-only does not stabilise T below 2K.




Optimal Policy: Abate+SRM vs SRM-only
Abate+SRM SRM-only
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For SRM-only, very high injection rates are needed




Optimal Policy: Abate+SRM vs SRM-only

Abate+SRM SRM-Only
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For SRM-only, CO2 concentrations keeps increasing beyond 2000 ppmyv




Optimal Policy: Abate+SRM vs SRM-only
Abate+SRM SRM-Only
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For SRM-only, CO2 concentrations keeps increasing beyond 2000 ppmy,
and temperature exceeds 2K and is never stabilised!




Optimal Policy: Comparison

-- Abate+SRM keeps T<2K (unless failure occurs)
Neither Abate-Only nor SRM-Only achieve this (cost-efficiently)

-- Abate+SRM reaches 50% abatement by 2139
Abate-Only is faster by 45 years
-> SRM delays abatement, but does not replace it!

-- Abate+SRM limits SO2 injections to 30Mt(S)/yr
SRM-Only goes beyond 80Mt(S)/yr (without stabilising T!)
-> Abatement needed to limit warming in long-term.



Summary: stochastic case
W, — W
AD — Wo'

AD: Abatementsenly, deterministic

0 : no-action policy

C(m)=100% x

Policy ¢ SRM fail  Tipping Peak SRM Ab.50% Ab.99 %

No-action case 0% n/a 96.2 % n/a n/a n/a 45
Abatement-only case (det. policyz) 100 % n/a 49.5 % n/a 2114 2212 42
Abatement-only case 105 % TT% 121 % n/a 37.8 % n/a 2095 2215 41

SRM-only case 181% 179% 185 % 19.8%  60.96 % none! n/a n/a 23
Abatement+SRM case 219% 220% 223 % 20.2 % 6.2 % 35.0 2139 2242 20
realistic storyline 125 % 78% 190 % 79.9 % 30.1 % 31.4 2106 2234 37

I'SRM does not peak but keeps increasing until the upper limit of 100 Mt(S) yr_l. 2 Tipping can occur but the policy maker ignores this and chooses the policy which would be
optimal in the deterministic (det.) case. n/a means not applicable.




Conclusions

Sulphate SRM has the potential to greatly enhance future welfare and
should therefore be taken seriously as possible policy option. It is crucial
to reduce/quantify the considerable uncertainties by future research.

Even if successful, SRM does not replace CO2
abatement, but only supplements it.



Further reading
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Sensitivity of results

Scenario Abate 50 %

Peak SRM

Abatement-only scenario, standard 2095
Ab.+SRM, standard 2139
Abatement-only scenario, low rate of pure time preference (p = 0.5 %) 2068
Ab.+SRM scenario, low rate of pure time preference (p = 0.5 %) 2116
Faster decline abatement cost (A — 2; A3 — 0.015) 2112
Ab.+SRM scenario, less temp. damage, more precip.damage (Y7 — ¥ /2, ¥p — ¥p X 2) 2143
Ab.+SRM scenario, lower tipping threshold (Tijpp = 2K— 1K) 2139
Ab.+SRM scenario, double damage from tipping (€2 = 0.8) 2136
Ab.+SRM scenario, double climate tipping probability (kiipp — Kiipp X 2) 2137
Ab.+SRM scenario, quadrupled SRM failure probability (kfai] — Kfail X 4) 2121
Ab.+SRM scenario, double damage from SRM (g — g X 2) 2133
Ab.+SRM scenario, half damage from SRM (Vg — ¥5/2) 2143

n/a
35.0

n/a
31.1
29.0
32.6
35.6
34.8
34.9
34.3
26.8
43.6




