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Abstract

Reiterated and extreme weather events pose challenges for the agricultural
sector. The convergence of remote sensing and supervised learning (SL) can
generate solutions for the problems arising from climate change. SL methods build
from a training set a function that maps a set of variables to an output. This function
can be used to predict new examples. Because they are nonparametric, these
methods can mine large quantities of satellite data to capture the relationship
between climate variables and crops, or successfully replace autoregressive
integrated moving average (ARIMA) models to forecast the weather. Agricultural
indices (Als) reflecting the soil water conditions that influence crop conditions are
costly to monitor in terms of time and resources. So, under certain circumstances,
meteorological indices can be used as substitutes for Als. We discuss meteorological
indexes and review SL approaches that are suitable for predicting drought based on
historical satellite data. We also include some illustrative case studies. Finally, we
will survey rainfall products existing at the web and some alternatives to process the
data: from high-performance computing systems able to process terabyte-scale
datasets to open source software enabling the use of personal computers.
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Mission
Maize and wheat science for
Improved livelihoods.

Vision

A world with healthier and more
prosperous people — free from global
food crises — and more resilient agri-
food systems.
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The big impact

* Annual benefits * 50% of maize and « Trained over 10,000
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Wheat helps feed the world
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Maize helps feed the world
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Context:

Foresight, Ex-ante Impact
Assessment & Targeting




* Foresight: Looking into the
crystal ball at the future to
understand what it means for us
today

* We define ex-ante impact =
assessment as the analysis at

and livelihood =
strategies and as the analysis of

an%e{mg

° Targeting IOOkS at Short term Now near future far future
questions of where, when, what
and how of technology
deployment
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Climate change

Population growth

Overall economic development
Global systems integration
Urbanization

Lengthening of value chains
Rural transformation
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Selected topics

« Climate change and production

* New and emerging pests and
diseases in crops

« Changing diets and food systems

* Near future decision support

Threat of wheat blast to South Asia’s food security: An ex-ante analysis
Mottaleb et al. 2018 Plos One

Maize systems
under climate
change
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Near future decision support

Open access peer-reviewed chapter - ONLINE FIRST

Satellite Data and Supervised Learning to Prevent Impact of
Drought on Crop Production: Meteorological Drought
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* Support vector regression (SVR) and least squares support vector regression (LS-
SVR)

* Artificial neural network (ANN)

* Deep belief networks (DBN)

* Bagging

 Random forest regression (RFR)

* Adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference
system (ANFIS)

* Boosting

e Hybrid models
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Erab data (ECMWF)
Weather company (IBM)

Focus on some of our key research sites for starters

Work in progress
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https://reliefweb.int/map/zimbabwe/southern-africa-
drought-situtation-emergency-response-
coordination-centre-ercc-dg-echo

Emergency Response Coordination Centre (ERCC) - DG ECHO Daily Map | 29/01/2019

Southern Africa | Drought Situation
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Weather in Harare, Zimbabwe
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The moments describe the distribution of the rainfall

Scatterplot Matrix of the Features of the Harare Data Set: normalized moments daily rainfall
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average daily rainfall anomalie (mm) average max temperature anomalie (C)
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H Very high precipitation anomalies

High precipitation anomalies
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L High precipitation anomalies

195 data points
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Lead/lag correlation (months) between the Multivariate ENSO Index Version 2
and precipitation

correlation
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cross-correlation is a measure of similarity of two series as a function of the
displacement of one relative to the other.
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https://en.wikipedia.org/wiki/Similarity_measure
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seasonal data
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trend seasonal data
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Decomposing monthly precipitation values into seasonal, trend
and irregular components using loess

Difficult to find a causal relationship

Decomposing monthly values of Multivariate ENSO
into seasonal, trend and irregular components using
loess

See also diapo 2

highest values of MEI (El Nifio events) drought in Ethiopia, northern Somalia, Sudan, Eritrea,

Djibouti and eastern Chad)

lowest values of MEI (La Nifia events) with above average rain in Mozambique, Zimbawe,

Lesotho, etc.
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data

time

Decomposing monthly values of SPEI into seasonal, trend and
irregular components using loess
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Thank you
for your
interest!
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