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Warnings

e Work in progress

e I’'m presenting



The Starting Point

Historic Global Mean Temperature Anomalies

As would be Modelled by IAMs As Observed (HadCRUT4)
(DICE/PAGE/FUND)
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The Starting Point

Historic And Future Global Mean Temperature Anomalies
As would be Modelled by IAMs

Example CMIP5 simulation

(DICE/PAGE/FUND)
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Simple IAMs (DICE/FUND/PAGE)
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Simple IAMs (DICE/FUND/PAGE)

Resource
Concentration
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How should we add stochasticity into the

temperature response?

What are the implications of doing so?

Damages

Temperature
change

Damage
function



Damage Functions
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Damage Functions and Uncertainty in AT
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A simple energy balance model

Temperature anomaly (°C)
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Ceff? = F(t) — AAT
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AT. Change in global mean temperature 7
F: Radiative forcing by comparison to ~ 1750 .
C.s Effective heat capacity of the climate system.
A.  Feedback parameter 5 RCP§
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See, for instance: Andrews and Allen 2008; . 0 , , ,
Senior and Mitchell 2000; From: Calel and Stainforth, 2000 2100 2200 2300

Dickinson 1986 BAMS, June 2017



A simple stochastic energy balance model

CerpdAT = F(t)dt — AATdt + oodW;
or equivalently

CorrdAT = F(t)dt — A ATdt + /agdtzvt”dt(o,n

AT: Change in global mean temperature

F: Radiative forcing by comparison to ~ 1750
C.¢ Effective heat capacity of the climate system.
A.  Feedback parameter



More realistic simulations? | |
Hasselmann model trajectories
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Example CMIP5 simulation
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The economic and simulation assumptions

Start date of simulations: 2020

Initial per capita consumption: $10,666
(Aggregate consumption: $80 Trillion)
Initial population: 7.5B

Growth rate: 2%/yr

Pure rate of time preference: 4.4%
Linear utility function

Population growth as in DICE 2016.
Damage function: Weitzman

Size of trajectory ensembles: 8000
Fixed lambda = 1.2 Wm-2K-!
Fixed C4 = 0.8E9 Im—2K-1



Economic Consequences 5-95% range as a

fraction of the

deterministic value:
Global mean temperature anomaly Damages (Trillion USD)

10 —
ﬂ 9% to 10%

489 541 599

-16% to 22%

129 155 190

-20% to +30%

64 80 105

0 T T T | -—//////[\\\\\‘H~h_ -23% to +35%

2050 2100 2150 2200 26 33 45




With smaller variability

Global mean temperature anomaly
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2100

2150

2200

Damages (Trillion USD)
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30 33 37

5-95% range as a
fraction of the
deterministic value:

-4% to 4%

-7% to 8%

-9% to +11%

-10% to +12%



Expected Utility

Damages as
share of output Utility losses
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Change in total utility-
Expected Utility adjusted dollar value

of consumption under
deterministic
trajectory.

Global mean temperature anomaly Damages (Trillion USD)

$2,496 Trillion

I 1 I
489 541 599

$284 Trillion

129 155 190

$129 trillion
/|\ $49 trillion
(c+Dp(AT)) -1
U= 1= 7 n=1.45 p =15

Discount rate, r, = 4.4%

Additional change due
to stochasticity
(fractional additional
change w.r.t.
deterministic case)

$20 trillion (0.8%)

$9 trillion (3%)

$5 trillion (4%)

$2 trillion (4%)



Does physical uncertainty matter?

Probability density
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Table 2 Value of 500 ppm policy with varying effective heat capacity

“Tall Tales and Fat Tails”,
Calel, Stainforth and Dietz,
Climatic Change, 2013

Climate sensitivity

Increase in stationary equivalent (%)

distribution 0.6 GIm—>K~! 12 GIm™?K™! 1.8 GIm—?K™!
IPCC AR4 1.26 0.80 0.47
Stainforth et al. (2005) 49.63 x 10° 19.96 x 107 0.75
Roe and Baker (2007) 75.74 x 10° 43.88 x 10* 76.70




Fitting Observations

« We want models that can reproduce the past but a “bad” match with past observations for
individual simulations isn’t necessarily indicative of a bad model.
Do we have sample sizes to evaluate properly?

One GCM, Two Initial Condition trajectories Hasselmann model trajectories
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The Essence of Predicting Climate and Predicting the
Consequences of Climate Change

0.0018 |
e Extrapolation to a new,

previously unobserved state of
0.0017

the system.
e 21t century climate to some 0.0016 -
extent parallels the S (psu)

quantification of the transient
behaviour as we move from
one attractor to another.
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Daron and Stainforth, Env.Res.Lett., 2013
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