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Abstract

In this thesis I present a generator of dark matter (DM) sub-halos
inside a Milky Way-like galaxy. I use the radial density pro�le of a DM
halo presented by Navarro, Frenk and White (the NFW pro�le which is
∝ r−1 when r → 0 and ∝ r−3 when r → ∞) combined with the statical
Roche criteria for tidal forces. Theoretically sub-halos could be as small
as 10−6 ·M� but computational problems limit me to having a lower limit
of around 10−3 solar masses at the smallest sub-halo.

The DM sub-halo distributions generated are visualized by calculating
a sky map of the strength of annihilation radiation as seen from the Earth.
These annihilation strengths are proportional to ρ2 (where ρ is DM den-
sity), so the more lumpy the galaxy is the clearer the visible structure will
be. All maps are generated as both Mollweide projections and θφ-maps.
I compare how di�erent setups a�ect the sky maps, especially how scaling
a�ects the sub-halo visibility compared to the host halo.

The sky maps are computed for discrete points forming a grid, resulting
in the loss of small sub-halos that fall between evaluation points. This
phenomenon is also studied with the result that you need to choose a
reasonable trade-o� between computational time, and missed sub-halos.
The smaller the grid size is the longer the computational time becomes.
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1 Introduction

It has long been known that there is something missing in the Universe. The
rotation velocities of galaxies, gravitational lensing and temperature distribution
of hot gas inside galaxies all tell the same same story. The Universe should
contain more mass. This missing mass has come to be called �Dark Matter�,
DM, since it has to be electromagnetically neutral, and thus does not shine.

1.1 Galactic rotation velocities and gravitational lensing

As early as in 1933 an astronomer by the name of Fritz Zwicky measured the
rotations of distant galaxy clusters, especially the Coma cluster. Using the virial
theorem he computed the amount of mass in the clusters and compared it to the
mass of luminous objects showing a discepancy of at least a factor of a hundred
[17, 18].

It did however take until the early 1970's until there was mainstream accep-
tance that you needed some kind of extra matter in the Universe. Astronomers
started measuring the rotation velocities of di�erent spiral galaxies and found
that, instead of having velocities that decreased at larger distances, you had
an almost constant velocity out to some cut-o� distance. This indicates that
galaxies had much more mass than what could be observed and that it was
uniformly distributed well beyond the visible disc of stars.

One e�ect of relativity theory is that light is bent in gravitational �elds, much
like light is bent in a common lens. Observations of these gravitational lensing
e�ects, on distant stars and galaxies, imply large chunks of matter �oating
around in the universe. However since there are no visible stars or anything else
that seems to cause the gravitational lensing dark mattes seems necessary.

Recently, the existence of DM has been veri�ed in a number of experiments
of which the WMAP satellite is one.

1.2 The supersymmetric solution

Since dark matter cannot be seen, hence the word �dark�, it cannot interact elec-
tromagnetically. This means that DM-particles have to be electromagnetically
neutral (charge, q = 0). In the standard model of particles there is only one
such type of particle, and that is the family of neutrinos, νe, νµ and ντ . These
particles could account for the missing mass in the universe. However due to the
low mass of these particles, next to zero, this kind of DM would be hot, since
neutrinos travel near the speed of light. Hot DM will not be able to form the
small scale structures that we see in the Universe today and therefore neutrinos
are not likely to be responsible for the abundance of DM in the Universe.

The speci�cation of our desired DM particle is a charge neutral, but still
heavy, particle. A class of such particles is the WIMP or �Weakly Interacting
Massive Particle� which arise from the supersymmetric extension to the stan-
dard model.
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One such particle is the neutralino family, χ , a supersymmetric cousin to the
Z0, γ and Higgs bosons. These particles should be quite massive, up to several
hundred GeV, and only be weakly interacting1. Fortunately these particles are
their own antiparticles and wherefore we should be able to detect the light
emitted from a DM-annihilation. Of course there are lots of other objects in
the galaxy: stars, clouds of gas, etc that also shine. Since the DM particles
are visible only through their self-annihilation we would not expect them to
outshine luminous objects like stars, however there are ways around this.

Studies made by Bergström et. al. using the DarkSusy package show what
the energy spectra of a DM annihilation could look like. One way of �nding
the DM annihilations is to look for the sharp cuto� in energy that should be
produced at an energy of mχ. No other known source has this kind of spectrum
and thus such a spectrum could serve as a �ngerprint of DM. Since χ is its own
anti particle you could have and annihilation process that is χχ → γγ. In this
reaction the γ-photons will have an energy of Eγ = mχ.

A possibility of direct detection could be to look for parts of the sky that
only glow in the spectrum near mχ. If you �nd a region of the sky that shine
at Eγ ≈ mχ but not in optical or any other wavelength you would have strong
evidence for indirect detection of DM. The reason that we can be certain that
we are actually observing a DM-annihilation is that usually other stellar object
shine in many di�erent wavelengths. DM-annihilations could however have a
very speci�c energy range and maybe even have monochromatic lines.

1.3 Via Lactea - The great simulation

Many simulations have been made to simulate the development of the known
universe. Also simulations of our own galaxy has been undertaken. One of the
largest and best is the Via Lactea simulation made by Diemand et.al.[3, 2, 4]
A galaxy similar to our Milky Way has been tracked from the days of the
cosmic microwave background, CMB, to today. In this simulation they started
with a distribution of mass matching the cosmic microwave background (CMB).
Since DM dominates in mass over the �common� hadronic mass in the universe,
the later has been omitted and only collisionless matter has been used in the
simulations. This simulations had recently been updated using the Via Lactea
II simulation of which analysis is still being conducted.

The results are that DM is not smoothly distributed in the galaxy but rather
quite lumpy. The lumpiness comes in all resolved mass scales and is surprisingly
self similar to scales as small as 106M�, where M� is the solar mass. It has
been speculated that this self similarity could be preserved even down to mass
scales as small as 10−6M�.

1As comparison the mass of the proton and neutron are both slightly below 1 GeV and the
electron mass is half an MeV.
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1.4 The GLAST satellite

The Gamma-ray Large Area Space Telescope or GLAST is a space observatory
that will study high energy γ-rays from some of the most exotic events in the
Universe. Some of these events are pulsars and super massive black holes.
The GLAST satellite will hopefully answer some very old questions about the
universe. The satellite which was launched from Cape Canaveral on June 11th
2008 [7], will also make an all sky survey of our own galaxy in the hope of
detecting a DM annihilation signal.

1.5 This Thesis

My contribution to the search for DM is to theoretically and numerically predict
how many DM clumps you could �nd if you from the Earth were to look at the
Milky Way. I will use the density pro�le adopted by Navarro, Frenk and White,
the NFW pro�le. I will use the same approach as Pieri. et. al.[11] and assume
that the DM clumps follow a NFW distribution matching the host halo but
with tidal forces taken into account. To more accurately describe the DM halo
distribution it is necessary to take into account e�ects such as tidal forces,
virialization and the formation of structures in the early universe.

2 Theory

From the Via Lactea simulation you can see that the radial distribution of mass
follows the smooth component of the DM halo, but with an important exception.
Due to tidal forces, large sub-halos cannot exist near the center of the galaxy
without being spagetti�ed and broken up into smaller pieces, much like the
Shoemaker�Levy comet was ripped apart by the tidal �eld around Jupiter.

The sub-halo�cation means that you can decompose the density ρ at a point
r like

ρ (r) = ρH (r) +
∑
i

ρi ([r− ri])

if we put origo at the center of the galaxy. Here ρH is the density of the smooth
host halo while ρi is the density of the ith sub-halo. The luminosity from a
small volume of space is proportional to ρ2 which will complicate the numerical
evaluation luminosity integral.

2.1 The NFW pro�le

The density pro�le developed by Navarro, Frenk and white, is a broken power
law that is r−1 close to the center, but r−3 further out. Usually it is written as

ρNFW (r) =
ρs

r
rs

(
1 + r

rs

)2 (1)
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where rs is the radius at which the pro�le goes from r−1 to r−3 [9, 11]. The
NFW pro�le does have some problems of which one is that the volume integral
of the function is divergent. If we want to calculate the mass of a halo with
parameters ρs and rs inside a radius R we get

M (R) =
ˆ
ρNFW (r) d3r =

ˆ π

0

sin θ dθ ·
ˆ 2π

0

dφ ·
ˆ R

0

ρs

r
rs

(
1 + r

rs

)2 r
2 dr

= 4π
ˆ R

0

r3
sρsr

(rs + r)2 dr = 4πr3
sρs

[
ln
(

1 +
R

rs

)
− R

rs +R

]
(2)

We can clearly see from equation (2) that M (R)→∞ as R→∞. In �gure
1 we can see how the broken power law makes the density pro�le go from r−1

to r−3 in the region of R = 1. We can also see how the encapsulated mass goes
from growing as r2 to the slower but still divergent ln r.
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Figure 1: The density ρ (R) at, and encapsulated massM (R) within, the radius
R.

To handle the divergence we have to choose a cut-o� radius outside which
we say that the density of the halo is zero. There are no absolute way to do this
but a common feature is to say that the density of equation (1) is non zero only
within a virial radius. A cluster of objects is said to be virialized when all of
them are held together by their combined gravity. In reality the halos of several
di�erent sub-halos will mix and a�ect each other.

2.1.1 Virial radius and virial mass

The virial radius can be de�ned in many ways, but a common de�nition is the
following. Assume an object with radial density ρ (r) and encapsulated mass
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m (R) = 4π
´ R

0
f (r) r2 dr. The mean density of the object inside R is

〈ρ〉 (R) =
m (R)
V (R)

=
4π
´ R

0
ρ (r) r2 dr

4π
3 R

3
= 3R−3

ˆ R

0

ρ (r) r2 dr

The virial radius, rvir, is de�ned as the radius at which the mean density
inside of rvir is k times the critical density of the universe, ρ0. Usually k = 200
[11]. The critical density, ρ0, is obtained from the Friedman equation of a �at
universe

H2 =
(
ȧ

a

)2

=
8πG

3
ρ0

where G is Newtons gravitational constant and H the Hubble constant. The
variable a is called the scale factor and tracks the expansion of the universe [1].

Since H2 =
(
ȧ
a

)2
you can say that H is related to the fractional expansion of

the universe.
Reorganizing the equation above we get

ρ0 = H2 3
8πG

(3)

Using the de�nitions above and de�ning m (rvir) ≡ mvir we have the relation

mvir =
4π
3
kρ0r

3
vir (4)

The above equation is interesting since it says that for a given mass the virial
radius is well de�ned by

rvir = 3

√
3mvir

4πkρ0
(5)

Observe that the relation (5) does not depend on the speci�c form of ρ (r)
but is a direct consequence of the de�nition of rvir. This means that you could
if you want use (5) as the de�nition of virial radius. In the future analysis the
simple form of rvir will be of great bene�t.

2.1.2 The concentration parameter

In the NFW pro�le we have the parameter ρs and rs which govern the scale
and shape of the NFW density. However rs is tricky to extract from formula
(2). You can invert M (R) with respect to rs but the �nal formula involves the
Lambert function, L (x), which is the solution to wew = x, and this function is
not on closed form.

Instead we can use the concentration parameter c which is de�ned as

c ≡ rvir

rs
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This means that if we have the virial mass and concentration parameter of
a halo, we can easily calculate the scale density, ρs and scale radius rs. If we
insert that rvir = crs into M (rvir) we get

mvir = 4πr3
sρs

[
ln
(

1 +
crs
rs

)
− crs
rs + crs

]
=

= 4πr3
sρs

[
ln (1 + c)− c

1 + c

]
We can rearrange the equation above and insert (4) to get

ρs =
mvir

4πr3
s

[
ln (1 + c)− c

1 + c

]−1

=
kρ0c

3

3

[
ln (1 + c)− c

1 + c

]−1

(6)

and

rs =
rvir

c
=

1
c

3

√
3mvir

4πkρ0
(7)

The concentration parameter is very useful since it is dimensionless. The
scale of c is usually around c ≈ 10 and larger. In the early universe structure
formed hierarchically and thus small structures formed earlier when the universe
was more dense. These small sub-halos usually have a higher concentration than
larger sub-halos.

2.1.3 Units

Usually you measure the critical density in g/cm3 where you usually write ρ0

as
ρ0 = 1.9 · h2 · 10−29 g× cm−3

where the uncertainty in the value of ρ0 is in h. Present observations bound
h ∈ [0.6, 0.8] [1]. If we want to transform the units of ρ0 into solar masses and
parsec which will be used in the simulations. The relation between gram and
solar masses M� as well as between cm and parsec is

• 1 centimeter = 3.2407×10−19 parsec↔1 parsec = 3.0857×1018 centimeter

• 1 gram = 5.027× 10−34 solar masses ↔ 1 solar mass = 1.989× 1033 gram
[10]

• 1 gram×centimeter−3 = 1.477187× 1022 solar masses×parsec−3

In these units the critical density is

ρ0 = 2.1 · h2 · 10−7M� × pc−3

In the numerical simulation ρ0 will be in units of M� × pc−3.
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2.2 The sub-halo distribution

In several numeric simulations of the mass distribution of sub-halos within Milky
Way-like galaxies you can see that the mass distribution is very self-similar over
large mass scales ranging from 106 ·M� and above to around 1012 ·M�. A span
of six orders of magnitude where the number of halos per mass decade seems to
fall of likeM−λ, where λ is in the vicinity of λ ≈ 2. The reason you do not have
masses bellow 106M� is because of the numerical resolution of the simulations.
Theoretical calculations say that you should be able to have sub-halos down to
the size of 10−6M�. It seems reasonable that you could extend the self similar
distribution of sub-halos down to a size near the theoretical lower bound.

As the simulations imply the radial number density of the sub-halos should
follow the radial density of the Milky Way. However there is one important
exception due to the fact that DM is collisionless matter. Large sub-halos will
probably be torn apart by tidal forces in the inner of the galaxy. This fact is
important to take into considerations and will make the number density function
look like

ρN (r,M) = AM−λ
Θ (r −RT (M))

r
rMW

(
1 + r

rMW

)2 (8)

where rMW is the scale radius of the Milky Way and RT (M) is the radius at
which a sub-halo with mass M is destroyed by tidal forces. See section 2.5 for
more details. In this thesis I will primarily use λ = 2 and will state whenever I
use another value of λ. The function Θ (x) is the usual Heaviside function

Θ (x) =

{
0 if x < 0
1 if x ≥ 0

(9)

The constant A is chosen so that

1 =
ˆ
MW

ˆ Mmax

Mmin

ρN (r,M) d3r dM

however due to the Heaviside function which make the two integrals over space
and mass non-multiplicative the normalization A is hard to calculate, see Ap-
pendix A. That we cannot �nd the normalization of ρN will not be a problem
since in the end we want only to generate a distribution according to ρN (r,M).

2.3 Generating distributions

We will �rst discuss how to generate random numbers. Assume that you have
a stochastic variable X = x in the region between A and B, that you know
has the normalized probability density function f (x). Since f (x) is a density
function we know that it ful�lls the relation

ˆ B

A

f (x) dx = 1
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If we want to change variables from x to y the density function for y will be
g (y) = f (x (y)) · dxdy since

ˆ B

A

f (x) dx = [x = x (y)] =
ˆ y(B)

y(A)

f (x (y)) · dx
dy

dy

Usually most programming languages can only generate a limited amount of
distributions. Some languages can only generate according to the uniform dis-
tribution. This means that we need to �nd a variable that is uniformly dis-
tributed from which we can calculate the value x. Such a variable is p, de�ned
as

p (x) ≡ Prob (X ≤ x) =
ˆ x

A

f (x′) dx′

which is the cumulative probability that X ≤ x. It is easy to see that
p (A) = 0 and p (B) = 1. The interpretation of p is the probability of obtaining
a value of X that is smaller than x. That p will be uniform we can see if we look
at the density function of p, g (p). From the de�nition of p we have dp = f (x) dx
which means that

g (p) = f (x (p)) · dx
dp

= g (p) = f (x (p)) · 1
f (x (p))

= 1

which is the uniform distribution. To generate the value of x we now only need
to invert the relation p = p (x) to x = x (p). As an example we can take the
value of θ that is sinusoidally distributed as f (θ) = sin θ. Our pθ (θ) becomes

pθ =
ˆ θ

0

sin θ′ dθ′ = [cos θ′]0θ = 1− cos θ

Given a random pθ we now calculate θ as θ = arccos (1− pθ).
If our function p (x) would not be invertable other methods have to be ap-

plied, such as the ones mentioned in section 2.4.

2.3.1 Multiple variables

Sometimes you have two variables x and y with the joint distribution f (x, y)
such that Ax ≤ x ≤ Bx and Ay ≤ y ≤ By. Still we have

ˆ Bx

Ax

ˆ By

Ay

f (x, y) dx dy = 1

if we want to generate x and y we can make the same procedure as above only
we do it in two steps. First we retrieve the normalization as

1 =
ˆ Bx

Ax

(ˆ By

Ay

f (x, y) dy

)
dx =

ˆ Bx

Ax

feff (x) dx

11



where feff (x) now is the e�ective distribution of x as a single variable. Assuming
that px =

´ x
Ax
feff (x′) dx′ is invertible we now de�ne py like

py (y) =

´ y
Ay
f (x, y) dy´ By

Ay
f (x, y) dy

and we get the correct normalization giving py (Ay) = 0 and py (By) = 1. This
procedure can of curse be generalized to N dimensions in an analogous manner
to the generalization from one to two.

2.4 Metropolis algorithm

Sometimes however you are not so lucky that you can invert the function p (x),
or even worse, it is impossible to �nd an analytical form of p (x). In these cases
something else is needed, like the metropolis algorithm. Assume that you have
a density function f (x) that need not be normalized. Sometimes it cannot even
be normalized. The idea is that if you let a variable xn make a random walk
over the de�ned space you will retrieve a list of numbers whose distribution
matches f (x).

We start by choosing a starting value of xn. Now let xn make a random jump
to a new point xr by letting xr = xn + ε where ε is distributed symmetrically
around zero2. Two examples of distribution for ε are the Gaussian and uniform
distribution. In our simulations we choose a uniform distribution between −σ
and σ.

We construct the quotient, q, between the values of the density function in
the points xr and xn by

q =
f (xr)
f (xn)

Now one of two things happens.

• If q ≥ 1 let xn+1 = xr.

• If q < 1 let xn+1 = xr with probability q.

• Else let xn+1 = xn.

Usually one trows away the N �rst x-values to give the number generator a
chance to forget about the initial guess.

The trick in using the metropolis algorithm is

1. to choose the initial guess x0 correctly so that you are on a place where
f (x0) 6= 0

2The metropolis algorithm can handle distributions that are not symmetrical but here we
do not bother about that.
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2. to choose the range of randomness such that the range of xr is roughly
over the range of the interval of interest. If the range of xr should be
to small you will need a large N to forget the initial value of x0. If on
the other hand you choose a range of xr that is to large you might �nd
yourself with a series of xn that are identical.

A usual way to check that the choosen parameters are good for the algorithm
is to count the acceptance rate, i.e the percentage of numbers accepted by the
algorithm. Usually one would like an acceptance rate near 60%.

You can easily generalize the metropolis algorithm to handle vector argu-
ments by letting x → x and xr = xn + ε → xr = xn + ε where ε = (ε1, . . . , εn)
and every εj is randomly distributed unrelated to the other components of ε
[14, 5].

It is important to point out that this form of the Metropolis algorithm does

not produce numbers that are independent from each other. Rather the numbers
gained from the Metropolis algorithm is a Markov chain with a total distribution
shaped like f (x). Therefore it is not advisable to use this kind of Metropolis
algorithm if it is important that the generated numbers are independent of each
other as well.

In our case we do not have this problem, since it is only the placements of
the stars that are interesting, not the order in which they where placed on the
sky.

2.4.1 The NFW distribution

As we pointed our earlier we cannot use standard generation procedure described
in section 2.3 to generate a distribution according to equation (8). We will need
the metropolis algorithm, but since the value of ρN falls of like a power law
at higher masses and greater distances from the center of the galaxy it will be
hard go get an e�cient algorithm when the part with the highest values of ρN
also takes up the smallest area. What we can do is to change coordinates to
logarithmic coordinates such that M → em and r → el where dM → em dm
and dr → el dl. If we insert this and integrate over (8) we get

1 = A

ˆ Mmax

Mmin

ˆ rvir

0

r

M2

Θ (r −RT (M))
(rMW + r)2 dr dM

= A

ˆ ln(Mmax)

ln(Mmin)

ˆ ln(rvir)

−∞
el−2mΘ

(
el −RT (em)

)
el (rMW + el)2 eldl emdm

= A

ˆ ln(Mmax)

ln(Mmin)

ˆ ln(rvir)

−∞
e2l−mΘ

(
el −RT (em)

)
(rMW + el)2 dl dm

This means that we can use Metropolis algorithm with

f (l,m) = e2l−mΘ
(
el −RT (em)

)
(rMW + el)2 (10)
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It is easy to see if the distribution is correct by simply plotting the function on
top of a histogram of the generated numbers and making sure that they coincide.
I have made sure that the Metropolis algorithm gives the right distribution. The
acceptance rate is usually around 53%.

One has to be careful when one chooses that starting guess. If you pick a
l0 and/or m0 where f (l0,m0) = 0 then you might never have any other values
than the starting guess depending on how the computer interprets 1

0 and 0
0 .

Especially the case with both f (l0,m0) = 0 and f (lr,mr) = 0 is hazardous if
q is interpreted as 6= 0 since you could have a random walk taking you away
from the region where f 6= 0. In GalaxyHalo the starting guess is set at
m = ln

(
5 · 106M�

)
and l = ln

(
rvir
10

)
and it has worked �ne during all the

simulations.
Of course we have to give our sub-halo a φ and θ value as well but to generate

them we can use standard methods since φ is uniform between 0 and 2π and θ
is sinusoidal between 0 and π.

2.5 Tidal forces and tidal disruption

There is one more thing we need to clear out before we can generate the ρN
distribution. That is the so called Roche distance, RT , which is the radius inside
of which the sub-halo is torn apart by tidal forces. Let us take it from the start.
Assume that you have a distribution of mass that has accumulated mass M (r)
inside the radius r. Assume that you have a piece of mass m at radius r. The
force that m experiences from the rest of the halo is

FG = G
M (r)m

r2

Now assume that the small halo is embedded within a larger central halo.
This central halo has an accumulated mass function of MH (d) where d is the
distance from the halo center. Our small mass m, which we assume is as close
to the center halo as possible, will of course feel a gravitational pull from the
center galaxy as well. That force is

FH = G
MH (d− r)m

(d− r)2 ≈ GMH (d− r)m
d2

·
{

1 +
r

d

}
= FV + FT

The �rst term, FV , is the usual gravitational force that comes from the mass at
distance d. The second term is the one we are interested in since it says how
big the tidal force acting on the piece of mass is. If the tidal force is greater
than the self-gravity the sub-halo will be torn apart by the central halo [16].
Therefore we seek the radius where FT < FG. This gives

G
MH (d− r)mr

d3
< G

M (r)m
r2

m
MH (d− r)

d3
<

M (r)
r3

(11)

which is the Roche criterion in a general form.
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2.5.1 Roche criterion for NFW pro�le

Let us apply equation (11) to the NFW pro�le. Both MH and M are on the

form MH (R) = 4πr3
sMW ρsMW

[
ln
(

1 + R
rsMW

)
− R

rsMW +R

]
where sMW → s for

the sub-halo. Remember thatM (r) is divergent so we need to de�ne the cut-o�
distance for r. The choice we will make so that we are consistent with what we
have done earlier is to let r = rvir.

With the use of rvir the right hand side of equation (11) becomes just a
constant. Recall formula (4) on page 8 and insert it into the left hand side and
we have

M (r)
r3

∣∣∣∣
r=rvir

=
mvir

r3
vir

=
4π
3
kρ0 (12)

which is a constant. This is good since the only part where rvir enters now is in
MH (d− rvir). If we let rvir → 0 we get the equation

MH (d)
d3

=
4π
3
kρ0 (13)

The solution to this equation is the distance inside of which no sub-halos
survive tidal forces. In Appendix A we will see that for small values of rvir the
Roche distance is RT = d0 +αrvir where d0 is the solution to equation (13) and
α is a factor close to one.

2.5.2 Bypassing the numerical solution

Let us return to the original Roche criteria that says

MH (d− rvir)
d3

<
4π
3
kρ0

Remember that in equation (8) we are really only interested in if you are inside
the radius of tidal disruption or not. This means that we do not really need to
�nd the exact value of d that solves the Roche criterion. It is really enough to
see if the inequality is ful�lled or not. Therefore you can change Θ (r −RT (M))
to Θ

(
4π
3 kρ0 − MH(r−rvir(M))

r3

)
where rvir is de�ned by equation (5).

2.6 The Line of Sight

When we have generated all of the sub-halos in the Galaxy we would like to
calculate what a telescope somewhere in the Galaxy would be able to see. The
rate of detection for a telescope depends on many factors such as the geome-
try of the detector, the astrophysical properties of the target and the physical
properties of the medium of interest.

Assume a small volume element dV at a distance r from the Earth. This
volume has a source density S (Eγ , r) that determines the number of photons
of a speci�c energy that are emitted per volume time and energy. The photons
will be emitted in all directions and thus when they have traveled the distance
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to the Earth be spread over a sphere with area 4πr2. Since the distance to dV is
much greater than the dimension of the detector we can assume that the photon
enter parallel to each other. The number of photons detected from the source
will thus be G(Eγ)

4πr2 S (Eγ , r) where G (Eγ) is the e�ective area of the detector.
If we denote the total amount of photons with energy Eγ that are detected

per time unit, by R (Eγ) from the entire universe we have the relation

R (Eγ) =
ˆ

∆V

G (Eγ)
4πr2

S (Eγ , r) dV

= G (Eγ)
ˆ

∆Ω

ˆ
l.o.s

S (Eγ , r)
4πλ2

λ2 dλ dΩ

= G (Eγ)
ˆ

∆Ω

ˆ
l.o.s

1
4π
S (Eγ , r) dλ dΩ

where
´

l.o.s
=
´∞

0
is the �line of sight� integral in the direction of ψ.

Let us look a little bit closer at the source S (Eγ , r). This factor actually
consists of two separate parts and can be written as

1
4π
S (Eγ , r) =

dΦPP

dEγ
(Eγ) · ρ2 (r)

where ρ is the mass density of DM and dΦPP

dEγ
(Eγ) is the factor scaling with

the amount of photons (of energy Eγ) that will be emitted from a volume dV
with density squared ρ2. This factor does only depend on the particle physics
involved and can be written as

dΦPP

dEγ
(Eγ) =

1
4π

σannv
2m2

χ

·
∑
f

dNf
γ

dEγ
Bf

where mχ is the MD particle mass,
dNfγ
dEγ

the di�erential photon spectrum
and Bf the branching ratio. The v is just the mean speed of the DM particles
and σann the cross section for annihilation [11]. I will not engage in this term as
the outcome depends strongly on what kind of DM particle that is considered.

If we just look at the di�erential detection rate for a certain angle ψ, we get

dR

dΩ
(Eγ , ψ) = G (Eγ)

ˆ
l.o.s

dΦPP

dEγ
(Eγ) · ρ2 (λ, ψ) dλ

= G (Eγ) · dΦPP

dEγ
(Eγ)×

ˆ
l.o.s

ρ2 (λ, ψ) dλ

= G (Eγ) · dΦPP

dEγ
(Eγ)× J (ψ) (14)

It is the last factor J (ψ) that we will focus on since the other factors in
the end are only numbers or distributions independent of the DM distribution
within the Universe. The factor we will calculate is thus

J (ψ) =
ˆ

l.o.s

ρ2 (λ, ψ) dλ
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which will be in units [J ] = M2
� · pc−5.

2.6.1 A small clari�cation

When one looks at J (ψ) above one might naively get the impression that the
distance to the volume element dV does not matter any more. This is partly
true and partly not true. Intuition tells us that an object becomes fainter the
further away you are from it which is perfectly true. However when it comes
to the value of J (ψ) for a speci�c angle ψ the distance to dV does not matter.
The whole thing becomes much clearer if we remember that J (ψ) is an angular
density.

Let us make an example to straighten things out. Here we only use planar
polar coordinates for simplicity, but the e�ect is the same for spherical polar
coordinates. Imagine a circle of radius R, placed at x = d on the x axis. How
does this sphere look in polar coordinates (centered at x = y = 0)? The further
away the circle is placed from origo the smaller the area is occupied in polar
space. The equation describing our circle is

(x− d)2 + y2 = R2

If we change to polar coordinates using x = r cosψ and y = r sinψ we get

R2 = (r cosψ − d)2 + r2 sin2 ψ = d2 + r2 − 2rd cosψ (15)

This is really the trigonometric cosine rule which we could have otherwise
derived from strict geometrical considerations. Let us investigate what happens
when d is small, and when d is large. If d = 0 then equation (15) becomes
R2 = r2 which is just a line in polar space. The value of ψ ranges from 0 to 2π.
When d 6= 0, we can rewrite (15) as

cosψ =
d2 + r2 −R2

2rd

If parametrize r2 = x2 + y2 by x = R cos θ + d and y = R sin θ we get
r2 = R2 + d2 + 2Rd cos θ. Inserting this into the equation above gives us

cosψ =
d+R cos θ

r

If we write R = kd we get

cosψ =
1 + k cos θ√

1 + k2 + 2k cos θ
It is now easy to see that when k � 1 then cosψ ≈ 1 and thus ψ ≈ 0. Later

we will �nd out that the maximum angle an object at distance d and radius
R occupies on the sky is 2∆θ = 2 · arcsin

(
R
d

)
. This means that the maximum

di�erential intensity of an object is unchanged no matter the distance. The
spread of the object will however be smaller the further away it is and therefore
the total luminosity integral will be smaller.
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2.7 Coordinate transformations - The short version

Since any measurements made by GLAST or any other telescope will be centered
at Earth we need to move the coordinate system in such a way that origo is at
the Earth and not in the center of the galaxy (CoG). We also need to decide
how to orient this coordinate system to get a good view. Since we want to use
spherical polar coordinates presented in a Mollweide projection we would like
the CoG to be centered in the picture. This means that we should orient the
coordinate system of the Earth so that CoG has coordinates θ = π

2 and φ = π.
The way we do this is that we �rst transform the polar coordinates of the

CoG to Cartesian coordinates using the standard transformation

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

Then we the move the coordinate system to the Earth by letting (xE , yE , zE)C =
(0, 0, 0)E . By choosing a clever position for the Earth we do not need to ro-
tate the coordinate system when we have transposed it. In this case the clever
position of the Earth is at (rE , 0, 0)C which will make the CoG positioned at
(−rE , 0, 0)E which is precisely θ = π

2 and φ = π. It is worth to point out that
since all stars are spherically symmetrically distributed we can choose the angles
of the Earth without loosing the randomness. The same cannot be said for the
value of rE . If rE is small we will be closer to CoG and the view will be more
homogeneous than if rE is large. In this case the sky map will be noticeably
more luminous in the direction of CoG and fall of rapidly outwards.

The coordinate transform is therefore the simple

x′ = x− rE
y′ = y

z′ = z

When the new Cartesian coordinates are in place we can calculate the new
polar coordinates as

r′ =
√
x′2 + y′2 + z′2

θ′ = arccos
(
z′

r′

)
φ′ = arctan

(
y′

x′

)
+ Θ (−x′)π

The addition of Θ (−x′)π is because the range of φ′ is 2π while the image
of arctanα is only π.
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2.8 Angular integration

Like mentioned before the luminosity from a small volume in space is propor-
tional to the square of the density. ∆L ∝ ρ2∆V . This means that the total
luminosity can be written as

L = A

ˆ
V

ρ2 (r)
r2

d3r = A

ˆ
Ω

(ˆ ∞
0

ρ2 (r) dr
)
dΩ

= A

ˆ
Ω

J (ψ) dΩ

where ψ is a general coordinate of both θ and φ. We are not really interested
in the entire value of L, rather we are interested in the angular distribution of
the astrophysical factor

J (ψ) =
ˆ
l.o.s

ρ2 (r = (λ, ψ)) dλ

Even for a single halo the integral above is complicated and the fact that we
have a lot of lumpiness does not help. With the problems of doing an analytical
integration of J (ψ) we will need to numerically evaluate the function for certain
values of ψ.

The full form o� ρ (r)is

ρ (r) = ρHosthalo (|r− rO|) +
∑
i

ρi (|r− ri|)

where ρi is the density of the ith sub-halo centered at ri. The argument |r− ri|
can be calculated as

|ri − r|2 = r2 + r2
i − 2rri {cos (θi − θ) + sin θ sin θi [cos (φi − φ)− 1]}

A special case is |r− rO| and since we have chosen θO = π
2 and φO = π we

get

|rO − r|2 = r2 + r2
O − 2rrO

{
cos
(π

2
− θ
)

+ sin θ sin
π

2
[cos (π − φ)− 1]

}
= r2 + r2

O − 2rrO {sin θ − sin θ [cosφ+ 1]}
= r2 + r2

O + 2rrO sin θ cosφ

2.8.1 Integrating over the sum

If we assume that the host halo has index 0 we get

ρ (r) =
∑
i=0

ρi (|r− ri|)

and thus

J (ψ) =
ˆ ∞

0

[∑
i=0

ρi (|r− ri|)

]2

dλ (16)
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We will need to numerically integrate and evaluate the integral in (16) and
to do so we will use a simple rectangular approximation that

ˆ ∞
0

f (x) dx =
∞∑
j=1

f (xj) ·∆x

It is not practical to have an in�nite sum when you do a numerical evaluation.
Fortunately the choice of where to cut of the sum is rather easy to make since
we know that there are no halos outside the virial radius of the host halo3. In
this case we choose the cuto� at λNr = 2rvir Halo which makes ∆λ = 2rvir Halo

Nr
and λj = j · ∆λ. We choose to evaluate J (ψ) at the angles φl = (l − 1) · ∆φ
and θk =

(
k − 1

2

)
·∆θ with ∆φ = 2π

Nφ
and ∆θ = π

Nθ
. All indexes j, k and l start

at 1. Putting all these thing together we get

J (ψkl) = J (θk, φl) =
2rvir Halo

Nr
·
Nr∑
j=1

[
N∑
i=0

ρi (|rjkl − ri|)

]2

(17)

where rjkl = (λj sin θk cosφl, λj sin θk sinφl, λj cos θk).

2.8.2 Scaling the sub-halo

As mentioned in 2.2, usually the number of halos necessary to get the correct
total mass is more than you you can generate. If we let MS be the total mass
of the sub-halos and MH be the mass of the host halo, the total mass of the
galaxy is MT = MS +MH . We would like to rescale MS with a factor q in such
a way that the fractional mass of M ′S = qMS is p. The de�nition of p is

p =
MS

MS +MH
(18)

which gives

MS = MH

(
p

1− p

)
If we insert that MS = N · 〈M〉 where 〈M〉 is the average mass of all the

sub-halos and N the number of sub-halos and letMS →M ′S we get an equation
for q that is

q =
MH

N · 〈M〉

(
p

1− p

)
(19)

How we should implement this normalization is not clear cut. As I see it there
are two possibilities. The �rst one is to simply let ρ (r) =

∑
q ·ρS (Mvir, r)+ρH ,

and the other is to let ρ (r) =
∑
ρS (q ·Mvir, r)+ρH . These two ways of rescaling

the sub-halos both have advantages and disadvantages.

3There might in fact be some parts of the sub-halos that are outside of the radius since
the restriction is limited to the center of mass.
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In the �rst case we just scale the density of the sub-halos with a factor of q.
This will make the sub-halos stronger than they actually are and enhance the
lumpiness. This will e�ectively change the concentration of the sub-halos since
letting ρS (r) → q · ρS (r) is related to letting ρs → q · ρs.4 Remember that ρs
is a function of concentration only and if we change ρs the concentration will
change as well.

In the second case we scale the mass of the sub-halo. This means that the
viral radius will change since there is a one-to-one relation between virial mass
and virial radius. Changing the tidal radius means that some of the halos will
be inside of their virial radius.

I have chosen the �rst way of renormalizing since it is slightly easier to
implement. As for the value if p I have chosen p = 0.15 since that is what Pieri
et. all. uses [11].

One must be careful when one uses the renormalization because you can
get really ugly e�ects if the scaling factor is large. An example of this can bee
seen in �gure 2 where two distribution of N = 106 sub-halos with a lower mass
of Mmin = 10−3M� are compared. In this case the q-factor is approximately
1.6 · 107 which greatly distorts the image.

4Note that ρS is the density pro�le of the sub-halo whereas ρs is the density scale of the
sub-halo. This unfortunate resemblance of variables will only occur here though.
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Figure 2: Comparison between two distributions of N = 106 sub-halos. The
projections on the right shows how the sky map transforms when we scale the
sub-halos with the correction factor q. The tow pictures are with a lowest mass
of Mmin = 10−3M� and corresponding scaling factor q ≈ 1.6 · 107. The middle
and bottom pictures have a lowest mass of Mmin = 103M� with corresponding
scaling factor q = 120. In the central region you do not see much but at the
sides you can see much more structure using the scaling factor. All units are in
ln
[
J (ψ) ·M−2

� · pc5
]
.

2.8.3 Partial angles

In order to reduce the CPU time we do not want to integrate over the entire
sky of very little sub-halo, especially when most of them do not even span more
than a few degrees on the sky. Assume a sub-halo with radius R originated at
(r, θ, φ) on the sky. We are interested in knowing how large part of the sky this
halo occupies.

Since the halo is spherical any line that touches the surface will automatically
be normal to the orientation of the surface. If we draw a line from the center
of the sub-halo to the surface at an angle ψ from the x-axis, this line will have
orientation (R cosψ,R sinψ). Another line, that originates from the center of
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the origo and touches the surface of the sphere at the same place as the �st line
will have orientation (r cos θ +R cosψ, r sin θ +R sinψ). Since the two lines are
orthogonal their scalar product will be zero.

We can thus write

0 = (r cos θ +R cosψ, r sin θ +R sinψ) · (R cosψ,R sinψ)T

= rR cos θ cosψ +R2 cos2 ψ + rR sin θ sinψ +R2 sin2 ψ

= rR cos (ψ − θ) +R2

= R (r cos (∆ψ) +R)

where ∆ψ = ψ − θ is related to ∆θ by ∆θ = ∆ψ − π
2 where ∆θ is the angular

spread in the θ coordinate. If we rewrite 0 = r cos (∆ψ) + R and insert ∆θ we
get

−R
r

= cos
(

∆θ +
π

2

)
= cos ∆θ cos

π

2
− sin ∆θ sin

π

2
= − sin ∆θ

with solution

∆θ = arcsin
R

r

We can use the same argument as above to �nd the spread in the φ variable
but this time we will have to scale r by sin θ because the e�ective radius at
z = r cos θ is r → reff = r sin θ. With this taken into account the angular
spread in the φ coordinate is

∆φ = arcsin
R

r sin θ

which means that the higher the elevation above the xy plane the larger the
spread in the φ variable.
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Figure 3: Calculation of partial angles. The principle is the same for both ∆θ
and ∆φ but for ∆φ the radial distance is changed as r → reff = r sin θ.

2.9 Mollweide projections

We have earlier found the form of J (ψ) but the form of it is not the best, since
we would like an all sky projection that preserves area and solid angles since
the actual area of J (ψ) is proportional to sin θ. One such projection is the
Mollweide projection widely used in astronomy. The projection is onto an xy
area of 2l × 2s where

x =
2
√

2
π

λ cos ξ

y =
√

2 sin ξ

where ξ is an e�ective latitude which ful�lls

2ξ + sin 2ξ = π sinϕ

and ϕ is the real latitude [15, 12]. If we want to project our function f (θ, φ)
using Mollweide we �rst have to transform polar coordinates to latitudes an
longitudes. The relation is

ϕ =
π

2
− θ

λ = φ− π

We know that the projection is on an ellipsis with width 2
√

2 and height
√

2
so the total area is 4π just like the total area of Ω. We can now map a speci�c
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point (x, y) onto (θ, φ) by

ξ = arcsin
(
y√
2

)
ϕ = arcsin

(
2ξ
π

+
sin 2ξ
π

)
λ =

πx

2
√

2 cos ξ

If we discretize we say that

M (x, y) =

{
f (θ, φ) ifx2 + 4y2 ≤ 8
0 else

Of course, since f (ψ) is only sampled in discrete points the the mapping
from x, y to θ, φ will not always be perfect. We therefore need to choose how
to transform theses points in the θφ-grid to points on the Mollweide grid even
though these points will not always overlap. There are two simple routines
which we will use since we do not a priori know which one is preferable. The
�rst method involves interpolating between points and will be discussed in the
next section. The second method is to choose the ψij point that is closest to
the real point ψ.

2.9.1 Interpolation

As mentioned above when we transform from θφ to Mollweide we will need to
make an interpolation between ψij points lying around the real point ψ. Assume
the we want to know the value of M in the point (x0, y0), but we only have the
values in M00 = M (0, 0), Ma0 = (a, 0), M0b = (0, b) and Mab = M (a, b). We
can now interpolate between the points using the curve z = A+Bx+Cy+Dxy.
The last term is to make sure the place �tted with the three points also touches
the fourth. It is easy to determine the coe�cients for A, B, C and D when we
solve the equation system

A = M00

A+Ba = Ma0

A+ Cb = M0b

A+Ba+ Cb+Dab = Mab

with solution

A = M00

B =
Ma0 −M00

a

C =
M0b −M00

b

D =
Mab −Ma0 −M0b −M00

ab
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If we rearrange the solutions we get

z = M00 +
Ma0 −M00

a
x+

M0b −M00

b
y +

Mab −Ma0 −M0b −M00

ab
xy

=
M00

ab
(ab− bx− ay − xy) +

Ma0

ab
(b− y) · x+

M0b

ab
(a− x) · y +

Mab

ab
xy

=
1
ab

[Mab (ab− bx− ay − xy) +Ma0 (b− y)x+M0b (a− x) y +Mabxy]

When we change variables so that x = θ − θk and y = φ − φl with a = ∆θ
and b = ∆φ, we get

z (θ, φ) = Mkl +
Mk+1,l −Mkl

∆θ
(θ − θk) +

Mk,l+1 −Mkl

∆φ
(φ− φl)

+
Mk+1,l+1 −Mk+1,l −Mk,l+1 −Mkl

∆θ∆φ
(θ − θk) (φ− φl)

This interpolation cannot be used on the sides and in the corners of the
θφ-plane. At these places one has to extrapolate beyond the four points lying
closest thus changing the lowering or raising the index of either k or l or both
by one.

The di�erences between these two sorts of interpolations are not large but
they do exist. Mainly in the distribution of J (ψ) values. As we can see in
�gure 4, when we have the skew Mollweide projection we preserve the pixel
distribution while this distribution becomes more smeared out when we have
the interpolation.

Figure 4: Comparison of how the pixel distribution of J (ψ) transforms when
we go from a θφ representation to a Mollweide projection. This particular
distributions is for N = 108 sub-halos withMmin = 100M�. We can see that the
skew Mollweide projection preserves the pixel distribution while the interpolated
Mollweide projection smears the distribution together.

26



3 Computational information

The entire program is written in FORTRAN, a language constructed for speed,
which requires special care from the programmer. Some of the features of FOR-
TRAN are listed in Appendix C.

3.1 Subroutine breakdown

The code of my program is divided into several subprograms, to make the pro-
gram more easily navigated. The thought is that you should be able to alter
in one subprograms without causing direct errors in another. The subprograms
are also written so that you can remove some of them without a�ecting the
possibility of running of the program as a whole. An example is that the con-
tribution to the density from the sub-halos and the host halo are added using
di�erent functions. This gives the programmer the option to remove either the
lumpy och smooth component of the density by just removing the function that
adds the corresponding term.

In �gure 5 there is a schematic picture of how all the functions as subroutines
are linked together in my program. Single arrows is a function call where the
arrow points away from the called function. Double arrows are subroutines
where information travels both ways since some subroutines change the value of
variables in the main program. Lines without any arrows denote the next stage
within the same program/function.

Figure 5: Schematic picture of how my program is build.
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The functions and their use are:

• GalaxyHalo: The main program where all the parameters are stored
and initiated. If you want to change any parameters, here is the place to
do it.

• StarGenerator: A subroutine that generates N sub-halos distributed
spherically symmetric and radially according to equation (8) on page 10.
Calls MetroRadLogNFW.

• MetroRadLogNFW: Uses the Metropolis algorithm to generate a ra-
dial distribution according to (8). The Metropolis density function is
calculated in logarithmic units and therefore calls RadLogNFW for the
speci�c value of the density function.

• RadLogNFW: Calculates the speci�c value of the density function. Rad-
LogNFW is zero whenever M < Mmin or r /∈ [RT (M) , Rmax]. Rmin is
used to know when r < RT (M).

• Rmin: A function calculating ∆F = FH − FT (M). Whenever ∆F is
negative then r < RT (M) and RadLogNFW is zero.

• sp2cart: Subroutine transforming spherical polar coordinates to Carte-
sian coordinates.

• CoordinateMover: Transforms the Cartesian coordinates from being
centered at the galaxy center to having their origo at the Earth.

• cart2sp: Subroutine transformation Cartesian coordinates back to spher-
ical polar coordinates.

• Integration: Adds all the sub-halo contributions (except the host halo
contribution which is separately added) to the density. The density con-
tribution is calculated using NFWhalo.

• NFWhalo: Function that return the density at distance r from the sub-
halo center.

• Interpolations: A function that interpolates between the discrete points
in the θφ-plane sky map when you transform the to a Mollweide projec-
tion.

In my program I have limited the use of global variables to just a few, in order
to prevent mix ups. Instead my functions and subroutines have an extensive
number of arguments in order transport the information.

3.2 Some interesting tricks

Sometimes the algebra described in the previous sections are not directly trans-
latable to program code. Sometimes the naive implementation will result in
huge loss of e�ciency. In these cases you have to tweak the formulas or rewrite
the program in such a way that you save CPU time or memory.
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3.2.1 Integrating over the sub-halos

In the original formulation of the calculation of the density in the galaxy we had
(17) where we �rst sum over space and the over the sub-halos. This equation
is �ne, but often ρi (|rjkl − ri|) = 0, which happens whenever |rjkl − ri| > r

(i)
vir

where r(i)
vir is the virial radius of the ith sub-halo. This means that many of the

iteration are really unnecessary. To save CPU-time I reorganized the sums so
that the contributions for every single sub-halo are added separately.

3.2.2 Dividing the volume

When you calculate the volume in which the sub-halo exist, you sometimes �nd
yourself in a position where parts of the φ interval lies outside of the [0, 2π)
range. Because of periodicity this means that you really have a sub-halo in the
region [0, α] ∪ [β, 2π). The FORTRAN for-loop does only allow you to have
evenly spaced iterations. The naive solution to this problem is to say that
the sub-halo occupies the entire range [0, 2π) and simply iterate over it. This
procedure however requires a lot of CPU time since we will need to iterate over
large parts of the sky, especially if α+ (2π − β) is much smaller than 2π.

What we can do to improve performance is that instead of having one for-
loop that runs from 0 to 2π, we use two loops that run over [0, α] and [β, 2π)
respectively. If all the sub-halos had dφ = α+(2π − β) the quotient of CPU-time
gained can sometimes approach 2π

dφ . The improvement did still speed things up
by a factor of at least 10.

3.3 The FITS �le format

The dominating �le format for astronomers and other people staring at the sky
is the FITS �le format. Invented in the 70's this �le format is good for storing
both images and information regarding the images. The form of FITS is rather
strict which makes it hard to write FITS �les by hand. If you are a FORTRAN
user, you can in principle print to a FITS �le row by row but it is cumbersome
to say the least. We can however use a library package originally intended for
C programming but altered to �t FORTRAN. The package in question is called
cfitsio and is not a standard package in most FORTRAN compilers [6].

All the sky maps made in this thesis are stored in FITS format [8].
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4 Results and Discussion

What we get out of our simulations is, as we have said earlier, sky maps that
show the luminosity density for the θ and φ coordinates. These maps, as we can
see in �gure 7 on page 32, show that the highest density is in the region nearest
the center of the galaxy and decreases at higher distances. What we would like
to do is to compare our DM luminosity sky maps with the cosmic background
spectrum. Such a spectrum can �easily� be generated using the GALPROP
package [13].

There will however not be time enough for me to do this comparison in this
thesis, and so I will only lay down the basics for such a comparison.

4.1 The Parameters

The program I have developed is written in such a way that you can easily
change the major aspects of the simulation like

• N : The number of sub-halos in the system

• Nθ, Nφ: The angular resolution of the simulation. Changing either Nθ or
Nφ alters the size of the sky map since these parameters de�ne the number
of pixels in the FITS �le.

• Nr: Related to the radial resolution, ∆r by Nr · ∆r = rmax. Usually I
choose rmax = 2rvir where rvir is the viral radius of the host halo.

• MH : The mass of the host halo, in units of solar masses (M�). The mass
of the Milky Way is roughly 1012 ×M� [10].

• p: The percentage of the total mass that is located in sub-halos. If nothing
else is stated the choice is p = 0.15.

• rE : The radius at which the Earth is circulating. In the simulations this
is chosen to be 7660 parsec5.

• rvir: The virial radius of the Milky Way. With the de�nition of virial
radius we have rvir ≈ 2 · 105 parsec. This is a rather large number since
many sources say that the radius of the Galaxy is 3 · 104 parsec and the
radius of the halo is around 6 · 104 parsec [10].

Other parameters that are not as easy to change but can be altered on a global
scale is

• k, ρ0: In the de�nition of viral radius the critical density of the Universe
enters, as well as the quotient between the mean density and the critical
density. Changing any of these two would yield e�ects in the virial radius.
I have always used k = 200 and ρ0 = 10−29 × g/cm3 = 1.477 × 10−7 ×
M�/pc3.

5The Earth is at approximately 25 000 light years making 7660 parsec. Sources are not in
agreement to late i found a more reliable distance of 8.5 kpc[10].
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Figure 6: Comparative sky maps of Mmin with 10−3 (top), 100 (bottom left)
and 103 (bottom right) solar masses, M�. All �gures uses a constellation with
N = 106, Nφ = 720, Nθ = 360 and Nr = 400. Many more star are visible then
we lower Mmin but this has partly to do with the scaling factor boosting these
stars. The scales are as usual in ln

[
J (ψ) ·M−2

� · pc5
]
.

4.2 Output

One of the questions, which we would like to have answered, is what happens
when you scale down the size of the smallest sub-halo. Several runs have been
made to get a feeling for what happens when you allow for smaller sub-halos.
Some of the results can bee seen in �gure 6. The conclusion we can draw is
that when you lower the minimum mass the NFW pro�le becomes more visible.
This has several reasons. When Mmin is large only heavy sub-halos are allowed
and these are, because of tidal forces, condemned to be in the outer regions of
the galaxy. This increases the chances of the Earth being inside the cloud of
sub-halos. The luminosity density will thus be more even over the sky, just like
when you are inside of a cloud of fog. When the minimum mass, Mmin, is small
most sub-halos are never observed, the are simply to faint and small. In this
case the luminosity from the cost halo will be the biggest contributor.

The fact that you do not see most sub-halos because they fall between di�er-
ent evaluation points is problematic. You can make a rough estimate about how
many sub-halos will be detected with a speci�c number of evaluation points.
For instance a sub-halo with radius R at a distance d from the coordinate
system origo will have a chance of approximately

4
3πR

3

∆V to be counted. Here
∆V = d2 sin θ ·∆λ ·∆φ ·∆θ is the volume spanned by the integration points at
radius d and elevation θ. Spheres with a radius larger than the longest dimension
of ∆V will always be detected.
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The smooth background component should look something like �gures 11
on page 47.

The units used in the calculations are mainly parsec and solar masses. Thus
the dimension of ρ is [M�/pc3]. With ∆λ having the dimension of [pc] the

dimension of J (ψ) is [pc ×
(
M�/pc3

)2
]=[M2

�/pc
5]. Since the scale of J (ψ)

ranges over several orders of magnitude all sky maps have values of ln [T (ψ)],
where T (ψ) = J (ψ) ·M−2

� · pc5

Figure 7: Sky map of ln [J (ψ)] as seen from the Earth. We can see lots of
structure and identify several satellites. The q-factor in this picture is ≈ 200
which boosts the structure, but the same type of structure can bee seen in sky
maps where the q-factor is approximately unity. The scale is logarithmic of
J (ψ), namely ln

[
J (ψ) ·M−2

� · pc5
]
.

For �exibility in the analysis GalaxyHalo has several di�erent sky maps
in its output. You have two θφ-maps showing T (ψ) and ln [T (ψ)], as well as
Mollweide projections of both T (ψ) and ln [T (ψ)]. The Mollweide projections
are made in two copies using di�erent techniques for coordinate transforms, one
with interpolated values and one where the nearest pixel point is choosen as
described in section 2.9.1.

4.3 Comparison with cosmic radiation

If the only visible thing in the Universe was the DM-annihilation luminosity
people around the world would not be sitting thinking about if DM-annihilation
can actually bee seen. However DM-annihilations have to outshine several other
sources of radiation in the universe to be able to be detected. What we would
like to do is to compare the luminosity spectra created by us with known galactic
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spectra or models for galactic spectra.
The main idea is that if you have a model for the spectral background and

add it to the DM-annihilation spectra we can see if any DM-clumps are visi-
ble against the background. One package that generates spectral data is the
GALPROP package by Strong et al. [13].

Figure 8: GALPROP generated picture of Bremsstrahlung. Note that the center
of the galaxy is located at φ = 0.

It is important to note that a DM-clump not only has to outshine other
galactic sources but also has to shine stronger than the smooth component.
The latter task might sometimes be hard enough as Pieri et. al. saw for some
con�gurations of DM distributions [11].

However, whether or not the cosmic background or the smooth component
is the dominating we will still need some way of determining whether or not we
can see any lumps. This business with �nding lups is not an easy task. There
are some algorithms for identifying stars and such like the �Friend of Friend�
algorithm used to identify stars in the Via Lactea simulations [2].

Other approaches might be to, in a small region of space, �t the spectral
luminosity to some model describing a small part of space. Then the deviations
by experimental data from the theoretic curve can be compared to look for large
deviations.

4.3.1 Error propagation

No matter which method we choose to make our analysis, the error analysis
are much the same. Assume that we in energy bin Ek have found a potential
DM-annihilations signal at θi, φj , denoted Dijk. The corresponding theoretical
value from some statistical analysis is called Gijk.

We would like to know what a GLAST like experiment would be able to
detect if we where to make an all sky survey over a period of time. The number
of photons a detector will see is related amongst other things the area and e�ec-
tiveness of the detector and the particle physics speci�cs as written in equation
(14) on page 16.

The variables sDijk and Gijk thus describes the detection rate of photons
and we assume that Dijk and Gijk are in units [counts/time interval]. We can
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assume that both D and G6 are Poisson distributed and therefore they have an
error of σD =

√
D and σG =

√
G.

Our null hypothesis is that there is no di�erence between D and G, meaning
that D = G . We can reformulate the problem as ∆ = D − G = 0. The error
of ∆ is σ2

∆ = σ2
D + σ2

G = D +G. The t value, which is the number is standard
deviations that ∆ is from 0 is t = ∆

σ∆
.

Since we are not making a focused search it would be possible to get a high t
value even if the true value of D really is G. We do, of course, want to minimize
the false positives of this kind. It is customary in these kinds of searches to
choose that the threshold t is 5. It is sometimes referred to as a 5σ search.

If we insert the 5σ limit in the equation for t and we get 5 ≤ D−G√
D+G

. We
can assume that D = kG to get a feeling for how much larger than G, D has to
be to �nd a 5σ abnormality. Rewriting we get

t2 (k + 1)G = (k − 1)2
G2

⇓

k = 1 +
q

2
±
√

2q +
q2

4

where q = t2

G which means that q → 0 (∞) when G→∞ (0). From the last
line, we can see that when G is large then D does not have to be signi�cantly
larger than G to be detected. When G decreases then k increases almost linearly
with G−1.

From this we can draw the conclusion that the quality of the detector as
well as the particle physical properties are of paramount importance for the
detection of DM-annihilations.

4.4 Outlook

Since this paper is only a master thesis and time prevents me from doing every-
thing I have chosen to focus on the problem of generating DM-distributions and
the necessary algorithms for that purpose. It is my hope that GalaxyHalo
will be easy to use and that someone will continue to build on it. There are still
many features that needs to be added and/or improved. For instance now all
clumps have the same concentration, something you would like to be related to
mass. Another important improvement would be to give the option of how you
want the scaling of the sub-halos to be done. Right now you can choose whether
or not to have scaling but you cannot choose to have scaling of the viral mass
instead of having scaling of the density as mentioned in section 2.8.2.

In the present form of GalaxyHalo you can make a complete simulation
of a galaxy with arbitrary number of sub-halos at any mass range. You could
therefore compute J (ψ) for a galaxy with massM = 1012M� and sub-halo mass
Mmin = 10−6M�. This would require, with a percentage of p = 0.15, between
approximately 1011−1013 sub-halos at the present con�guration of parameters.

6We remove the indexes from now, whey will not add anything to the analysis.

34



The task is not impossible for me, since using the GLAST machines it would
take 2 · 107 seconds or 231 days which is a little to long to wait. No systematic
e�orts have been made to minimize the run time nor has compilations been
made with �ags that mark for speed.

One feature that has to be corrected before GalaxyHalo can be really
user friendly is to make all the parameters easily accessible without having to
make changes within the FORTRAN code. As it stands now the parameters
are accessible within the �head� of the �main� but you still need to recompile
everything whenever you change a parameter.
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A The Normalization

This chapter is about how and why we cannot �nd the normalization A for
equation (8) on page 10. To �nd the normalization we need to evaluate the
integral

1 =
ˆ ˆ

AM−2 Θ (r −RT (M))

r
rMW

(
1 + r

rMW

)2 dM d3r

= 4πA
ˆ ∞
Mmin

ˆ rmax

RT (M)

r2M−2

r
rMW

(
1 + r

rMW

)2 dr

 dM

= A

ˆ ∞
Mmin

M−2

[
rMW

rMW + r
+ log (rMW + r)

]rmax

RT (M)

dM

= A

ˆ ∞
Mmin

M−2f (M) dM

where

f (M) =
rMW

rMW + rmax
+log (rMW + rmax)− rMW

rMW +RT (M)
−log (rMW +RT (M))

If we had the explicit form of RT (M) we might be able to solve the integral
above.

A.1 Calculating RT (M)

Remember the Roche criterion for tidal forces acting on a sub-halo. The equa-
tion of interest is

MH (d− r)
d3

<
4π
3
kρ0 ≡ C0

Here we skip the index �vir� appearing in equation (12) since r is the only radius
other than that of d that we are talking about. Remember that r really is a
function ofM de�ned through (5). It is good that the left hand side is a constant
sine if we wanted to numerically evaluate the solution dr in the region where
r � d we could calculate dr from d0 which we only need to calculate once.

If MH (d− r) would have been M (d), then dr would be independent of r.
This is not the case, however since r < d, and often r � d, we can make a
Taylor expansion aroundMH (d). This expansion givesMH (d− r) ≈MH (d)−
M ′H (d) · r. From (2) on page 7 we get

M ′H (d) = 4π
r3
MW ρMW d

(rMW + d)2
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which leads to the inequalities

4πr3
sMW ρsMW

[
ln
(

1 +
d

rMW

)
− d

rMW + d

]
− 4π

r3
MW ρsMW d

(rMW + d)2 r <
4π
3
kρ0

or

1
d3

{
ln
(

1 +
d

rMW

)
− d

rMW + d
− rd

(rMW + d)2

}
<

kρ0

3r3
MW ρMW

(20)

Now we want to �nd the solution to (20). We can use a kind of linear
approximation which will give us a good result when r � d.

If we de�ne c ≡ kρ0
3r3
sMW

ρsMW
and a (d) ≡ ln

(
1 + d

rsMW

)
− d

rsMW +d so

a′ (d) = d

(rsMW +d)2 , we can construct the functions f (d) = a(d)
d3 − c and

g (d) = 1
d3 {a (d)− a′ (d) r} − c = f (d) − 1

d3 {a′ (d) r}. The function f (d) is
what you get when MH (d− r) → MH (d). We �rst �nd d0, the solution to
f (d0) = 0. This will have to be done numerically, using any of the well known
formulas for numerical calculations like Newton-Raphsons method7.

Since r � d, f (d0) ≈ g (d0). We can extrapolate the straight line of the
tangent to g (d0) like y = kd+m where k = g′ (d0) and m = g (d0)− g′ (d0) d0.
The solution, drto kdr +m = 0 is

dr = −m
k

=
g′0d0 − g0

g′0
= d0 −

g0

g′0

where g0 ≡ g (d0) and g′0 ≡ g′ (d0). From the de�nition of d0 and g0 we can
immediately see that

g0 =
1
d3
{a (d0)− a′ (d0) r} − c = f (d0)− a′ (d0) r

d3
= −a

′ (d0) r
d3

The value of g′0 is

g′ (d) =
∂

∂d

1
d3
{a (d)− a′ (d) r}

=
1
d3

∂

∂d
{a (d)− a′ (d) r}+

(
∂

∂d

1
d3

)
{a (d)− a′ (d) r}

=
1
d3
{a′ (d)− a′′ (d) r}+

(
−3

1
d4

)
{a (d)− a′ (d) r}

=
1
d3

[
a′ (d)− a′′ (d) r − 3

d
a (d) +

3
d
a′ (d) r

]
=

1
d3

[
a′ (d)

{
1 +

3r
d

}
− a′′ (d) r − 3

d
a (d)

]
7Because of the shape of f (d) Newton-Raphson is very sensitive to the initial guess. The

method is divergent except in a small area around d0. A more robust but slower approach
would be the to use the secant formula.
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The quotient between g0 and g′0 becomes

g0

g′0
=

−a′ (d0) r

a′ (d0)
{

1 + 3r
d0

}
− a′′ (d0) r − 3

d0
a (d0)

(21)

= − r

1 + 3r
d0
− a′′(d0)

a′(d0) r −
3
d0

a(d0)
a′(d0)

= − r{
1− 3

d0

a(d0)
a′(d0)

}
+ r

{
3
d0
− a′′(d0)

a′(d0)

}
Now we remember, that if you have r

a+br you can Taylor expand it as
r

a+br =
r
a

∑
n=0

(
− bra

)n
= r

a −
br2

a2 + b2r3

a3 + · · · and so to �rst power we have

g0

g′0
≈ − r

1− 3
d0

a(d0)
a′(d0)

Thus our value of the Roche distance is

d1 ≈ d0 −
g0

g′0
≈ d0 +

r

1− 3
d0

a(d0)
a′(d0)

(22)

This is good because we only need to calculate d0 and 1 − 3
d0

a(d0)
a′(d0) at one

time and can be used for all small values of r. Of course we could have used
(21), but (22) is much simpler and can be used when we want to calculate the
normalization.

A.2 Returning to normalization

Now we return to the normalization of (8) where we have an explicit form of
RT (M) = d0 + rvir

1− 3
d0

a(d0)
a′(d0)

= d0 + αrvir which gives

1 = 4πA
ˆ ∞
Mmin

M−2 ·
[
γ − rMW

rMW +RT (M)
− log (rMW +RT (M))

]
dM

4πA
ˆ ∞
Mmin

M−2 ·
[
γ − rMW

β + αr (M)
− log (β + αr (M))

]
dM

We can change variables from M to r to make the integral easier to solve.
Using that M = ηr3 ⇒ dM = 3ηr2 dr we get s

1 = 4πA
ˆ rvirmax

rvirmin

3ηr2

η2r6
·
[
γ − rMW

β + αr
− log (β + αr)

]
dr

=
12πA
η

ˆ rvirmax

rvirmin

1
r4
·
[
γ − rMW

β + αr
− log (β + αr)

]
dr

= δ

ˆ rvirmax

rvirmin

1
r4
·
[
γ − rMW

β + αr
− log (β + αr)

]
dr
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where δ = 12πA
η = 9A

kρ0
, γ = rsMW

rsMW +rvirMW
+ log (rsMW + rvirMW ) and β =

rsMW + d0. We get three integrals 1 = I1 + I2 + I3 that are

I1 = δ

ˆ ∞
r0

γ

r4
dr

I2 = δ

ˆ ∞
r0

1
r4

rMW

β + αr
dr

I3 = δ

ˆ ∞
r0

1
r4

log (β + αr) d

The �rst integral is

I1 = δγ

[
3
r3

]r0
∞

=
3γδ
r3
0

The second is

I2 = rMW δ

[
− α2

β3r
+

α

2β2r2
− 1

3βr3
+
α3

β4
ln
(
β

r
+ α

)]∞
r0

=

= rMW δ

(
α2

β3r0
− α

2β2r2
0

+
1

3βr3
0

− α3

β4
ln
(
β

r0
+ α

)
+
α3

β4
lnα

)
rMW δ

(
α2

β3r0
− α

2β2r2
0

+
1

3βr3
0

− α3

β4
ln
(

β

αr0
+ 1
))

The third integral is

I3 = δ

[
− α

6βr2
+

α2

3β2r
− 1

3r3
ln (β + αr)− α3

3β3
ln
(
β

αr
+ 1
)]∞

r0

= δ

(
α

6βr2
0

− α2

3β2r0
+

1
3r3

0

ln (β + αr0) +
α3

3β3
ln
(

β

αr0
+ 1
))

By putting this all together and letting q = α
β we get

1 = δ

{
3γ
r3
0

+ rMW

(
q2

βr0
− q

2βr2
0

+
1

3βr3
0

− q3

β
ln
(

1
qr0

+ 1
))

+
(

q

6r2
0

− q2

3r0
+

1
3r3

0

ln (β + αr0) +
q3

3
ln
(

1
qr0

+ 1
))}

= δ

{
q3

(
1
3
− rMW

β

)
ln
(

1
qr0

+ 1
)

+
q2

r0

(
rMW

β
− 1

3

)
+
q

r2
0

(
1
6
− rMW

2β

)
+

1
3r3

0

(
9γ +

rMW

β
+ ln (β + αr0)

)}
Since δ = 9A

kρ0
it is easy to �nd the normalization from here. Using this

normalization we could be interested in calculating properties of the distribution
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such as the expectation of the mass. We can use the ordinary formula for
expectation values 〈f (x)〉 =

´
f (x) ρ (x) dx and get

〈M〉 = 4πA
ˆ ∞
Mmin

M ·M−2 ·
[
γ − rMW

β + αr
− log (β + αr)

]
dM

= 12πA
ˆ ∞
r0

1
r
·
[
γ − rMW

β + αr
− log (β + αr)

]
dr

= λ

ˆ ∞
r0

1
r
·
[
γ − rMW

β + αr
− log (β + αr)

]
dr

Here, the third term poses a bit of a problem since

λ

ˆ ∞
r0

1
r

log (β + αr) dr = λ

[
dilog

(
−αr
β

)
+ ln (β + αr) ln

(
−αr
β

)]∞
r0

where dilog (x) is the dilogarithm function

dilog (x) =
ˆ x

1

ln t
1− t

dt

You might say that the dilogarithm function have made us run into a brick
wall. Even if we could evaluate it numerically, it still is not de�ned for negative
arguments, which is just what we have since α, β and r are all positive.

B Polar transformations

When we have generated our sub-halos, we have the problem that they are
in polar coordinates with origo at the center of the galaxy. What we would
like, is to transform to polar coordinates around the Earth, and further more
orient the z- axis of the Earth so that it is pointing towards the center of the
Galaxy. Another orientation would be to point it perpendicular to the origin of
the galaxy and let the x axis point away from the center of the galaxy.

Whichever orientation of our coordinate system we choose, the general pro-
cedure is as follows. First we transform our polar coordinates (r, θ, φ)C to their
Cartesian counterparts (x, y, z)C via the usual

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

The next procedure is to move the origo to the center of the Earth (xE , yE , zE)C =
(0, 0, 0)E and rotate it so that (0, 0, 0)C = (xC , yC , zC)E . In our case, we are
interested in (0, 0, 0)C = (0, 0, RC)E or (0, 0, 0)C = (±RC , 0, 0)E depending on
the preferred orientation of our coordinate system. To change the coordinate
system like this, we use matrix algebra and the transformation r′ = R · r + C
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where r′ is the coordinates of the Earth, r is the coordinates from the center of
the galaxy, R is a rotation matrix and C is a vector constant.

When the new Cartesian coordinates are in place, we can calculate the new
polar coordinates as

r′ =
√
x′2 + y′2 + z′2

θ′ = arccos
(
z′

r′

)
φ′ = arctan

(
y′

x′

)
+ Θ (−x′)π

where Θ (−x′)π adds a π whenever x′ is negative.

  x’

  x−r
0

  π − θ

  φ − π/2

  z−r
0

  y’

  x

  z’

  y−r
0

  φ

  θ

  z

  y

Figure 9: A coordinate transform where the new axes are r′.

B.1 The z′-axis on center

Let us �rst turn to the choice where the z′-axis points towards the center of the
galaxy. In this representation the host halo distribution is only dependent on θ′

and r′. A drawback is however that the center of the halo, which will have small
θ′ values, will be heavily distorted in the θ′φ′ coordinate system. Because of
the presumed symmetry around the center of the galaxy there is no preference
for how the x′ and y′-axes are oriented around the z′-axis. We start by de�ning
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rE = (xE , yE , zE)C as the coordinate system of the Earth. If we move the
origo to the Earth any generic star at a generic position rs = (xs, ys, zs)C will
have the coordinates rs − rE . We now want to turn these coordinate so that
O = (0, 0, 0)C has coordinates (0, 0, rE)E seen from the Earth. This means that
in the new coordinates for rs can be written

r′s = R · (rs − r:E)

where R is the transformation mentioned earlier. The rotation, R, moves the
z-axis from pointing upward to pointing in the direction of the center of the
galaxy. What we will do �rst is calculate the rotations that move a star from
position (0, 0, rE) to position (−xE ,−yE ,−zE). Then we will take the inverse
of the rotation since it is the same thing to rotate vectors one way as to rotate
coordinates the other way.

We accomplish this by �rst rotating θrot = π − θE around the y-axis. After
that we rotate φrot = φE + π around the z-axis as �gure 9 implies. The matrix
that describes a rotation around the y-axis an angle α is

Ry (α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα


and an angle β around the z axis is

Rz (β) =

 cosβ − sinβ 0
sinβ cosβ 0

0 0 1


If we �rst rotate around y, and then z we get

Rzy = Rz (β)Ry (α) =

 cosβ − sinβ 0
sinβ cosβ 0

0 0 1

 cosα 0 sinα
0 1 0

− sinα 0 cosα


=

 cosα cosβ − sinβ sinα cosβ
cosα sinβ cosβ sinα sinβ
− sinα 0 cosα

 (23)

As we said earlier, we are actually interested in rotating the coordinate axes
and not rotating the coordinates. Fortunately rotating the coordinate axes is
that same thing as rotating the coordinate backwards. In the case of Rzx it is
easy to �nd the inverse. Since both Rx and Rz ful�lls R−1 (γ) = R (−γ) = R†

we have

R−1
zy = (Rz (β)Rx (α))−1 = R−1

y (α)R−1
z (β)

= Ry (−α)Rz (−β) = R†yR
†
z = (RzRy)†

= R†zy
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The �nal rotation we are interested in thus becomes

Rz−axis = R−1
zy = R†zy =

 cosα cosβ cosα sinβ − sinα
− sinβ cosβ 0

sinα cosβ sinα sinβ cosα

 (24)

Now, if we put in α = π − θE and β = φE ± π and use the trigonometric
relation to get

cosα = − cos θE
sinα = sin θE
cosβ = − cosφE
sinβ = − sinφE

By inserting the above relations into (24) we �nally get

Rz−axis =

 cos θE cosφE cos θE sinφE − sin θE
sinφE − cosφE 0

− sin θE cosφE − sin θE sinφE − cos θE

 (25)

We can check that this R is the one we are looking for. If we transform O
we should get (0, 0, rE). Let us try it.

O′ = Rz−axis · (O− rE) = −Rz−axis · rE

= −

 cos θE cosφE cos θE sinφE − sin θE
sinφE − cosφE 0

− sin θE cosφE − sin θE sinφE − cos θE

 rE sin θE cosφE
rE sin θE sinφE

rE cos θE


= −rE

 cos θE cosφE sin θE cosφE + cos θE sinφE sin θE sinφE − sin θE cos θE
sinφE sin θE cosφE − cosφE sin θE sinφE

− sin θE cosφE sin θE cosφE − sin θE sinφE sin θE sinφE − cos θE cos θE


= −rE

 cos θE sin θE
[
cos2 φE + sin2 φE − 1

]
sinφE sin θE cosφE − cosφE sin θE sinφE
− sin2 θE cos2 φE − sin2 θE sin2 φE − cos2 θE


=

 0
0
rE

 = Cz−axis

The result is that we expected. Even though (25) is the most general rotation
for our speci�c form of orientation we can without loss of randomness choose
the origo of the Earth to be θE = π so that

Rz−axis =

 − cosφE − sinφE 0
sinφE − cosφE 0

0 0 1


The choice of φE is arbitrary but for simplicity we can say φE = π because

then Rz−axis is the unit rotation.
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B.2 The x′-axis o� center

The second choice is to let the x′-axis be pointing away from the galaxy center.
This means that the galaxy will be placed at θ = π

2 and φ = π. Orienting the
coordinate system this way causes the galaxy origo to be in the middle of the
θφ- plane, thus reducing the distortion at small angles to the galaxy origo. This
way we will get pictures like �gure 10 and �gure 11.
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Figure 10: Lines of constant θCoG. This is the angle compared to the Center of
the Galaxy.

Here we take advantage of the work done in B.1. What we need to do is
to rotate a point (−rE , 0, 0) to (−xE ,−yE ,−zE), and we can do so by �rst
rotating the point to (0, 0, rE) and then using the rotation (23) derived earlier.
The initial rotation is simple since it is just the Ry rotation with angle α = π

2
giving

Ry

(π
2

)
=

 0 0 1
0 1 0
−1 0 0


The �nal rotor for this scenario is thus

Rx−axis =
(
RyzRy

(π
2

))−1

= R−1
y

(π
2

)
R−1
yz

= R†y

(π
2

)
Rz−axis
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which explicitly is

Rx−axis =

 0 0 −1
0 1 0
1 0 0

 cos θE cosφE cos θE sinφE − sin θE
sinφE − cosφE 0

− sin θE cosφE − sin θE sinφE − cos θE


=

 − sin θE cosφE − sin θE sinφE − cos θE
sinφE − cosφE 0

− cos θE cosφE − cos θE sinφE sin θE


We can try to calculate O′ in this coordinate system and get

O′ = Rx−axis · (O− rE) = −Rx−axis · rE

= −

 − sin θE cosφE − sin θE sinφE − cos θE
sinφE − cosφE 0

− cos θE cosφE − cos θE sinφE sin θE

 rE sin θE cosφE
rE sin θE sinφE

rE cos θE


= −rE

 sin2 θE cos2 φE + sin2 θE sin2 φE + cos2 θE
sinφE sin θE cosφE − cosφE sin θE sinφE

cos θE sin θE
[
cos2 φE + sin2 φE − 1

]


= −

 rE
0
0

 = Cx−axis

To simplify the form of Rx−axis, without loosing randomness, we can here
choose θE = π

2 and φE = π which yields Rx−axis = 1.

Figure 11: Sky map of the smooth component as seen from the Earth. The
scale is logarithmic.

B.3 The general axis on center

If we would like to orient our coordinate system so that a generic (θ′, φ′)-axis
points towards the galaxy origo the general procedure is as follows. Here we can
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reuse what we have done in B.1 and B.2. First, we rotate a point at (x′E , y
′
E , z

′
E)

to (0, 0, 1) and the rotate to (xE , yE , zE). The �rst rotation is really the inverse
of Ryz (θ′, φ′), since Ryz (θ′, φ′) rotates (0, 0, 1) to (x′E , y

′
E , z

′
E). Therefore the

rotation here is
R = RyzR

−1
yz (θ′, φ′)

and therefore we have

Rgenral axis =
(
RyzR

−1
yz (θ′, φ′)

)−1
= Ryz (θ′, φ′)R−1

yz

= Ryz (θ′, φ′)Rz−axis

or explicitly

Rgenral axis =

 cos θ′ cosφ′ − sinφ′ sin θ′ cosφ′

cos θ′ sinφ′ cosφ′ sin θ′ sinφ′

− sin θ′ 0 cos θ′

 cos θE cosφE cos θE sinφE − sin θE
sinφE − cosφE 0

− sin θE cosφE − sin θE sinφE − cos θE


We can as in the previous subsections choose θE = π − θ′ and φE =

φ′ ± π to get Rgenral axis = 1. This is because Rz−axis (θE , φE) = R−1
zy (α, β) =

R−1
zy (π − θE , π + φE). When we takeRyz (θ′, φ′)Rz−axis =Ryz (θ′, φ′)×R−1

zy (π − θE , φE ± π)
and then we can identify θE = π − θ′ and φE = φ′ ± π.

If we insert θ′ = 0 and φ′ = 0 we receive Rz−axis and if we choose θ′ = −π2
and φ′ = 0 we get Rx−axis.
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C Some notes about FORTRAN

FORTRAN is a programming language that goes back to the 50's. The language
was developed by IBM around 1956 and quickly became the language of choice
for technical and scienti�c programming. In 1966 the �rst standard FORTRAN,
FORTRAN 66, was released and eleven years later in 1977 the FORTRAN
77 standard was o� the ground. Later standards are the FORTRAN 90 and
FORTRAN 95 standard. My code is made using the FORTRAN 77 standard.

FORTRAN is built for speed, and has thus made some sacri�ces to get it.
First of FORTRAN almost never asks you for anything. If you have a function
that has an integer as input it will assume that you use integers and not �oats.
You are at liberty to call any function with the wrong type of variable but
surprising things might happen.

Another feature is that while C and other languages usually have call by
value when you use a function, FORTRAN does not. Instead FORTRAN uses
call by reference making it possible to alter the value of the calling variables.
As an example, if you in C call function f (x), the variable x that is used to call
f is not the same as the variable that f uses inside the function. C makes a
copy of x and uses that copy for calculations. In FORTRAN the x that is used
in the call of f and the x that is used inside f is one and the same. This means
that the function f can change that value of x.

All functions in FORTRAN need to be called as an assignment, like y = g (x).
Usually this does not pose a problem, but if you would like to take advantage of
the call by reference structure it does. An example is when you want to make a
coordinate transform from spherical to Cartesian coordinates. A way to to this
would be to de�ne the function sp2cart(θ, φ, r, x, y, z) by

function sp2cart(theta,phi,r,x,y,z)

x=r*sin(theta)*cos(phi)

y=r*sin(theta)*sin(phi)

z=r*cos(theta)

end

This function does the coordinate transform of interest, but since you have
to do it as an assignment, with

a=sp2cart(theta,phi,r,x,y,z)

therefore you have to add a row
sp2cart=0

or something similar to the function, somewhere above the end. This proce-
dure is rather cumbersome and irritating at best. The way around it is to use
a cousin to the function called subroutine. A subroutine is not allowed to
have a functional value opposed to the function. Any subroutine can be called
using call, like

call sp2cart(theta,phi,r,x,y,z).
In FORTRAN the type of a variable is important, as it is in quite a lot of

other languages as well. The FORTRAN standard gives the programmer the
choice of how he/she wants to typecast his/her variables. You can either declare
the type in the beginning of the code, but you can also skip the declaration and
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use the automatic declaration built into FORTRAN. This means that whenever
the compiler �nds a variable that has not been typed FORTRAN type sets the
variable itself using a simple rule. Variables starting with A-H and O-Z are
real while variables starting with I-N are integer. This auto-typesetting can
be quite a nuisance if you are a frequent miss-speller. Even a small error in
spelling can be hard to �nd. The solution is to write implicit none at the
beginning of the code, meaning that all variables have to be typed explicitly.

50


