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ASTRONOMY

PERIODICITIES IN LUNAR ECLIPSES
BY

A. PANNEKOEK
(Communicated at the meeting of January 27, 1951)

I

Astronomical literature from olden times mentions an 18 years period
called the saros, which was first used by the Babylonian astronomers
to predict lunar eclipses. Usually it was assumed that this is the only
period that can be used for the purpose of prediction, so that the earliest
cases of prediction which we meet with in the past must have been based
upon knowledge of the saros. In later times, when the origin of the eclipses
was exactly known, they were computed for the past and the future by
means of the elements of the moon’s and the sun’s (apparent) orbit
without making use of any period.

ScHIAPARELLI has pointed out ) that there are other and more simple
means to forecast eclipses, regularities that must have been noticed and
used at a time of more primitive knowledge. When a lunar calendar is
used, with months equal to the moon’s synodic period of 29.5 days, it
is easy to perceive that the lunar eclipses — if, of course, the eclipses
visible at night are completed by the eclipses occurring at day time,
hence invisible — always follow one another with an interval of six months.
In this way they form a group or series of 5 or 6 consecutive eclipses;

then the series ceases. But after an interval of 17 or 23 months a new .

series starts, of which the eclipses occur 41 or 47 months after the
corresponding ones of the former series. Each series begins with one or
two partial eclipses, then in the midst come 2, 3, or sometimes 4 total
eclipses, and the series ends with again one or two partial eclipses.
In a paper “The Origin of the Saros’ 2) the author has shown how the
knowledge of the saros must have developed out of the knowledge of the
small series. First the appearance of these series was explained by the
fact that after six symodic periods the longitude of the sun and, hence,
of the full moon has advanced 4°.023 relative to the moon’s node.
Eclipses are only possible when the distance P between full moon and
node is not greater than 10°—12°, total eclipses are only possible when
this distance is not larger than 5°—6°. So a series of consecutive eclipses
takes place when the difference of longitude P from say — 10° every

1) ScuiapareruI G. V., I primordi dell’ astronomia presso i babilonesi. (Scientia
ILVER PR3 6):
2) These Proceedings 20, 943 (1917).
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six months increases to nearly — 6°, — 2°, + 2°, + 6°, + 10°; then the
series ceases because the next differences are + 14°, + 18° etc. But then
soon the preceding full moon, with a longitude relative to the node
30°.67 smaller, comes into action and shows successive differences
— 12.67, — 8.65, ... ete.

Thus the lunar eclipses occur in an array of consecutive series, in such
a way that within each series the intervals are six months, and between
the series the interval is one less than a multiple of six months. Each
series shows a different character of the aspect of the partial and the
duration of the total eclipses, due to the different values of P fluctuating
over 4°. But after five series they return to nearly the same value, being
in the sixth series only 0°.48 different from the first series. Thus a larger
period embracing five series appears, containing 223 lunar months. This
period is the saros. Mathematically the saros is the nearest common
multiple of the synodic and the draconitic revolutions of the moon. In
the paper mentioned it was shown how by continued observation a
knowledge of this saros must come forth out of the knowledge of the
series, and that probably in Babylon it originated in this way.

The discovery of the saros-periodicity was facilitated by two circum-
stances. Firstly the period of 223 lunar months, i.e. 65854 days, is only
11 days more than 18 years, so that the sun (and also the node that
then has retrograded over nearly one circumference) returns to nearly
the same longitude; this brings about that the effects caused by the
excentricity of the earth’s orbit return to nearly the same values after
one saros. Secondly the saros is only 4 year longer than twice the period
of revolution of the moon’s perigee, so that the inequalities due to the
excentricity of the lunar orbit (e.g. in the lunar parallax) also return
nearly to the same values. Hence the irregularities occurring in the
aspects of the consecutive series return in nearly the same way after
every five series.

Since the purpose of the former paper was only to show the origin of
the saros out of the more simple periodicity of the series, the irregularities
due to the excentricities of the orbits have not been treated there. The
most important is the influence of the apparent motion of the sun.
Because in the syzygies the rapidly moving moon overtakes the slowly
moving sun, the place of the meeting, the longitude of the full moon,
chiefly depends on the sun, whereas the time of the meeting chiefly
depends on the moon. The sun at an anomaly of 90° (in spring) is 2°
advanced, at an anomaly of 270° (in autumn) is 2° back relative to the
mean longitude. This brings about that the distance between full moon
and node then is increased or diminished by an amount of 2°.28; and
thereby the character of the eclipse may be considerably changed. The
effect of the excentricity of the moon’s orbit, though it may change
the moon’s longitude by more than 5°, is diminished to circa 1/12 of this
amount, 0°.43 in the longitude of the full moon.
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ScH1APARELLI remarked that it happens in certain centuries that a
tetrad of four total eclipses follow one another in the midst of a series,
whereas in other centuries such sequences are absent. This can be easily
confirmed by looking through TH. voN OpPPOLZER’s Canon der Finsternissed).
Then more irregularities present themselves. When only two eclipses in
the midst of a series are total, their magnitude, expressed by the number
of ““digits” (Zoll, 1/12 of the moon’s diameter), is high, up to more
than 20, indicating a long duration of the totality. Where, however,
four eclipses follow one another in the midst of a series, the first and the
fourth, though remaining below 17, have a larger magnitude usually
than the second and the third, just the reverse of what normally might
be expected. It even happens that for the second or the third of this
middle group the magnitude falls below 12 digits, hence the eclipse is

TABLE I
Number of total eclipses

Mean Nr. of Num.ber with | Average || yroo | Nr. of Num'ber with | Average
year |series 4, 4 1mp,. 32 numbe'zr year | series 4, 4 1mp,. 3, 2 nu:nb(?r

total eclipses | per series total eclipses | per series
-1174| 18 0 0 414 2.22 512 | 18 0 0 315 2.17
1190 B 0 1 412 2.32 575 | 17 0 0 413 2.24
1047 | 18 82 %l 2.61 636 | 17 0 0 314 2.18
980| 19 4 3 7 5 3.03 700 | 18 0 1 413 2.31
912| 19 5 310 1 3.29 763 | 17 2 2 112 2.47
844 | 18 5 2 7 4 3.11 828 | 19 6 2 9 2 3.26
780 | 18 2 3 112 2.53 895 | 17 4 310 0 3.32
715 18 0 0 612 2.33 962 | 19 5 1 5 8 2.87
652 | 17 0 0 314 2.18 1027 | 17 1 3 112 2.44
588 | 18 0 0 315 2.17 || 1090 | 18 0 0 513 2.28
525| 17 0 0 314 2.18 1153 | 17 0 0 314 2.18
461 | 18 1 3 311 2.53 1217 | 18 0 0 315 2.17
396 | 18 2 3 9 4 2.97 1280 17 1 1 213 2.32
330| 19 TR T 0 3.39 1345 | 19 4 2 310 2.74
263 | 18 SRR RTINS0 3.33 1412 | 18 4 2 9 3 3.11
197| 18 4 2 5 7 2.89 1479 | 19 5 20T 3.26
134 17 1 2 212 2.41 1546 | 18 B LB 2.86
71 18 0O 0 315 2.17 1611 18 1L 0485 123 2.44
= | Uy 0 0 413 2.24 1674 | 17 0 0 413 2.24
+ 56| 18 0 0 315 2.17 1736 | 17 0 0 215 2.12
119} 17 01 313 2.26 1799 | 18 0 0 513 2.28
182 18 3130012 2.58 1863 | 17 1 3 211 2.50
249| 19 7 0 8 4 3.16 1926 | 18 4 0 7 7 2.83
318 19 4 411 O 3.32 1993 | 19 4 411 0 3.32
385| 18 4 2 6 6 2.94 2063 | 20 6 0 9 5 3.05
448 | 17 3 3 110 2.68 2132 | 18 3 4 011 2.67

3) Denkschriften der Kais. Akad. der Wissensch. 52 (Wien, 1887).
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only partial, though it is near the centre of the series. We could call
such cases mutilated or imperfect tetrads.

A closer examination of OppoLzER’s Canon reveals a remarkable
periodicity in the occurrence of these tetrads. In Table I for consecutive
numbers of circa 100 eclipses is indicated how many series they embrace
and how many among these show in the middle part two, three or four
consecutive total eclipses or imperfect tetrads. We see a regular alternating:
between the years — 773 and — 472, — 111 and + 143, 475 and 729,
1050 and 1286, 1608 and 1854 the tetrads are lacking and most of the
series have only two total eclipses. On the contrary about — 900, — 300,
+ 300, 900, 1500, 2000 the series with only two total eclipses are almost
lacking and tetrads of total eclipses show a maximum frequency. To
express this periodicity numerically we may for each group of years
compute an average number of total eclipses per series (counting the
imperfect tetrads for 3}). These numbers are represented in Fig. 1.
Though they do not run entirely regularly, we may deduce epochs of -
maximum and minimum:

Maximum — 900, — 310, + 300, 860, 1460, 2010
Minimum — 600, + 20, 600, 1180, 1730

from which follows a mean period of circa 580 years. At present we are
in an epoch of increasing tetrads; we had one embracing four total eclipses
from 1949 April 13 to 1950 Sept. 26, and the next one will consist of the
four eclipses 1960 March 13 to 1961 Aug. 26.

111

In order to elucidate the origin of this periodicity a number of lunar
eclipses had to be approximately computed by means of OPPOLZER’S
“Syzygientafeln fiir den Mond” %). A total eclipse takes place when the
latitude of the moon’s centre is smaller than the semidiameter of the
shadow diminished by that of the moon itself. If this quantity is expressed
by ¢ sin [, (I, indicating some distance to the node and ¢ the inclination)
then the condition of totality can be thus expressed that P, the full
moon’s distance to the node, must be below [,. This limiting longitude
difference [, varies between 5°.83 (for the perigee) and 4°.75 (for the apogee).

When (Case I) the regular part of P, which we will denote by P,, for one
eclipse is 0°, then for the next’ preceding and following ones it is — 4°
and + 4°, both falling within the limits + [;; so there are 3 total eclipses,
provided that the solar correction is small (which is the case in summer
and winter). When the solar correction is large, when e.g. the middle
eclipse falls in autumn and the two others fall in spring, the latter are
displaced + 2°.28 (at most) due to the sun’s anomaly; so their relative
longitudes P change into — 2° and + 6°, so that only 2 of the 3 total

4) Publication XVI der Astronomischen Gesellschaft (1881).
3 Series B
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eclipses remain. The same holds for the opposite seasons with correction
— 2°.28.

When (Case II) we take P,= — 2°.01 and + 2°.01 for the eclipses
nearest to the node, and — 6°.03 and + 6°.03 for the adjacent ones, we
have again two total eclipses only, if the sun’s anomaly is near 0° or 180°
and the solar correction is nearly zero. But the matter is different if the
sun’s anomaly is near 90° (spring) or 270° (autumn). In the case Ila
with

(autumn) (spring) (autumn) (spring)

P, = — 6°.03 — 2°.01 + 2°.01 + 6°.03

the corrections — 2.28 + 2.28° — 2.28 + 2.28,
producing P = — 8°.31 +4.0°.27 — 0°.27 + 8°.31,

throw the first and last value farther from the node and the two middle
values nearer to it, so that only two total eclipses of long duration occur.
In the opposite case IIb with

(spring) (autumn) (spring) (autumn)

. P, = — 6°.03 — 2°.01 + 2°.01 -+ 6°.03

the corrections -+ 2°.28 — 2.28 + 2.28 — 2.28,
producing P = — 3°.75 — 4°.29 -+ 4°.29 + 3°.75,

bring the first and last values within the boundary values for totality,
whereas the two middle ones remain within them at a larger distance.
So here we have four consecutive total eclipses, all of moderate magnitude.
With somewhat different values of P; and the solar correction it may
happen that the second or third P is thrown outside the boundary value
ly; then an imperfect tetrad is formed.

The various values which P, can assume for the full moons nearest to
the nodes are all situated between these limiting cases I and II; hence
they will present intermediate results. A tetrad further on will be indicated
in short by the quantities and arguments belonging to its first member;
then we know that another with negative and two others with positive
P, will follow, in alternating seasons and with arguments of the inequalities
(sun’s or moon’s anomaly) alternately in opposite quadrants.

In order to get an idea of the course of the phenomena we give in
Tables IT and ITI the data and results for an array of eclipses embracing
two saros periods %), first for the years 1732—66 when the tetrads are
lacking, then for the years 2010—2044, when they have a maximum
frequency. The regularly varying P, in the 4th column was found by
increasing the values of OppoLzER’s ‘“‘Cyclentafel” by 2°.89 (the amount
he had subtracted to make all corrections positive) and adding the values
of his ‘“Periodentafel fiir Vollmonde”. The ‘“Empirische Korrektionen”,
being small in these centuries, have been neglected. The arguments g
for the corrections, (2d and 3d column) i.e. the anomaly of sun and moon

5) It must be remarked that a saros period has no definite beginning or end,
but is only a duration (of five series); it may start with any series.
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expressed in centesimal degrees (0—400) are taken from the same source,
rounded to full degrees. The 5th and 6th columns give the corrections
themselves which must be added to P,. The resulting corrected P shows
the character of the eclipse; when necessary for dubious cases the
boundary value of [; is given in the next column. For comparison the
last column gives the magnitude of the eclipse in digits, taken from
- OppoLzER’s Canon.

The table shows that in the years 1732—66 we meet repeatedly with
Case Ila, where for the first and fourth full moon the distance to the
node is increased by the solar inequality, and that in the years 2010—2044
we have twice in each saros period Case IIb, where the distance to the
node is diminished by the solar inequality by such an amount as to bring
about total eclipses. Moreover we see here how after five series, each
with different values of P, and of the corrections, hence with a different
aspect in the sequence of partial and total eclipses, the next five series
show a repetition of nearly the same values and circumstances. P, has
decreased by only 0°.48, and the argument of the solar inequality has
increased by only 12 c.d. (centesimal degrees). The same holds for the
border parts of the series with partial eclipses, which have been omitted
here, and which in their aspects are still more sensitive to such differences.
So we can understand how the larger period of five series forced itself
into the attention of the observers and led to the discovery of the saros.

Nevertheless we can see by comparing the two consecutive saros periods
how these small changes already bring about changes in the aspect: the
fourth series (2021—22) drops out (2039—40) from the tetrads and in
the fifth series (2043—44) a new tetrad comes into being. Thus gradually
the character of the consecutive saros periods changes. After 18 such
periods the argument of the solar inequality has increased by 200 c.d.,
and the solar correction has changed from a maximal positive to a
maximal negative value, i.e. from case IIb to case Ila. Expressed in more
exact figures: P, the longitude of the full moon relative to the node
decreases 0°.476 per saros period; the sun’s anomaly in one synodic
period increases by 29°.1054, in one saros period increases by 10°.497.
Hence relative to P, the argument of the sun’s inequality increases each
saros period by 10°.97. It returns to the same value after 360 : 10.97 =
32.8 saros periods = 32.8 x 18.03 = 591 years. This then is the theoretical
value of the period for which our countings in the Canon gave an amount
of nearly 580 years.

v

Here we must go somewhat deeper into the causes which produce
the sharp contrast between the maximum and minimum conditions.
The five successive series of a saros follow one another rather regularly,
so that their middle parts with small P, — because the lunar node
retrogrades 350° per saros — fall upon longitudes of the node, hence of
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TABLE II
s oy 107 Cirragbion) 9% 1 a1 ARG
Date go |92 124 o ) Je& ly m

1732 June 8 176 | 289 | —3°.39| + 0.86 + .45 | — 2°.08 204183
32 Dec. 1 370 61 | +0.64 | —1.06 — .25 | — 0.67 t 21.2
33 May 28 164 | 233 | +4.66 | + 1.25 + .31 | 4 6.22 p 9.1
35 Oct. 2 302 265 | —5.90 | —2.28 4 .46 | — 7.72 p 6.3
36 Mrch 27 96 37 | —1.87 | +2.28 — .14 | + 0.27 t 22.0
36 Sept. 20 290 | 209 | +2.15 | — 2.26 4 .09 | — 0.02 t 21.7
37 Mrch 16 84 | 381 | +6.17 | +2.22 + .06 | + 8.45 p 6.7
39 July 20 | 222 14 | — 438 | —0.79 — .05 | —5.22 | 5.81 | ¢ 13.3
40 Jan. 13 16 186 | —0.36 | + 0.58 — .15 | + 0.07 t 21.5
40 July 9 210 | 358 | + 3.66 | — 0.37 + .15 | + 3.44 t 16.1
41 Jan. 1 4 130 | +17.69 | + 0.15 — .48 | 4 7.36 p 6.8
42 Nov. 12 348 390 | —6.89 | —1.69 + .03 | — 8.55 p 6.7
43 May 8 142 162 | —2.87 | +1.83 — .35 | — 1.39 t 19.2
43 Nov. 2 336 334 | +1.16 | —1.95 4+ .26 | — 0.53 t 21.4
44 Apr. 26 130 106 | + 5.18 | + 2.06 — .45 | 4 6.79 p 8.6
46 Aug. 30 268 138 | —5.38 | —2.02 — .47 | — 7.87 p 6.1
47 Febr. 25 62 310 | —1.35 | +1.91 4 .38 | + 0.94 t 20.3
47 Aug. 20 256 82 | +2.67 | —1.79 — .35 | + 0.53 t 21.2
48 Febr. 14 50 | 254 | +6.69 | + 1.64 + .43 | + 8.76 p 3.6
50 June 19 188 286 | — 3.86 | + 0.44 + .46 | — 2.96 t 16.4
50 Dec. 23 382 58 | +0.16 | —0.65 — .23 | — 0.72 t 21.2
51 June 9 176 | 230 | +4.18 | +0.86 + .28 | + 5.32 | 4.81 | p 10.9
53 Oct. 12 314 | 262 | —6.37 | —2.24 + .25 | — 8.36 p 52
54 Apr. 7 108 34 | — 235 | +2.27 — .12 | — 0.20 t 22.4
64 Oct. 1 302 | 206 | + 1.67 | —2.28 4 .06 | — 0.55 t 20.8
55 Mrch 28 96 | 378 | + 5.70 | + 2.28 4 .07 | + 8.05 p 1.6
57 July 30 233 10 | — 4.8 | —1.16 — .04 | — 6.06 p 11.7
58 Jan. 24 27 182 | —0.84 | +0.96 — .19 | — 0.07 t 21.8
58 July 20 221 354 | +3.19 | —0.76 + .06 | + 2.49 t 17.6
59 Jan. 13 15 126 | + 7.21 | + 0.55 — .48 | + 7.28 p 6.9
60 Nov. 22 360 | 386 | —7.38 | —1.37 4+ .04 | — 8.71 p 6.3
61 May 18 153 159 | — 335 | +1.56 — .37 | — 2.16 t 17.7
61 Nov. 12 348 331 | +068 | —1.69 + .28 | — 0.73 t 21.1
62 May 2 142 103 | +4.70 | + 1.83 — .44 | + 6.09 p 10.3
64 Sept. 10 279 135 | — 5.86 | — 2.18 — .47 | — 8.51 p 49
65 Mrch 7 78 307 | —1.83 | +2.10 + .40 | + 0.67 t 21.1
65 Aug. 30 267 79 | +2.19 | —2.01 — .34 | — 0.16 t 22.4
66 Febr. 24 61 251 | +6.21 | + 1.89 + .42 | + 8.52 p 4.0
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TABLE III
s Correction

Date g0 |92 Py o ) P2 s m
2010 Dec. 21 385, | 311 —3°.49| —0.55 + .38 | — 3°.66 t 15.2
11 June 15 179 83 + 0.54 | +0.76 — .36 | + 0.94 t 20.6
Dec. 10 373 255 + 4.56 | — 0.96 + .44 | 4 4.04 G| 1837
14 Apr. 15 111 287 — 6.00 | + 2.26 + .46 | — 3.28 t 15.4
Oct. 8 305 59 — 1.97 — 228 — .24 | —4.49 t 14.0
15 Apr. 4 99 231 +2.05 | +2.28 4 .39 | + 4.72 t 12.3
Sept. 28 293 8 + 6.07 | —2.27 — .02 | + 3.78 t 15.6
18 Jan. 31 31 35 — 448 | +1.09 — .13 | — 3.52 7
July 27 225 207 —0.46 | —0.89 + .07 | —1.28 t 19.4
19 Jan. 21 19 379 + 3.56 | 4+ 0.69 4+ .07 | -+ 4.32 t 14.5
July 16 213 151 +7.59 | —048 — .42 [ + 6.69 p 8.0
21 May 26 157 11 —6.99 | +145 — .04 | —5.58 | 5.82 | ¢t 12.3
Nov. 19 351 183 — 2.97 — 1.62 — .18 | — 4.77 | 4.77 | t?11.9
22 May 16 145 355 +1.06 | +1.76 + .16 | -+ 2.98 i 17l
Nov. 8 339 128 + 508 | —1.88 — .48 | + 2.72 t 16.3
25 Mrch 14 717 159 — 548 | +2.15 — .37 | — 3.70 t 14.1
Sept. 7 | 271 331 — 145 | — 2.07 + .38 — 3.14 t 16.5
26 Mrch 3 65 103 + 257 | +1.97 — .44 | + 4.10 t 14.1
Aug. 28 259 275 +6.59 | —1.85 + .47 | + 5.21 | 5.06 | p 11.5
28 Dec. 31 396 308 —3.96 | —0.15 + .39 | — 3.72 t 14.9
29 June 26 190 80 [ +0.06 | 4+ 0.37 — .34 | 4+ 0.09 ik
Dec. 20 385 252 +4.08 [ —0.55 4+ .42 | + 3.95 t 136
32 Apr. 25 122 284 — 6.47 | + 2.16 + .46 —3.85 t 14.3
Oct. 18 316 56 — 245 | —2.22 — .22 | —4.89 | 5.62 | ¢ 13.3
33 Apr. 14 110 228 + 1.57 | 4+ 2.26 + .27 | + 4.10 ;5 11832
Oct. 8 304 0| +5.60 | —228 — .00 | + 3.32 t 16.4
36 Feb. 11 42 32 —4.96 | +143 — .11 | — 3.64 t 15.7
Aug. 7 236 204 — 094 | —1.25 + .04 | — 2.15 t 17.6
37 Jan. 31 30 376 +3.09 | +1.06 + .08 | + 4.23 t 14.6
July 27 224 148 + 711 | —0.86 — .43 | +5.82 | 4.91 | p 10.0
39 June 6 168 8 —7.47 | +1.12 — .03 | — 6.38 p 10.7
Nov. 30 362 180 | —3.45 | —1.31 — .20 | —4.96 | 4.78 | p 11.5
40 May 26 156 352 +0.58 | +1.48 + .18 | + 2.24 t 18.7
Nov. 18 350 124 +4.60 | —1.64 — .48 | + 2.48 Gl
43 Mrch 25 88 156 — 596 | +2.25 — .39 | —4.10 75 IS
Sept. 19 282 328 — 193 | —2.21 4 .30 | — 3.84 t 15.0
44 Mrch 13 76 100 | +2.09 | +2.14 — .43 | + 3.80 t 14.7
Sept. 7 270 273 + 6.11 — 2.06 + .47 + 4.52 LT




39

the sun, that are retrograding nearly one fifth of a circumference; every
next series comes 2} month earlier than the preceding one. So we might
expect that in one of them an eclipse with P, circa — 6° must fall within
the spring season, so that the conditions of case I1b, producing a tetrad
of total eclipses should be present once every saros. Their complete absence
about 1700 and their abundance about 2000 therefore need a further
explanation.

The consecutive series are following one another with unequal intervals.
Within a saros period there is twice an interval of 7, thrice an interval
of 8 halfyears (the term halfyear here indicates 6 synodic periods). In
8 halfyears P, changes by + 1°.514, in 7 halfyears by — 2°.509; so the
sequence of (rounded) values of P, will run as follows (taking 1735—51
as an instance): '

—6 — 4.5 -7 — 5.5 — 4.0 — 6.5
— 2 — 0.5 —3 — 1.5 0 — 2.5
+ 2 + 3.5 +1 + 2.5 + 4.0 + 1.5
+ 6 + 7.5 + 5 + 6.5 + 5.5
8 h.y. 7 by 8 h.y. 8 h.y. 7 h.y.

If the first of each group should fall in autumn, with a large negative
solar correction there is no possibility of getting a sequence of four total
eclipses; if they should fall in spring, then in the first and the fourth
group a tetrad of total eclipses may result. Now with an interval of
7 halfyears the nodes of the first eclipse, hence also the seasons inter-
change, whereas after an interval of 8 halfyears they remain the same.
So e.g. as a sequence of season dates (retrograding 73 and 67 days) and
of centesimal arguments of the solar correction (decreasing 80 and 74 c.d.)

in stead of Oct. 20 Aug. 8 June 2 Mrch 21 Jan. 7 Nov. 1
and 317 237 164 84 4 330 c.d.

we have Oct. 20 Aug. 8 Dec. 1 Sept. 20 July 8 Nov. 1
and 317 2317 364 284 204 330 c.d.,

so that the spring cases IIb all drop out and the solar corrections are all
negative. So under such conditions — as prevailed in the 18th century —
there is no possibility for any tetrad of total eclipses to appear. The same,
in opposite direction, takes place about 2000. When the first group of
eclipses begins with a spring date, by the same occurrence twice of a
7 halfyears interval it remains in the spring, and the solar argument
remains in or near the two first quadrants. Here e.g.

in stead of April 15 Jan. 31 Nov. 25 Sept. 13 July 2 April 26
and 111 Sl 357 277 196 122 e.d.

we have April 15 Jan. 31 May 26 Mrch 14 Dec. 31 April 26
and 111 ° 31 157 7”1 396 122 c.d.

The result is that in every saros there are one or two series with tetrads
of total eclipses.

Thus the sharp contrast between centuries with multitudes and
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centuries with complete absence of tetrads of total eclipses is explained.
Gradually, however, the conditions are changing. The (rounded) relative
longitudes P, after one saros have decreased by 0°.5; exactly they return
after 8 series (5 jumps of + 1°.5 and 3 jumps of — 2.°5) so that the
jumps — 2°.5 with the 7 halfyears interval per one saros will occur on
the average 15/8 instead of 2 times. Hence the 7 halfyears intervals with
their reversion of season gradually will come later in the five series of a
saros, the decrease of the argument into the region with opposite sign
(below 200 in the first, below 400 in the second case) will not be undone
by the reversion of season, and ever more among the successive series
will pass to the season with a solar correction small or of opposite sign.
Thus gradually after a time of abundance the conditions for tetrads of
total eclipses disappear, or conversely, after a time of absence, they
gradually come into being.

It will be necessary now to consider more in detail the structure of
the periodically appearing multitudes of tetrads of total eclipses. When
in one series we have the favourable conditions of P; say — 5° to + 7°
and the solar argument somewhat below 100, then in each following
saros period the latter will increase by 12 while the former decreases
by 0°.5; thus the favourable conditions persist and an array of tetrads
will appear, following one another with 18 years interval. When finally
the arguments run too near to 200 this array is extinguished. Then,
however, other series come into play; after 8 series the values of P,
return and bring about a new array of tetrads, at dates 21 days earlier
and with a solar argument smaller by 23 c.d. In such a way, when a first
array of tetrads is extinguishing, new arrays come forth, each taking
place 11 years after the former. Till at last they decline and disappear
when the eclipses fall too early in the year. This arrangement of the
tetrads of total eclipses in the years 1855—2174 has been reproduced in
Fig. 2. The autumn eclipses have been transposed to the spring, to put
them into one row with the spring eclipses of the same tetrad; open
circles represent partial eclipses, hence indicate imperfect tetrads.

The irregularities shown in this arrangement of tetrads are chiefly
due to the influence of the lunar terms. Though they are small (at most
0°.48) and play a secondary role only, they sometimes are operative in
making eclipses near the limit total or destroying the totality. Since the
argument of the lunar inequality in one saros period decreases by 3.1 c.d.
only, the lunar corrections persist with nearly the same amount during
an entire array of tetrads, either stabilizing or effacing it.
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