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INTRODUCTION

Calendar, so called from the Roman Calends or Kalens is a method of distributing
time into certain periods adopted to the purposes of civil life and religious observances,
such as weeks, months and years. Three of the periods used in éalendars, namely days,
months and years, are based on those astronomical periods which have the greatest
importance for the conditions of human life. Other measures of time, such as week and the
subdivisions of the day, are artificial. In primitive societies time was conceived as a
recurring cycle of natural events in sequence. Even when this sequence, such as rains,
droughts, or periodic events in the life of animals and plants, was associated with recurring
astronomical events such as the phases of the moon or the heliacal rising of certain stars,
the astronomical vent was still chiefly a checkpoint for the beginning of certain activities
rather than a time-measuremeni. As such checkpoints became increasingly important
with the development of agriculture, however, it led to the recognition of the possibility
of measuring time by use of astronomical references. When society developed into the
urban stage, time - measurement became a necessity to enable both the organized co-
operation of the people in economic activities and the regulation by priests and officials of
duties and festivals efc. Calendars of some sort therefore soon arose in all the early urban
civilizations though they varied widely in type. In most calendars there were three chief
methods of time-reckoning. There was the lunar calendar which was based on observation
of the phases of the moon, and resulted in a series of lunar months of some 29.5 days.
There was the solar calendar which based on the earth's orbit of the sun, in approximately
365.5 days. Finally there was a civil calendar, of a conventional period of time, for the
tabulation of a series of civil or religious events. One or all of these methods might be
employed. The supply of light by the two great luminaries is governed by the periods
known to astronomers as the solar day and the synodic month, Considerable discrepancies
were bound to arise between lunar and solar calendars in particular, since 12 x 29.5 = 354.
From this fact arose the difficulties with which early constructors of calendars were
confronted. ' A

The early Egyptians developed a lunar calendar as ‘early as the Predynastic period,
before 3000 B.C. Its lunar months began on the morning of the invisibility of the waning
moon, though its days commenced with the rising of the sun. We have no contemporary
evidence of this, but the writing of the word "month" with the moon-sign, the importance
of the monthly and half-monthly festivals in later times, and the adoption of the month as
a unit in the later calendar place it beyond doubt. However the Egyptians had begun to
observe what is known as the helical rising of the star Sirius or Sothis, a conspicuous
object in the Egyptian sky. A star is said to rise heliacally on the day on which it first
appears again in the sky just before sunrise after being for some time invisible. The
Egyptians noted that this rising corresponded very closely with the rise of the Nile, on
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which the agricultural vnvellare of the country depended. Small wonder then that they chose
this for the first day of the year, and took the period between two such observed rising to
form a unit of time which was convenient not only as being much longer than the old
month, but as inciuding a' whole round of the seasons. We know from the Latin writer
Censorinus that the first day of the Egyptian calendar year coincided with the rising of
Sothis in A.D. 139, and it must therefore have done the same thing 1460 solar yeass earlier
and so on, ie., in 1321 B.C., 2781 B.C., 4241 B.C., 5701 B.C., etc. Obviously it was at one
of these moments that the calendar was introduced. Now the religicus texts inscribed in
the pyramids of the Fifth and Sixth Dynasties show that the calendar with its five extra
days was then already in existence. Egyptologists consequently daie the introduction of
the calendar to 4241 B.C. or to 2781 B.C., according as they believe the pyramids to be
catlier or later than the latter date. A still higher date, e.g., 5701 B.C., is hardly likely.

The Babilionian calendar imposed by the kings of the Firsi Dynasty of Babyion,
on all the cities immediately under their rule, was adopted by the Assyrians at the end ’of
the second millennium B.C., was used by the Jews on their return from exile, and was

widely used in the Christian era. This calendar was equated with the Summerian calendar -

in use at Nippur at the time of the Third Dynasty or Ur (about 2300-2150 B.C.,). The
Babylonians, as the Egyptians, also began with establishment of a lunar calendas, through
their new months started with the reappearance of the moon, and the day started at sunset
instead of sunrise. By about 300 B.C. the Babylonians could predict the length of the funar
months. It contained ordinarily twelve months, the beginnings of which were fixed by
observations of the lunar crescent and in general their length was 30 days for economic
purposes; in historical times regular watch was kept for the mew moon, and if that feli on
the 30 th of the month, then the day automatically became the first cf the next month,
and all officials were apprised of the fact. In ordes to prevent too serious a derangeament
of the seasons owing to the discrepancy between 12 lunar months and the solar year, a
month was intercaleted; the intercalary month might be 2 second Elul(Ululu) or 2 second
Adar. Such intercalations were in the late period, regularly devised within a cycle; in the
Seleucid period and earlier, from 328 B.C., the cycle was 19 years; from 504-383 it was 27
years, from 528-505 it was eight years. Before the reign of Darius the intercalation was
not based on any fixed cycle, but was incerted when the astronomers advised the kind that
it was necessary, the object being, it has been suggested, that the first of the Nisan, with
which the year always began, should not fall over o month later than the spring equincx,
and not more than a month before it.

All Greek Calendars were lunar until the Roman pericd. Each community had a
separate calerdar. Bischoff has succeded in putting together more or less complete lists of
months in about a hundred Greek calendars. There was great variety in the season when the
year began in different calendars. But each month was kept roughly to one season of the
year by the insertion of a thirteenth or intercalary month when required. In some calendars
this was done by repeating the six month, in some by repeating the twelfh month; butina
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few intercalary month occupied other position, at Athens there are four instances
preserved on inscriptions where an intercalation was made at an exceptional plaéé in the
year, and it is probable that the same happened elsewhere from time to time. Not only the
intercalation of months, but also the regulation of the length of each month, appears to
have been always in the hands of the public authorities, an it, as time advanced, they paid
increasing repect to astronomical calendars there is no evidence that any astronomical
calendar ever alquired legal validity. We have less definite information as to the extent to .
which the beginning of the civil month was permitted to depart from the New Moon, but
Aristophanes in the Clouds, acted in 423 B.C., makes the Moon complain that the days
are not being kept correctly according to the moon. During the fifth centﬁry B.C,, the
Athenians had a senatorial or financial year, which was independent of the ordinary civil
year and of the Moon.

The Macedonian calendar, which was of the Greek type, became current in western
Asia as a result of Alexander's conquests, and even competed with the native calendar in
Egypt. But in the Roman period the Greek calendars of Asia became purely solar calendars.

The Roman Republican calendar which was of the Greek type, which is now used
throughout the whole world, had its origine in the local calendar of the city of Rome. It is
generally stated by the ancient anthorities that the year of Romunlus consisted of 304
days divided into 10 months beginning with March, and that Numa introduced a lunar Year
and added January and February. It may be refarded as certain that the Ruman months
were originally lunar, and throughout the republican period the normal length of the yeér
remained 355 days, exceeding 12 lunations by 0.63 day. This small excess could have been
compensated by making the intercalary month consist sometimes of 27 and sometimes
of 28 days.

The ancient Jewish calendar was of the normal lunar type with twelve months,
each of which began with the first visiblity -of the crescent Moon. The papyri belonging to
the Jewish colony at Elephantine in Southern Egypt in the fifth century B.C. shows

that at that place the beginning of the month was reckoned from the first evening when

mean sunset or 6 p.m. followed mean new moon, so that we have a calendar determined by
astronomical calculation, not by astronomical observations. :

Before Islam, the Arabs used a system for their calendar the nature of which is not
quite known. All knowledge about the ancient Arabic calendar is based on the verses and
folkes. By means of used systems they tried to fit a certain lunar month to fall at the same
season every year, in particular Zulheggia, the month for pilgrimage. Durihg this month,
the one after and the one before as well as during the month of ‘Regab, fighting was
prohibited. The idea was to make the journey to and from Mecca for pilgrimage secure.
Different historians quote different systems for Arabs to achieve this object. It was even
stated that there had been, on some occasions an abuse by the specialist who used to fix
their pilgrimage month. The system whatever had been its nature was known as Al-nasea
which meant addition or omission of one lunar month every now and then, go that
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pilgrimage month may fall at a certain season of the solar year mosi favourable for the
journey to Mecca for pllgnmage

The nesea system was adopted until the tenth year after immigration of the
prophet Mohammed from Mecca. In that year Islam prohibited that year and enferced the
adoption of the lunar monih without nasea irrespective of whether the pilgrimage month
should always recccure at a certain season of the year. On account of the fact that the
system of nasea is noi known exactly, chronohogy of events prior the tenth year affer
immigration is not at all easy.

It is a fact thai nearly all primitive tribes had determined time by observing the new
crescent, and celebreted this occaison. Arabs greet the crescent with cries of "hilal"’, the
ancient greeting of the arriving God, which later became the name of the new crescent.

Since the days of the Caliph Omar, the immigration of Prophet Mchammed io
Medina, being the most important event of the rise of Islam, was considered the beginning
of the Islamic or Higri year which consists of 12 Iunar months. Each lunar month starting
at least one day after new moon, at sunset of the evening of the first sighting of the lunar
‘crescent. The mean lunar month i.e. the synodi¢c monih has 29-53 mean solar days. If there
are no clouds, the new crescent can always be seen 30 days after ihe previous one (a
complete month), but in almost half of the cases it is seen already on the 29 th day (an
incomplete month), Therefore, no lunar month exceeds 30 days. Then chronologists have
made a rule that each of the odd numbers comprises of 29 days while each of the even
months comprises of days.

Mohammed the Prophet has advised that always '' fast when see the new moon and
break fasting we you see the next new moon. But if the heavens are clouded, so as to
prevent your sighting, count the month of Sha'ban as 30 days". Accordingly,
Mohammadens determine the beginning and end of at least 3 or 4 of the Higri months
that is, Ramadan when they have to fast, al-muharram the beginning of the Higri year,
Zulheggia when they go for pilgrimage and Rabija I the month in which the prophet has
been born.

Poeple would gather on beaches or hills waiting for the fain sickle to appear in the
pale blue edge of the yellow evening sky, and when it was suddenly sighted there would be
excitement and celebretion. Following the tradition which al-Biruni ascribes to al-Sakin:
"when you observe the new moon of RajaB couni 59 days and then begin fasting’'.
However, as early as the evening of the 27 th of Jamadi al-Akhir, people will be gathering
on a hill to see if the moon of Rajab was visible. As soon as the crescent was seighted by at
least two men of good repute, the party to the court or kadi to report the observation.
Kadi may ask these men questions such as how the horns of the crescent were pointed, and
how high the crescent was above the horizon. If the answers were in accord with the data
obtained from astronomical tables, he would put the sighting on record and forward the
news to the capital. In ancient time, it was customary to spread the news of the sighting
to light fires on the hills.

The time of the first visibility of the lunar crescent may be predicted from
observation and calculation. Determination of the conditions of visibility of the new
crescent after the conjunction time had been, one of the subjects of study of ancient
astronomers, as well as Muslim astronomers like Abul Wafa, Abul Faraz, al-Farghani,
al-Battani, al-Biruni, Ulug Bey and others. ‘

The theoretical problem of first visibility of the lunar crescent is to predict from
astronomical arguments, the conditions under which the moon may be sighted for the first
time after the conjuction. Accurate prediction greatly facilitated the observation of the
first visibility of the new moon, and for this reason, much effort was made already by the
early Islamic astronomers to master this problem theoretically. Altogether, the
computation of the first visibility was a complex problem involving nearly every aspect of
mathematical astronomy. Ptolemy's planetary theory, however, already contained all the
elements for handling a problem of this kind, and early Islam astronomers made full use
of this.

The problem of predicting the first crescent may have originated in Babylon and
seems to have been transmitted to the Arabs by the Hindus. It was not given much
attention in Greek astronomy. Ghiyath al-Din al-Kashi mentions, in its Khaqani zij, that a
water-clock was used to measure the time of sunset. The criterion for sighting the cerescent
of the new moon was a time interval between sunset and moonset of two pinkans. A
pinkan is a hemispherical bowl of brass or copper having a small hole at the underside.
When it is placed on water, it fills and sinks in 24 minutes. But, in the critical sitnation the
crescent was then seen only for a short moment at about one pinkan, that is, 24 minutes
after sunset.

The values of one and two pinkans seen to describe the ancient ritual of first
sighting quite well, and were adopted-with further refinements-to the present day.

In various places in the Islamic literature one finds mention of the conditions
under which the new crescent may be seen. One finds limits and ranges for Arc of
Separation, Arc of Descent and Angular Distance between the sun and the moon called the
Arc of Light and values with out denomination. Also there are criteria of successive
limitation which confine areas where the crescent may definitely be seen or not seen at all.

But Islamic astronomers generally emphasized on the two criteria. The angular
distance between the sun and the moon or the difference between their ecliptical
longitudes and the altitude of the new crescent from the horizon at the moment of sunset
or the difference between the sunset and the moonset in degrees.

s

THE CONDITIONS OF THE VISIBILITY OF THE NEW MOON

Let us examine the conditions of the visibility of the new mon. The visibility of
the new Moon is based on the relativ brightness of the Moon and the sky as well as on the



measured ability of the human eye to observe contrast. In order to see the new crescent
we must wait until the moon reaches a certain brightness after the conjunction time.
This brightness depends on the width of the crescent. As it is well known the width, as
seen on a perfect lunar sphere, observed and illuminated from infinity can be writien down
immediatly using Fig. 1. .

T d _
w= — (1 —cosd)=r.sin * —— 1
2 2

where r is the lunar diameter and d is the angular distance between the Sun and Moon.
According to the equation (1) the width of the crescent is the function of the anguiar
distance of the Moon from the Sun. Thus the first condition towards the first visibility
of the new Moon will be based on attaining a certain value of the angular distance.

Danjon (1936) reported that the Moon's crescent could not be seen closer to the
. sun for elongations less than 8° . This is no doubt due to the increase of the sky brightness
in the area close to the sun and the rough character of the Moon's surface that makes the
crescent fade rapidly at increasing glancing angles.

When the visibility of the thin crescent during sunset is under consideration, we
must encounter the earth's atmosphere and the physical phenomena related into it.
Because before reaching our eye, the lunar light traverses a rather thick layer of
atmosphere in the proximity of horizon and somewhat in this fashion its intensity
decreases. In this case the most important phenomena on is also the twilight following
sunset. Then, the new Moon can be seen if its brightness is larger than of the twilight
brightness of the sky above the western horizon.

The average brightness of the sky can be measured directly with an ordinary
photogrophlc exposure meters. The measurements in the neightbourhood -of the sun
show that brightness of the sky above the western horizon after sunset at a certain moment
is taken to be same at the same altitude . Thus we assume that it does not depend on the
azimuth, In order to the new crescent to be visible, the Moon's altitude from the horizon
must be greater than a certain value.

Fortheringham (1910) computed the altitude of the moon at the moment of the
sunset, and the difference of azimuth between the two bodies, with the result that he
obtained a simple criterion for the visibility of the moon when in small phase much more
difinite and satisfactory than that nonally adopted. It has been usual to adopte the interval
of time from true conjunction as the measure of visibility. Adding a few more observations
to those used by Fortheringham, E.W. Maunder (1911) drew the curve some what lower.

The Indian Ephemeris and Nautical Almanac (for example on page 462 of the
1971 volume) uses a slightly modified form of the Maunder criterion for visibility of the
moon. Both are listed in the Table, along with Fortheringham's.

Sun

a

Earth

Fig. 1. The width of the crescent



CRITERIA FOR CRESCENT VISIBILITY

Azimuth : Mocen's  Aliitude

Difference Foth. Maunder Ind. Eph.
0° 120 11°.0 10" .4
5° 11°.9 10°.5 10°.0
10° 11° 4 9.5 9°.3
15° 11°.0 8.0 . 80
20° 10°.0 6.0 6°.2
23° 7.7

Then two criteria generally used by the Islam astronomers correspond to the
criteria deduced from modern knowledge, but only the limits obtained by the modern
technique is different.

In the Conference for Determining the first day of the Lunar Months held in
Istanbul, the historical capital of Islam from 28th November 1978 to 30ih November
1978 / 26 Zilhicce to 29 Zithicce 1938 A. D., two committees of inquiry were established :
"The committee of Religion" and the ''Committee of Astronomers” . In each committee
the specialists worked on the paper that came under their specializations. After a detailed
and comprehensive dicussion, the comference unanimously accepted the following
resolutions.

1. What is basic, is to see the moon, whether it is seen simply by naked human eye,
or through modern astronomical observations makes no difference whatscever.

2. So as to take the astronomers' account into consideration from a religion point

- of view, they ought to base their astronomical observations upon the fact that the Moon
could be seen in the horizon by human eye after the sunset and after the elimination of
all the obstacles which hinder the visibility of the Moon. This is called '"Visibility of
Judgment" (Hukmi ru'yet).

3. For the visibility of the Moon, there are two basic conditions which have to be
fulfilled :

_ ~ a. After 'conjuction” , the angular distance between the Moon and the Sun

should not be less than 8 degrees. As it is known, the visibility of the Moon starts between

7 and 8 degrees, but for the sake of precaution, taking 8 degree as essantial is accepted

unanimously.
b. The angular distance of the Moon from the horizon should not be less than

5 degrees.

Only under this condition does it becom possible to see the crescent by naked
human eye in the normal conditions.

4. For the visibility of the Moon no special place is requn'ed When such visibility

becomes possible in any part of the earth, it w1ll be legally concluded that the lunar month :

has started.

COMPUTATION OF THE MOON'S POSITION

This booklet is intended primarily for finding the date of ‘the first visibility of the
new crescent. Astronomers and others, however, will find the data useful for calculations
requiring the positions of the Sun and the Moon. '

To facilitate chronological computations for many purposes, the astronomical days, -
beginning at Greenwich mean noon or 12h U.T., are numbered consecutively from an-

epoch sufficiently far in the past to precede the historical period. The number which
denotes a day in this continuous count is the Julian Day Number (J.D.). The Julian Day
reckoning begins with Julian Day Number 0 for - 4712 January 1, at 12h U.T. Dates

expressed in Julian Days and fractions of a day represent time elapsed since thlS epoch

The Julian Day Number can be computed from prepared Tables.

The lunar ephemeris is calculated directly from Brown's theory mstead of from his

Tables of the Motion of the Moon (New Haven, Yale University Press, 1919); but in order
to obtain a strictly gravitional ephemeris expressed in the same measuze of time as defined
by Newcomb's Tables of the Sun, the orbital elements upon which Brown's tables are
based have been amended by removing the empirical term -
10".71 sin (240°.7 +140°.0 T)
and by applying to the Moon's mean longitude the correction
—8".72 —26".74T — 11".22 T?

where T is the time measured in Julian centuries of 36525 ephemeris days, from the epoch

1900 January 0.5 E.T. = J.D. 2415020.0 by the following relation.

D - 2415020.0

36525

Consequently, the fundamental orbital elements are given by the following
equations :
The mean longitude of the Moon, measured in the ecliptic from the mean equinox

of date to the mean ascending node of the lunar orbit and then along the orbit is given by
the following equation : |
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L'=270° 26' 02".99 +1732 564 379".31T—4".08T* +0".0068T 3

To the mean values of the arguments must be added some periodic variations, called
"additive terms" in Improval Lunar Ephemeris 19521959 (Washington, 1954). The
additive terms for geocentric mean longitude of the Moon are equivalent to the followings
ones :

+0".84 sin(51° .2 +20° .2T)
+ 14".27 sin(346° .560 +132° .870T — 0° .009 1731 T*)
+ 7".261 sin

where 2 is the mean longitude of the Moon's ascending node. This orbital element of the
Moon is given by the following relation :

Q =259°10'59".79 — 6962911".23T +7".48T* + 0".0080T 3
The longitude of the mean ascending node of the Iunar orbit on the ecliptic is
measured from the mean equinox of date. The additive terms for the mean longitude of

the Moon's ascending node is given by the following terms:

+0".63sin(51° .2 +20° 2T)
+95".96 sin
+15".58 sin(Q +275° .05 — 2° .305)

Moon's mean anomaly being equal to the difference between Geocenitic mean
longitude of Moon and Mean longitude of the Moon's perigee is : -

M’ =296°06' 16".59+1717 915 856".79T +33".09T* +0".0518 T?
The additive terms beloﬁging to this M" are given as follows :
2".94 sin(51° .2+ 20 °.2T)

14".27 sin(346 ° .560 +132 °.870T — 0°.0091731 T? )
+9".337 sin O

Mean elongation of the Moon from Sun ie., the difference between geocentric mean -

longitude of Moon and geocentric Mean longitude of Sun is represented by the following
relation f
D= 350" 44' 14".95+1602961611".18T — 5".17 T ? — 0".0068 T*
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The additive terms belonging to this D are :

7" 24 sin(S1° .2+ 20° .2T)
14".27 sin(346 ° .560 +132° 870T — 0°.009 1731 T?)
7".261 sin Q

Mean distance of Moon from ascending node being equal to the difference between
geocentric mean longitude of Moon and mean longitude of Moon s ascending node is given
by the following equation,

F=11°15"03".20+ 1739 527 290".54T — 11".56 T * — 0".0012T*
The following terms are additive to F :

+0".21 sin(51° .2 +20° .2T) is negligible

+14".27 sin (346° .500 +132° .870T — 0° .009 1731 T?)
—88".690 sin O

—15".58 sin (+275°.05—2°30T)

Sun's mean anomaly i.e., difference between geocentric mean longitude of Sun and mear=:
longitude of Sun's perigee is given by the following relation :

M= 3586 28' 33".00+129 596 ".10T —0".54T % —0".0120 T 3
The following temi is additive to M :
—6".40 sin(51° .2+ 20 °.2T)

The Moon's equation of centre : The Moon's equation of centre is computed on the basis
of the formula : '

C' =22 639".500 sin M'+ 769"'.016 sin 2M' +36".124 sin 3M'+
+1".938 sin 4M' +0".113 sin 5M'

The adopted expressions for the solar perturbations in the coordinates of the Moon
are those given by Brown. They express the perturbations as harmonic series, in which
each argument is a combination of the four fundamental arguments D, F, M, M' . More
precisely, the argument of each term in the series is the form

iD+ jF +kM-+ IM'
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where
LjklI=0£1,%2. ...

Arguments of perturbations in longitude, arguments of perturbations in latitude and
arguments of perturbations in parallax are represented respectively.

A1 58253 350000000
bibabsn.

The arguments of perturbations in parallax are the same as for the perturbations in
longitude. Perturbations are given by the following relations :

Li=kisinai (i=1,2 ......... )
Bizkisinbi
Pi=kicosai

where L;, B; and P; represent the perturbations in longitude, latitude and parallax
respectevely. The expression of the arguments are given in Table 1.

The periodic terms L; are tabulated for different values of the arguments a.
Similarly, the terms B; and P; are tabulated.

Some of the terms L;, B;, P; are functions of the eccentricity of the Earth's orbit.
More specifically, the term L3, L6, L8, L9, ........... and B11, B14, B15, B1S, ........ are
proportional to e, whereas some of the other terms are proportional to e?.

The eccentricity e of the Earth's orbit is represented by the following equation with
the eccentricity at 1900.0 (t = 0) being taken as unitly

e =1 —0.0024954T — 0.000 007522 T
The correction in longitude due to the additive terms (i) and (k) has a maximum
value of only 0".4, which is negligible for our purpose. But the correction in latitude may

reach 10'f. Then we have,

wi = ~0.0004664 cos )
w4 = —0.0000754 cos ( 2+N)

as correction factors in latitude, where

N=275°.05-2°30T

13
All arguments are referred to the mean equinox of date. In order to take into
account the most important planetary perturbations in the Moon's longitude, the following
two quantities also are needed :
V = heliocentric mean longitude of Venus - hehocentnc mean longitude of

* Earth + 180 °

J = helmcentric mean longitude of Earth - heliocentric mean longitude of Jupiter.
Thus, V is measured from Venu's (mean) superior coujunction , while j 1s measured
from jupiter's (mean) opposition. We have ‘

V=63° 07037 +22518° 442986 T
J=221° 64742 +32964° 466939 T

the secular terms (i.e., termsin T ,T>) being quite negligible for our purpose.
Finally, we can calculate the Moon's geocentric coordinates as follows :

Moon's longitude :

AN=L+C+ 2L’ +eZL'+e?Z L?

Moon's latitude :

B'=(1+w; +w , )(EB°+eEB'+e T B?)
Moon's parallax :

7'=Py,+Z P +eZP +e? T P?

COMPUTATION OF THE APPARENT RIGHT ASCENSION AND DECLINATION
OF THE MOON

The apparent right ascension and declination are derived directly the values of the
apparent longitude and latitude, using the true obliquity of ecliptic. The longitude and
latitude may be converted into ascension and declination by the usnal formulae :

cos§ .cose = cosf.cosA
cosd .sin@ = cosf .sink.cose —sinf .sine
sin 6 = cos B.sin).sin € —sin § .cose

the obliquity of ecliptié is to be computéd using the following formulae :
€=23°27' 08".26 —46".845 T — 0".0059 T> +0".00181 T 3
However, befor doing so, the nﬁtations in longitude and obliquity are to be added to A'

and € , respectevely, if one wishes to find the "apparent' coordinates of the Moon. These
correction for nutation are to be calculated by the following formulae :
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Nutation in longitude :
A N =-—(17".2327 +0".01737 T) sin 2
- +(0".2088 +0".00002 T) sin 2£),
~1".273 sin 2L
—0".2037 sin 2L
+0".126 sin M
+0".0675sin M’ ‘
—0".0497 sin(2L -+ M)
+0".0214 sin 2L — M)
Nutation in obliquity :
A e = +(9".2100 + 0".00091 T) cos Q
~(0".0904 — 0".00004 T) cos 202
+ 0'".552 cos 2L
+ 0".0884 cos 2L’

+ 0".0216 cos 2L + M)
—0".0093 cos (2L — M)

Hence,
True obliquity : Mean obliquity + Nut. in oblig.

e=¢€¢q *+Ae€
Moon's apparent longitude : Moén's longitude + Nut. in long.
M= A" FAX
Moon's apparent latitude : Moon's latitude (unchanged by nutation)
B=p"
Using the formulae (1) given above, we then find for the Moon's apparent right ascenion
tga= tg Ay cose —(sine [cosh; ). tgf

and declination :

sin§ =cosf .sinX; .sine +sinf .cose
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COMPUTATION OF THE SUN'S POSITION

The ephemerides of the sun are derived from the geometric longitude referred to
the mean equinox of date, the latitude referred to the ecliptic of date and the mean
obliquity of date, that are taken from Newcomb's Tables ‘of the Sun (A.P. A. E., 6,
par 1, 1895). o

The sun's geometric mean longitude, L is given by the fpllowiﬁg equation according
to Newcomb. (Epoch 1900 January 0 Greenwich Mean Noon = 1.D. 2415020.0)

L=279° 41'48".04 + 129 602 768".13T +1".089'T?

In order to take into account the most important pianetary perturbations in the sun's
position, the following quantities also are needed : V, J, Q and S. For V, J see p.12.
Q = heliocentric mean longitude of Earth - heliocentric mean longitude of Mars;
S = heliocentric mean longitude of Earth - heliocentric mean longitude of Saturn;
Thus, Q and S are measured from the planet's (mean) opposition. We have

Q = 165° .94905 + 16 859° .069667 T
S =193°.13230 + 34777 ° .259042 T

The secular terms are quite negligible for our purposes. o
Furthermore, there are inequalities of long period in the sun's mean longitude.

These corrections should be applied to the sun's mean longitude and also to the sun's

mean anomaly before computing other corrections. The long period perturbations are :

8L = + 6".40 sin (231° .19+ 20° .20 T)
+(1".882 —0".016 T) sin (57° .24 + 150° .27 T)
+0".266 sin (31° .8 +119°.0T)
+0".202 sin (315° .6 + 893°.3T) ‘ :

Equation of centre of the Sun. — the sun's equation of centre is :

C =+ (6910".057 —17".240 T — 0".052 T 2) sin M’
+ (72'"338 — 0"".361 T) sin 2M
+ (1".054 — 0".001 T) sin 3M
+ 0".018 sin 4M.

The planetary perturbations in the coordinates of the sun are given by the following
equations according to Newcomb : (Tables of the Sun, Astron. Papers American Ephemeris
and Nut. Alm., vol. VI, Partl, Washington, 1895)
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Sun, perturbations in longitude :
by Venus

+4'"".838 cos (V+ 90 °.00)
+5'.526 cos (2V+ 90° .12)
+0".666 cos (3V+270° .41)
+0".210 cos (4V+ 89° .8)
+0".084 cos (5V +270°..1)
+2".497 cos (2V —-M+ 257 °.75)
+1".559 cos (3V —M+ 77 °.96)
+1'.024 cos (3V —2M+ 50 °.85)
+0".154 cos (5V —3M +34° .1)
+0'.152 cos (4V —2M+ 227° .4)
+0".144 cos (4V M+ 79° .0)
+0".123 cos (5V —2M+ 229° .8)
+0".116 cos (2V +M+90° .7)
+0".075 cos (V +M +87° .5)

+ 0".074 cos (V —M +358°.8)

by Saturn

+0".419 cos (S +90 °.34)
+0".108 cos (25 +270° .1)
+0".320 cos (S —M +259° .22)
+0".112 cos (28 -M +273° .1)

by Mars

+0".273 cos ( @ + 90° .6)
+2".043 cos (2Q + 89° .76)
+0".129 cos (3Q +273° .0)
+1".770 cos (2 Q—M+306° .27)
+0".585 cos (4 Q—2M +185° .82)
+0".500 cos (4 Q —M +316° .94)
+0'"".425 cos (3Q—M +317° .70)
+0".204 cos (50 —2M +185° .5)
+0".154 cos (6 @ —2M +185° .0)
+0'"".106 cos (7 Q—3M +53° .3)
+0".101 cos (6 Q—3M + 53° .9)
+0".085 cos (5Q-M+139° .3)

by Jupiter
+7".208 cos (J+91° .09)
+2".731 cos (2T +270° .25)
+0".164 cos (3 +265° .2)
+2".600 cos (J =M +174°.77)
+1".610 cos (2] —-M +292° .60)
+0".556 cos (3] —2M +177°.31)
+0".210 cos (3] —2M +193° .2)
+0".163 cos (J+ M +110 .2)
+0".080 cos (47 —2M+ 83°.9)
+0".073 cos (J —2M +187°.9)
+0".073 cos (2] 2M +75° .7)
+0'".069 cos (2J+ M +263° .9)
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Sun, perturbations in latitude
by Venus by Jl_lpitér

+0".166 cos (2J — M+ 268° .6) .
+0".023 cos (J -2 M) :
+0".018 cos (37 —2 M +182°)
+0".017 cos J+5°)

+0".016 cos (J —M +272°)

+0".210 cos 3V — M +64°.5)
+0".092 cos (V — M +64° .6)
+0".067 cos (2V — M+ 244° .8)
+0".031 cos (4V — M+ 65° 4)
+0".029 cos (V+M+ 116 %)
+0".023 cos (2V+ M+295%)
+0".019 cos (5V —2 M +233°)
+0".014 cos (3V +M +114%)

+0".014 cos (2V —2 M +233°)
+0",012 cos (2V+ 271° )
+0".012 cos (4V -2 M +244°)

The coordinates of the sun obtained by using the preceding formulae are the
coordinates referred to the centre-of-mass of the Earth-Moon system. The action of the
Moon is purely geometsic in nature; it is simply the transfer of the origine to the centre of
the Earth in order to obtain the geocentric coordinates of the Sun.

According to Newcomb, the perturbation in longitude and latitude are given by the
following equations : ,

A B=+0"576sinF

+ 0".016 sin (F +M’)
—0".047 sin (F — M)

A A=+ 6".454sin D
+0".013 sin 3D
+0".177 sin (D+ M)
— 0".424 sin (D — M")
+0".039 sin (3D — M)
— 0".064 sin (D + M)
+0".172 sin (D — M)

The Sun’s aberration in longitude is : ‘

Aberration in the Sun's longitude A.D. 0 = —(20".47 4 0".358 cos M)

Aberzation in the Sun's longitude A.D.2000 = —(20".47 + 0".1342 cos M)

Finally we can calculate the sun's longitude and latitude as fallows computation
of the sun's longitude '

A=L+C+ (Perturbation in longitude = Venus + Mars + Saturn + Jupiter)+
(The perturbation produced by the Moon = A)) (geometric longitude, mean
equinox of date) .
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The longitude of the sun, computed in the manner described above, is the true or
geometric longitude, i.e. not affected by aberration. The Sun's apparent longitude is
obtained by adding the aberations

A1 = A+ (Sun's aberration in longitude = —(20"'.47 + 0"'.342 cos M) )

(apparent longitude, mean equinox of date) '
Computation of the Sun's latitude :
8 = (Perturbation in latitude = Venus + Jupiter) + (Perturbatwn produced by the
Moon = A )

The longitude and latitude may be converted into right ascension and declination by the
equations (1). Howewer, befor doing so, the nutations in longitude and obliquity to be
added to apparent Iongitude of the Sun and the mean obliquity respectevely, if one wiches
to refer the Sun's coordinates to the time equinox of date.
Hence,
True obliquity :

¢ = Mean obliquity + Nut. in obhqulty
Sun's apparent longitude :

A" = apparent longitude + Nut. in longitude
Sun's apparent latitude :

B=p (unchanged by nutation )
Then we have, using the formulae (1)

tg a=tg\' cose —sec\ ' tgp sine

sind = sinA cosf sin ¢ + sinf cose

or since 3 is very small and cosA '= cosa cosd secf3
tga, =tgA'.cose

Since the nutation does not affect the position of the ecliptic itself, the latitude of
a celectial body is not affected by it. The effect upon the longitudes of the stars is simply

to increase all of them by the same quantity Ay "nutation in'longitude'’.

The simplest and most direct method to convert positions measured from the mean
equinox and the mean equator into those referred to the true equinox and the true equator
is to add Ay to the longitudes, the latitudes remaining unchanged. In converting the
ecliptic coordinates to the equtorial coordinates, the true obliquity (i.e. mean obliquity
+ A ¢ ) must be used. However, corrections to right ascension and declination may be
calculated directly from :

Ae =(cos €+ sine sina tgd) A Yy—cosa tgdA ¢
AS = sine cosa A Y +sinale

19

a =0 tAa
§ =85 TAS

The astronomical clock, by means of which time is measured, is the Earth whose
axial rotation cause the heavenly bodies to appear to revolve round the Earth from east
to west. For the hands of this clock the sun, Moon or stars may be selected, and different
times will result according to the choice made. The most convenient unit of measure for
time is the day, which is defined as the interval between successive transits over the same
meridian of the heaventy body by which the time' is measured. If the héavenly bodies
were absolutely fixed, all days would be of the same length, this length correspondmg

_exactly to the Earth's period of rotation.

The apparent solar day was formerly consulered to begm and end at apparent
noon, the moment when the centre of the true Sun is on the upper meridian, since 1925
January 1 it has been considered to begin and end at apparent mxd-mght the moment of

‘lower meridian passage of the true sun. It is divided into 24 hours, and the time resulting

is called apparent time. Thus apparent time any instant is the westward hour an,,le of the
the sun +12".

Owing to the non-uniform motion of the true sun in nght ascension, the apparent
solar day is of variable length, and is therefore not suitable as a measure of time. Hence a
fictitious mean sun is conceived which moves uniformly in the equator and, in the long
run, is as much ahead of the true sun as behind it. The interval between successive trasits
over the same meridian of this mean constitutes the mean solar day, and gives rise to mean
solar time.

The difference between the right ascentsion of the true sun and that of the mean
sun is known as the equation of time. The equation of time (EQT) is also the hour angle
of the true sun minus the hour angle of the mean sun. Thus it is the difference : apparent
solar time — mean solar time. “

If no great accuracy is required, the equation of time (EQT) may be computed in
the following manner. '

tgsa = cos etg (T +M+C)
EQT=T+ M-«

where I is given by the following relation :

I =281° 13' 15".00+ 6189".03 T+1".635T> + 0".012T?
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The values of EQT, resulting from this method, will seldom be in error by more
than 2 second of time. Since the Earth rotates uniformly on its axis, and since longitudes
are measured uniformly round the Earth from the meridian of Greenwich which is
universally accepted as thé prime meridians, it follows that the difference between
Greenwich mean time and the local mean time of any place is equal to the longitude of
that place. Denoting by ) the longitude, considered positive to the west, we have, since the
Earth rotates from west to east :

Local mean time = GMT — A

- TO PREDICT ASTRONOMICALLY THE CURVE OF THE FIRST VISIBILITY

According to the accepted criteria, to find the curve of the first visibility of the
lunar crescent, we will resolve the following astronomical problem : when the angular
distance between the Sun and the Moon after the conjunction is 8° , what is the
geogrophical coordinates of the place on the Earth surface where, at the moment of the
sunset, the altitude of the Moon is equal to 5° ? In order to resolve this problem, we will
use the spherical trigonometric formulae.

First of all we have to compute the time when the angular distance between the
Sun and the Moon is 8° after the conjunction time.

Let us suppose that the equatorial coordinates of the Sun and the Moon are oy,
8o and a8, respectevely. From the spherical triangle PSM is defined by the Sun, Moon
and Northpole on the celestial sphere (Fig. 2) The angular distance d can be written as
follows :

cos d= cos(90— 5 ; ) cos(90— & o)+ sin(90—58 o) sin(90-5 ) .cos(H, -H,)

Hence we have
cosd=sing 4 sin§ ,+cosd o coss ccosHy —H,) )

For any given time, since both the Sun's and Moon's equatorial co-ordinates i.e., the right
ascension and the declination can be computed by the stated method at the beginning of
this booklet. Therefore ay, 65 and « 0 are known. Then the value of the H, — H,
can be calculated by the right ascensmns of the Sun and Moon. Since the co-ordinates of
the Sun and Moon are calculated for the same sideral time (T), according to the definition
of the sideral time, we have

T=H0 +ag= HC+ O{c
Hence we have

H, —chac‘;-ao (2)

21

Fig. 2. Celestial sphere
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and if this relation is inserted in equation (1)
cosd=sin5Gsi116c+cos60c056ccos(ac-a'0) 3)

is obtained. Since the co-ordinates of the Sun and the Moon are known, the angular
distance between the Sun and the Moon can be caiculated for a given time using equation
(1). But the probiem is to find the time when the angular distance is 8°. '

Since the conjunction time is known, its angular distance can be computed by the
equation (1) for conjunction time, T;. Let its angular distance be d. As it is well known
the angular distance of the Moon from the Sun increases approxinately 0°.508 . per. hour,
then (8 — d) /0°.508 . is defined the time passing from the conjunction time until its
angular distance is equal to 8°. Let this time be t. For T, +i the angular distance between
the Sun and the Moon will be 8°. If for T, + t its angular distance is not equal to 8°, the
procedure is repeated so the time T is determined for angular distance 8° in desired
precision. Then this is the time of the first visibility of the new Moon. For this time,
T, the right ascensions and the declinations of the Sun and the Moon are calculated by the
stated method at the beginning of this booklet. Now let us take the problem concerning
to the second criteria, i.e, in this case, the propesed problem is that, at the moment of the
sunset, when the angular distance between the Sun and the Moon is equal to 8°, the
altitude of the Moon is equal to 5° from the horizon, what is the geogrophical co-ordinates
on the Earth surface to satify these conditions? From the definition of the sideral time

cT %z

T=Hy; +a, =H ,+a, and H; -H_.=a
is written. From this, equating the cosines of both sides.

'Cos(Ho—Hc)“—'Cos(ac—a;,)

@.—ag = A

CosHoCosH , +SinHySinH , =CosA «

CosHo CosH , —Cos Aa = —+/(1—Cos*Hg) /(1 —Cos* H )

Cos’ HoCos*H,,+Cos* A —2Cos H,Cos H, Cos Aa= (1—Cos“ Hg)(1—Cos*H,)

Cos*H, +Cos* H ,—2 CosH, CosH  Cos Aa+Cos* Aa—1=0 “@

As Hy and H, are known by the following formulae :

A Cos 90°.83 —Sinb o Siny
CosH, =

Cos8, Cosy

and
Sin5° —Sin & c_Simp

Cos H, =
Cosd ,Cosy

Let us insert the value of H, and H_ in equation. (4)

Hence we have
E tgo
Ctg? ¢ +—— o +F+2D ————— =0
Cos? Cos g
(F-C)Sin* ¢y —2DSingp —(E+F)=0 (5
The roots of this equation are :
Dt/ D? —(E+F)(F-C)
F -0
where :
Sin 5.83 Cos 90 °83
A= , B= o
Cos 5, Cos b,

C=[tg? 6, ,+tg?85, —2CosAa tgd g5 o]
D=[tgd (BCos A a—A)+igd o (ACosA a—-B) ]
E =f A% + B®-2CosAaA.B]

F=Cos’Aa~-1

23
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AL is the longitude difference between Greenwich and

the point where the two criteria is satified.

8°.

The latitude alone is not enough to determine the point of the earth on where

taria is satisfied. From the hour angle for the obtained latitudes

it is possible to

b

+12-E

Hy
15

T
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cri
will yield the local mean time of sunset. As the Greenwich mean time Tg when d

These roots will yield the boundary latitude where h, =5 °.83 at sunset and when d
is known, the relation Tg-T

calculate the local apparent time. The relation

24
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'MOON, ARGUMENTS OF PERIODIC TERMS

Variation

236

+2:19120

aT2

Arguments Variation Arguments
C per hour C per hour
a; DM’ +0° 47152 agq 3D-M'%180 +0,97947
a; 2D +1.01590 asg M+2D+M £180 +1.60134
a3 ‘Mz180 © +0.04107 agg 4D—2M'-M +0.90198
a 2F%180  +1.10245 agg M'—2M 4 0.46224
as 2M-—2D%180  +0.07285 as; M'-2M-2D ~0.55365
ag  2D-M-M'  +0.48045 as; M-+2D-2M' ~0.03179
a;. 2D+M' +1.56027 ass 2D-M—2F '~0.12762
ag’ 2D-M +0.97483 ass M +4D +2.57617
ag M-M +0.50831 ‘ags 4D-M +1.99072
ajo D180 +0.50795 - a4 2M'-D +0.58080
ay; M'+M*180 +0:50544 agn7  2F-M-2D +0.04548
a; 2F-2D+180 -+ 0.08655  =mg 2F—aM' + 0.01370
ars 2F+M':180  +L64682 . ~ ag9 M+D M +1.00339
a4 2F-M'£180 +0.55807 - aso. 2M'<-?QD - —0.43509
ajs 4D-M' +1.48742 as; 4D-3M' ‘4+0.39867
Cas 4D-2M' + 0.94304 52 2D+ IM-M + 2.06358
aj7 M+2D-M'%180 +0.51259 as3  2M+M' £180 +0.62651
ajg 2D+M*180  +1.05696 ass 2D-M'+2]+180.3 +0.54673
ajgo M-D +0.03643 ass M+M-M' +0.00464
azo M+D +0.54901 ase 2D+3M' + 2.64902
2;; M'-M+2D +1.51920 agy M'+2D +2F 180 + 2.66272
a0 2D+IM' +2.10465 asg  2D—4M' ~1.16160
2,3 4D +2.08179 age V +0.02569
a4+ 3M-2D+180 4061723  agy M'-2M+2D +1.47814
ays 2M'-M  +1.04768 g1 SM'-M +1.59206
a6 M'—2F—2D  —1.57397 agy 3V+2D-M' +0.54859
aq 2D-M-2M'  —0.11392 a3 J*i°.2 + 0.03760
azs M'FD£180  +1.05232 ags M'-M—4D ~1.52848
239 2D—2M . +0.93376 ags 2M'+D£i80 +1.59670
ago 2M'+M180  +1.12982 age 2°-D +0.59450
‘2 2M*180 +0.08213 ag7 6D—2M' + 1.95894
Tazs  2D-M'—2M +0.38939 agg M-D ~0.46688
ass M 2D-2F £ 180 +0.45782 agy < ZM'-2D+ 2F . +1.17580
ags 2F+2D£180  +2.11834 "ajo 3M'+tM*180 .. +1.67419
ags  4D-=M-M' - + 1:44635 ‘agy OM'—2D—2F ~1,02959
M’ +2F £ 180 ' .7, 2F-2D+M'180 . +0.63092




s
MOON, ARGUMENTS OF PERIODIC TERMS : ' MOON, PERIODIC TERMS IN LATITUDE
Arguments Variation Arguments Variation Terms Not  Terms Propor- Terms Propor- Terms Not Terms Propor- Terms Propor-
per hour : per hour Depending sional to e sional to e Depending sionaltoe  “sional to e
one - one
by F " +0°.55122  bss M'+3F 1180 +2.19804 B; 18467.78  — - Bss  1.02 - -
by MHF . +1.09560 bgs F—2D-M=M' " —1.05011 B, 101018 - _ Bys  — 0.83 _
b3 M-F ~0.00685 bgg F-M-+2M' +1.59891 B;  999.69 - - Bag. — 0.81 -
bs 2D-F +0.46467 bsg D+M-F ~0.00221 B, 623.66 _ - Bsg ~ 0.81 -
bs 2D-M'+F +1.02274 bss M+F+D +1.10024 Bs  199.48 - - Bss — 0.80 -
bs 2D-M'—F —0.07970 bgs M'+F—2D-M +0.03864 Bs  166.58 _ o © Bgy - 0.70 -
b; 2D+F +1.56712 bso M'+F+D180 +1.60355 B, 117.26 - - Bsg  0.67 - -
bg 2M'+F +1.63997 bs; F+2M'+M-2D+180 +0.66514 Bg  61.91 - - Bs; -~ 0.66 -
by 2D—F+M' +1.00905 bsy, M+F+2M 180 +1.68104 By  33.36 - - Bs, — 0.64 . -
bio 2M'-F +0.53753 bss 4D—F—2M' +0.39182 Bio 3176 - - Bss 0.63 - -
by;  2D-M-F +0.42361 bss 4D—F-M-M' +0.89513 By;  29.69 _ _ . Bsy - 0.60 -
bz 2D-F—2M' ~0.62408 bss F-M'-D ~0.50110 By,  15.56 - - Bss  0.59 - -
bz M'+F+2D +2.11149 bss M'+4D-F +2.02494 Bys 1512 - - Bsg  0.47 - -
bjs F-2D-M —0.50574 bs; M'+F-D +0.58765 Bia ~— 12.14 - A Bs;  0.43 - -
bis 2D-M'+F-M +0.08168 bsg 4D-F-M - +1.43950 Bys - 8.90 - Bsg -~ 0.42 -
by 2D-M-+F +1.52605 by 2D—2M+F +1.48499 . Bis - 8.00 - - . Bsg - - 0.39
bi; M'+F-2D +M+180 +0.12077 bgo F—3D —0.97062 By - - 7.46 - Beo 0.35 - -
bis M'-M+F © +1.05453 bg: F+4D-M-M' +1.99757 Bis  — 6.76 - - Bg: - 0.34 -
bjo 4D—F-M' +0.93619 bgy 2D-M'—3F 118215 By 658  — . - Bg; 0.33 - -
byo M +F £180 . +0.59229 bgz 2D-M'+F-2M | + 0.94061 By - ° 6.49 - Bss — - 0.32
by; M'—M-F —0.04791 bes F-M—2M' ~0.57859 By,  — 5.65 - Bes  — 031 —
by, F+D*180 +1.05917 bgs M'+F-3D —0.42825 4 Bya  5.36 - - Bgs 031  — -
bys MA4F+M'£180  +1.13666 bgs 2M'-M—F. + 0.49646 By - 5.33 — CBgs - 0.30 -
bys F-M-M' ~0.03422 bgy 3F-M'-2D +0.09340 Bys  — 510 . " Bgg - 0.29 - —
bys F-M +0.51016 bgg M' +F—2D +2M %180 +0.16184 Bys . — 4.86 - . Bgg  — - 0.27
byg F-D +0.04327 bgg F +4M' +2.72872 Bys  4.79 - - Bgs  0.27 - -
ba; 3M'+F +2.18435 " b F+2D-3M' ~0.06601 By,  3.98 - - Bso  0.25 - -
byg 4D—F +1.48057 by 2D-M'3F £180 +2.12519 Byg  3.67 - - By 0.24 - -
b o9 F-M'-HD 42.03864 bqoy MH4F-+M +2D180 4215256 B,o 3.00 - — Bqs - 0.24 -
bzo M'-3F —1.10929 by F-+4D-M—2M' +1.45320 Byg  2.81 - - Bys  — 0.22 -
bs; F+4D—2M’ +1.494927 b;s M'+F+4D + 3.12739 By, 241 - - By 0.21 - -
‘b3; 2D-3F —0.63777 b;s F—M' 3D £180 + 1.53069 Bi, 218 - - Bys  0.21 - -
b3z 2D-F+2M’ " +1.55342 b6 4D—F+M-M' +0.97726 Bas 2.15 - - Bg  — 0.17 -
"b3s M“-M-F-+2D +0.96798 b7 F+4D-M + 2.54195 Bss — 1.77 - By, - 0.15 -
bss 2M'—F—2D —0.47837 bsg 2D—F +3M' +2.09780 Bys 162 - : - Bsg 015 - -
bsg SM'—F +1.08190 b 59 2D+3F £180 +2.66956 Bys 158 - - Byo 014 - -
b7 2MY% 2D+ F + 2.65587 bgg F-M+D = + 0.51480 By;  1.52 - - ‘Bgo  0.14 - -
b3g 2D—F-3M' ~1.16845 bg; F+2D+3M +3.20024 Byg  1.52 - - By, 0.14 - -
b3y M+F+2D-M'*180 +1.06381 . bg, F—2D—2M —0.54681 Bis — 1.82 - Bga - - 0.14
bso M+F+2D 1180 +1.60819 bgs 2D-F—4M!' ~1.71283 Bag — 1.27 — Bgs 0.13 - -
bs; F+4D + 2.58301 bgs SF—2M' +0.56492 . Bgy 119 - - Bgs 0.13 - -
bsz 2D-M+F+M' 4207043 bgs 2ZM'—F-M+2D +1.51236 Bs, — 1.14 - Bgs — 0.13 -
bss 2D—2M—F +0.38254 Bss  — - 1.10 ]




: MOON, PERIODIC TERMS IN LONGITUDE ’ FORTRAN IV PROGRAM TO PREDICT THE CURVE OF THE FIRST VISIBILITY
. Cirat ..
Terms Not Terms Propor- Terms Propor Terms Not Terms Propor- Terms Propor- : REAL JDJNUTLON,ID1,NUTOB,KATS J1,M1,42
Depending  sional to e sional to e Depending -sionalto e sional toe” . . INTEGER YEAR,DAY,HOUR
one one ~ IND=0
D=60.
- §=3600.
Ly 4586.46 - — L3q 3.21 — —_ PI=3.14159265358979
. RAD=PI/18C.
L, 2369.91 - - Lig - 2.92 - : READ(5,100} YEAR,MONTH,DAY, HOUR MINUTE
L3 - 668.15 - L3g — 2.74 - ‘ 100  FORMAT{SI5) ;
L 41161 L 058 . UT=FLOAT(HOUR}+{FLOATIMINUTE)/50.)
4 g - - - Lao - - -
Ls 211.66 - — L4y — — 2.5% c CALCULATION OF THE JULIAN DAY
Lg - 205.96 - Laz  — 2.49 - FX=(7*[VEAR+(MONTH+91/12))/4
L4 191.95 — — Las — 2,15 - g FY=(275*MONTH)/9
Lg - 165.14 - Lig 1.98 - - : JD=367.* FLOAT(YEAR)-FX+FY+FLOAT(DAY}+1721013.5
_ o _ _ UTD=UT/24.
Lo 147.69 | 1.88 A _ ID=ID+UTD
Lio 125.15 - — Lsg 1.75 - — JD1=4D
) WRITE(6,222) JD
Ly - 109.67 ' - Lan - 1.44 - 222 FORMAT(10X,'THE CALCULATION OF THE FIRST VISIBILITY OF THE NEW
Lyia 55.17 T — _ Lasg 1.30 - — 1 MOON’, 10X}
. ¢ .
Lis 45.10 - - Lygs - 1.27 - WRITE(6,1000) ,
Lig 39.53 - ) R Lso 1.22 - - 1000  FORMAT(1X,'DAY’4X,'MONTH",3X, 'YEAR' 5X,'UT" 8X,'GDELTA" X,
L 38.43 1 'AYDEL'9X,'GALFA"9X,'AYALF"6X,'EQT’ 4X,'DIS')
15 X - - Ls, 1.19 - - ) 10 T=(ID -2415020.0)/36525.0
Lig 30.77 - - L, — 1.18 - ¢
Li; - 28.47 - 0 Lgy - - 117 Al=51.2+202 T
L 94 49 L . L14 SIN Al =SIN (Al *RAD)
18 - . - 54 . - - [+ .
Lio 18.6 - _ _ = BI ='346.560 + 132.870 *T — 0.008 1731 *T **2
19 ! Lss L.09 SIN BI = SIN(B! *RAD}
Lao - 18.02 — Lsg 1.06 - - c
Lyy . 14.58 - Ls;  0.99 : c MEAN LONGITUDE OF THE MOON.S ASCENDING NODE = OMEGA
. . - —- . - .
| S 14.39 = — - Lssg 0.95 — — OMEGA = 933059.79 — 6962911.23 * T+ 7.48 *T **2+ 0.0080 *T **3
OMEGA = OMEGA /S
L2s 13.90 . - Lsg  0.82 - - OMEGA = OMEGA / 360.
Loy 13.19 - - Leo - - 0.76 | OMEGA = OMEGA
- c ;
Los - 9.70 — Lg1 - 0.68 - OMEGA™ (OMEGA —~ FLOAT (IOMEGA)) *364.
Log 9.37 - - Lz  0.66 - - ¢
Ly, 8.63 L 0.64 ° SOMEGA = SIN {OMEGA "RAD)
- . - 63 . - - . c
L,g 8.47 - - Lga — 0.64 — c GEOCENTRIC MEAN LONGITUDE OF THE MOON = AYLON
: AYLON = 973562.99 +1732564379.3 *T ~ 4.08 *T **2 +0.0068 *T **3
L? 9 - - 8.10 Les  0.59 - - 1 +0.84 *SINAI + 14.27 *SINBI + 7.261 *SOMEGA
L3go —_ 7.65 - . Lgg 0.58 - - c ’
AYLON=AYLON/S
Lap - - 7.49 Lg7  0.57 = - AYLON = AYLON / 360.
L3z - - 7.41 Lsg — 0.56 - - IAYLON = AYLON
Lss 6.38 L 0.56 AYLON = (AYLON — FLOAT {1 AYLON)) *360.
. -~ e 69 . - - c
L3g 5.74 - - . Lyg - 0.55 — . c MEAN ANOMALY OF THE MOON = AYAN
: AYAN = 1065976.59 + 1717915 856.79 *T +33.09 *T **2+ 0.0518 *T **3
Las - 4.39 bt L7y 0.54 - - 1 +2.94 *SIN Al + 14,27 *SIN BI + 9.337 *SOMEGA
Lsg 4.00 - -
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AYAN=AYAN/S

AYAN = AYAN / 360.

1AYAN = AYAN

AYAN = (AYAN — FLOAT(IAYAN)) *360,

MEAN ANOMALY OF THE SUN=GUNAN \

GUNAN = 1290513.00 + 129596 579.10 *T — 0.54 *T **2 — 0.0120 *T **3
—6.40*SINAI -

GUNAN = GUNAN /S

GUNAN = GUNAN / 260.

IGUNAN = GUNAN

GUNAN = (GUNAN — FLOAT{IGUNAN)} *360.

MEAN ELONGATION OF THE MOON FROM SUN=AYEL

AYEL = 126 2654.95 + 1602 961 611.18 *T — 5.17 *T **2+ 0.0068 *T.**3
+7.24 *SIN Al +14.27 *SIN BI + 7.261 *SOMEGA

AYEL =AYEL/S

AYEL = AYEL /360,

IAYEL = AYEL ’

AYEL = (AYEL — FLOAT (IAYEL)) *360.

MEAN DISTANCE OF THE MOON FROM ASCENDING NODE = AYDIS

AYDIS = 40503.2 + 1739 527 290.54 *T — 11.56 *T **2 - 0.0012*T **3
+0.21 *SINAT + 14,27 *SIN BI — 88.699 *SOMEGA
- 15.58 SIN{{OMEGA + 275.05 — 2.30 *T) *RAD)
AYDIS = AYDIS /S
AYDIS = AYDIS / 360,
IAYDIS = AYDIS
AYDIS = (AYDIS — FLOAT (IAYDIS)) *360.

EQUATION OF THE MOON.S CENTRE = AYMER

AYMER = 22639.500 *SIN (AYAN *RAD) + 769.016 *SIN {2."AYAN *RAD)
+36.124 *SIN { 3. “AYAN *RAD) + 1.938 *SIN {4.* AYAN *RAD} ’
+0.113 *SIN { 5. *AYAN *RAD)

AYMER = AYMER /§

THE PLANETARY PERTURBATIONS IN THE MOON.S LONGITUDE = J,V.

JUPITER = 4

4=221.64 742 + 32964.466 939 *T
J=J/360,

H=J

J={§~ FLOAT { 1J)} *360.

VENUS = V.

V = §3.07037 + 22 §18.442986 *T
V=V /360,

V=V

V=(V ~FLOAT {1V }} *360.

o000 o000 Q

oo 0

o0

MOON / AUXILARY QUANTITY = AN
AN = 27505 - 2.30 *T
OBLIQUITY OF THE ECLIPTIC = OROB

OROB = 84428.26 — 46.845 *T -- 0.0059 *T **2 + 0.00181 *T **3

THE ECCENTRICITY OF THE EART.S ORBIT = ECC

ECC= 1. — 0.0024954 =T - 0.000007522 *T °*2

CORRECTION FACTORS IN LATITUDE = OMEGI, OMEG2.
OMEGI = — 0.0004664 *COS{OMEGA *RAD}

OMEG2 = — 0.0000754 *COS { { OMEGA + AN } *"RAD}

COMPUTATION OF THE PERIODIC TERMS IN MOON'S LONGITUDE

L1=SIN { { 2. *AYEL — AYAN ) *RAD)

L2=SIN ( { 2. *AYEL)} *RAD)

L4=—{ SIN (2. *AYDIS *RAD})

L5=—{ SIN ( { 2. "AYAN — 2. *AYEL) *RAD } )
L7=SIN {{ 2. *AYEL + AYAN) *RAD)

L10=—(SIN { AYEL *RAD })

L12=— (SIN ( { 2. *AYDIS — 2. *AYEL } *RAD) )
L13=— (SIN { (2. *AYDIS + AYAN } *RAD ) )
L14=—{SIN { (2. *AYDIS — AYAN } *RAD } }
L15=SIN { { 4. *AYEL — AYAN ) *RAD)

L16=SIN ( { 4. *AYEL — 2. *AYAN} *RAD)
L19=SIN { { AYAN — AYEL} *RAD)

L22=SIN { { 2. *AYEL + 2. *AYAN ) *RAD)
L23=SIN { (4. *AYEL ) *RAD)

1.24= — ( SIN { { 3. *AYAN — 2. *AYEL) *RAD } }
L26=SIN { { AYAN— 2. *AYDIS = 2. *AYEL) *RAD)
1L28= —( SIN { { AYAN + AYEL) *RAD} )

L33= — (SIN { { AYAN + 2. *AYEL — 2. *AYDIS ) *RAD))
L34=—( SIN { { 2. *AYDIS + 2, *AYEL) *RAD ) )
L36=—( SIN { { 2. *AYAN + 2, *AYDIS ) *RAD } }
L37=— ( SIN { { 3. "AYEL — AYAN) *RAD})
L44=SIN { { AYAN +4, *AYEL) *RAD }

L46=SIN { { 2. *AYAN — AYEL) *RAD)

148=SIN { { 2. *AYDIS — 2. *AYAN) *RAD)
L50=SIN ( { 2. *AYAN — 3. *AYEL) *RAD )
L51=SIN ( (4. *AYEL — 3. *AYAN) *RAD)

L54= SIN { { 2. *AYEL — AYAN + 2. *J + 180.3} *RAD )
LE6=SIN { { 2. *AYEL + 3. "AYAN) *RAD}

L57=— (SIN { { AYAN + 2, *AYEL + 2, *AYDIS ) *RAD } }
L58=SIN{ (2. *AYEL — 4. *AYAN ) *RAD) _
L59=SIN { V *RAD )



£62=SIN{{3.*V +2, *AYEL —~ AYAN ) *RAD}
L63=SIN((J+1.2) *RAD)

L65= - (SIN ({2. *AYAN + AYEL ) *RAD } }

166 =SIN ( { 2. *AYDIS — AYEL } “RAD)

L67=SIN { { 6. *AYEL — 2. AYAN ) *RAD )

L69 =SIN { { 2. *AYAN — 2. *AYEL + 2. *AYDIS ) *RAD}
L71=8$IN {{ 2. *AYAN — 2. *AYEL — 2, *AYDIS } *RAD )

TOPLO=4586.46"L1 + 2369.91°L.2 + 411.61°L4 + 211.66*L6
1 +191.95%L7 + 125.15*L.10 + §5.17°L12 + 45.10*L13

2 +39,53*L14 +38.43*1.15 + 30.77°L16 + 18.61°L19

3 +14.39%122 + 13.90°L.23 + 13.19*1.24 + 9.37 *L.26

4 +8.47°1.28 + 6.38%L33 + 5.74 *1.34 + 4,00°L36 + 3.21 *L.37
5 +1.98*L44 + 1.757L46 + 1.30 *L48 + 1.22°L50 + 1.19°L51
6 +1.14°L54 + 1.06*L56 + 0.997 L57 + 0.95*L58 + 0.82* 159
7 +0.66*L62 + 0.64*1.63 + 0.58*L65 + 0.58*L66

8 +0.57%L67 + 0.56*L68 + 0.54*L71

L3 =~ {SIN [ GUNAN *RAD }}

L6 =SIN { { 2. *AYEL — GUNAN — AYAN } *RAD }
L8=SIN { { 2. *AYEL — GUNAN } *RAD }

L9 =SIN { { AYAN — GUNAN } “RAD)

L11=—{SIN{ { AYAN + GUNAN } *RAD )}

L17=— (SIN ( { GUNAN + 2. *AYEL —AYAN ) *RAD } }
L18 =~ ( SIN{ (2 *AYEL + GUNAN} *RAD))

120 = SId ( { GUNAN + AYEL } *RAD)

L21=SIN { { AYAN — GUNAN + 2. "AYEL ) *RAD )
L25 = SIN { { 2. *AYAN — GUNAN ) *RAD)

127 =SIN {{ 2. *AYEL — GUNAN — 2, *AYAN ) *RAD )
L30=-—( SIN{ (2 *AYAN +GUNAN) *RAD)}

L.35=SIN { { 4. *AYEL — GUNAN — AYAN } *RAD )
L38 =~ { SIN { { GUNAN +2. *AYEL + AYAN ) *RAD | }
L39=SIN{ (4. *"AYEL — 2. *AYAN —~ GUNAN ) *RAD }
“L42=SIN { { GUNAN +2, “AYEL — 2, *"AYAN } *RAD )
L43=SIN { [ 2. *AYEL — GUNAN ~ 2. *AYDIS ) *RAD }
L45 = SIN { (4. *AYEL — GUNAN } *RAD}

L47 =SIN { { 2. *"AYDIS — GUNAN — 2. *AYEL } *RAD }
L49 = SIN { { GUNAN + AYEL + AYAN ) *RAD }
L52=8IN { ( 2. *AYEL + 2. *AYAN — GUNAN ) *RAD }
155 = SIN { { GUNAN + AYEL — AYAN ) *RAD)
L61=SIN { ( 3. *AYAN — GUNAN ) *RAD }

L64 = SIN { ( AYAN — GUNAN — 4. *AYEL ) *RAD)
L68 = SIN { { GUNAN — AYEL } "RAD )

L70=~{SIN { (3. *AYAN + GUNAN} *RAD } )

TOPL1=668.15* L3 + 205.96"L6 + 165.14* L8 + 147.69°L9
+109.67*L11 +28.47°L17 + 24.421L.18 + 18.02 *L20
+14.58*1.21 + 9.70%L.25 + 8.637L27 +7.65*L30 + 4.38°L.35
+2,92*L38 + 2,74* 139 + 2.49*L42 + 2.15*L43 + 1.88 *L45
+1.44*LA7 + 1.27°L49 + 1.18*L52 + 1.08"L55 + 0.68*L61
+0.64°1.64 + 0.566*L68 +0.55*L70

N HWN -

£29=SIN { { 2. *AYEL — 2. *GUNAN } *RAD }
L31=—{SIN{{2 *GUNAN} *RAD)}

132=SIN ({2, “AYEL — AYAN — 2. *GUNAN }*RAD )
L40 = SIN ( { AYAN — 2. *GUNAN } *RAD}

_ 141 =SIN{ (AYAN — 2. "GUNAN — 2. *AYEL )} *RAD)
153 =~ (SIN'{'2: “GUNAN + AYAN )} *RAD } }
L60=SIN { { AYAN — 2. *GUNAN + 2. * AYEL } *RAD}

O

COMPUTATION OF THE PERIODIC TERMS IN MOON'S LATITUDE

B1=18467.78 -SIN { AYDIS "RAD }

B2 =1010.18 *SIN ( { AYAN + AYDIS ) ' RAD }

B83=999.69 "SIN{{ AYAN - AYDIS)} RAD)

B4 =623.66 *SIN{{2. AYEL--AYDIS} RAD)

B5 = 199,48 *SIN ( { 2. - AYEL - AYAN + AYDIS ) *RAD )
B6 = 16658 *SIN { { 2. "AYEL - AYAN - AYDIS} *RAD)
B7=117.26 *SIN{ { 2. *tAYEL + AYDIS ) “RAD}
B8=61.91 "SIN{( 2. *AYAN + AYDIS } *RAD)

B9 =33.36 "SIN ( (2. *AYEL — AYDIS + AYAN } “RAD }
B10=31.76 *SIN ( { 2. *AYAN ~ AYDIS )} *RAD)
B12=15.56 “SIN ( ( 2. *YAYEL - AYDIS — 2. * AYAN ) *RAD }
B13=15.12*SIN { { AYAN + AYDIS + 2. *"AYEL } *RAD}
B19=6.58 *SIN ( (4. * AYEL -- AYDIS — AYAN ) *RAD)
B22= 636 *SIN((AYDIS+AYEL) *RAD)

B26=4.79 *SIN { { AYDIS — AYEL ) *RAD)

B27=3.98 *SIN { { 3. *AYAN + AYDIS ) *RAD)

B28 = 3.67 *SIN {{4. *AYEL — AYDIS) *RAD}

B29=3.00 ‘SIN { {AYDIS — AYAN +4, *AYEL } *RAD )
B30 = 2.81 *SIN{ { AYAN — 3. AYDIS } *RAD)
B31=241=SIN{( AYDIS +4, *AYEL — 2. *AYAN ) *RAD }
B32=2.18 “SIN ({ 2. “AYEL — 3. "AYDIS ) *RAD)
B33=2.15 "SIN { { 2. *AYEL — AYDIS +2. *AYAN } "RAD }
B35 = 1.62 *SIN { { 2. "AYAN — AYDIS — 2. *AYEL') *RAD }
B36 = 1.58 *SIN ( { 3. *AYAN -~ AYDIS ) *RAD )

B37 = 1.52 *SIN { { 2. AYAN + 2. “AYEL + AYDIS ) "RAD )
B38 = 1.52 *SIN { { 2. *AYEL — AYDIS — 3. AYAN } *RAD )
B41=1.19 *SIN { { AYDIS + 4. *AYEL ) *RAD)

B44 =~ 1.02 *SIN ({ AYAN + 3. *AYDIS ) *RAD }

B50 = —0.67 *SIN ( { AYAN + AYDIS + AYEL ) *RAD }
B53=0.63 *SIN ( (4. *AYEL - AYDIS — 2. *AYAN) *RAD}

BS5 = 0.59 *SIN ( { AYDIS — AYAN — AYEL } *RAD)

B56 = 0.47 *SIN ( { AYAN +4. *AYEL — AYDIS } *RAD)
B57=0.43 *SIN ({ AYAN + AYDIS — AYEL ) *RAD

B60 =0.35 *SIN { ( AYDIS — 3. *AYEL ) *"RAD )

B62=0.33 *SIN { { 2. *AYEL — AYAN — 3. *AYDIS ) "RAD )
B65 = 0.31 *SIN { { AYAN + AYDIS — 3. *AYEL ) *RAD}
B67=0.29 *SIN ( { 3. *AYDIS — AYAN — 2. *"AYEL ) *RAD)
B69 = 0.27 *SIN ( { AYDIS +4. *AYAN ) *RAD }

B70=0.25 *SIN { { AYDIS + 2. *AYEL — 3. "AYAN ) *RAD)
B71= 024 *SIN {{2 *AYEL — AYAN +3. “AYDIS ) *RAD}
B74=0.21 *SIN { {AYAN + AYDIS +4. *AYEL } *RAD)

B75 = -- 0.21 *SIN { { AYDIS — AYAN + 3. *AYEL ) *RAD}
B78=0.15 *SIN { { 2. *AYEL — AYDIS + 3. *AYAN ) "RAD}
B79=—0.14 *SIN ( { 2. *AYEL + 3. *AYDIS ) *RAD )

B8O =0.14 *SIN { { AYDIS - AYAN + AYEL } "RAD }
B81=0.14 *SIN { { AYDIS + 2. “AYEL +3. * AYAN } *RAD )
B83=0.13 *SIN { { 2. *AYEL — AYDIS —4.*AYAN ) *RAD }
B84 =0.13 *SIN { { 3. *AYDIS —2. *AYAN ) *RAD}

TOPBD‘—'B‘I+82+83+B4+BS+85+B7+88+89+810+B12+B13+B19+822+8264827
1+ B28 + B29 + B30 + B31 + 832 + B33 + B35 + B36 + B37 + B38 + B41 + B44 + BS0 + B53 + B55
2+ B56 + B57 + B60 + B62 + BES + B67 + B69 + B70 + B71 + B74 + B75 + B78 + B79 +B80

3+881+883+B84

B11=SIN ({ 2. *AYEL — GUNAN — AYDIS ) *"RAD)

B14 =SIN ( { AYDIS — 2. * AYEL — GUNAN } *RAD )

B15 =SIN { (2. "AYEL — AYAN + AYDIS - GUNAN ) *RAD )
B16=SIN {{ 2. *AYEL — GUNAN + AYDIS ) *RAD }

817=~ {SIN ( { AYAN + AYDIS — 2. *AYEL + GUNAN } "RAD )}
B18 = SIN { { AYAN — GUNAN + AYDIS } *RAD )

B20 = - { SIN ( { GUNAN + AYDIS ) "RAD})



B21= SIN {{ AYAN — GUNAN -- AYDIS } *RAD )

B23 = — SIN { { GUNAN + AYDIS + AYAN ) *RAD }

B24 = SIN { { AYDIS —~ GUNAN — AYAN ) *RAD } -

B25 =SIN { { AYDIS — GUNAN ) "RAD } .

B34 =SIN { { AYAN — GUNAN — AYDIS + 2. *AYEL } *RAD)

B39 = — [ SIN { { GUNAN + AYDIS + 2, *AYEL — AYAN } *RAD }}

B40 = — { SIN { { GUNAN + AYDIS + 2. *AYEL ) "RAD )}

B42 = SIN ( { 2. *AYEL — GUNAN + AYDIS + AYAN ) *RAD }

B45 = SIN ( { AYDIS — 2. "AYEL — GUNAN — AYAN } *RAD |

B46 = SIN { { AYDIS — GUNAN + 2. *AYAN ) *RAD}

B47 = SIN ( { AYEL + GUNAN — AYDIS } *RAD )

BA48 = SIN ( { GUNAN + AYDIS + AYEL ) "RAD}

849 =SIN { { AYAN + AYDIS — 2. *AYEL - GUNAN } *RAD}

B51=—{ SIN{{ AYDIS + 2. *AYAN + GUNAN — 2. *AYEL } *RAD V)

B52 = — ( SIN { { GUNAN + AYDIS + 2. *AYAN } *RAD })

B54 = SIN { { 4. "AYEL — AYDIS — GUNAN — AYAN ) *RAD )

B58 = SIN ( { 4. *AYEL - AYDIS -  GUNAN } *RAD} B
B61=SIN { { AYDIS +4, "AYEL - GUNAN — AYAN) *RAD} . A
B64 = SIN { { AYDIS — GUNAN ~ 2. "AYAN ) "RAD ) .
B66=SIN { (2. "AYAN — GUNAN — AYDIS} "RAD]L . - s
B872=— ( SIN { { GUNAN + AYDIS + AYAN + 2. *AYEL } "RAD ).} -
B73=SIN( { AYDIS +4. *AYEL - GUNAN - 2. "AYAN ) ‘RAD.) .
B76 =SIN ( { 4. *AYEL — AYDIS + GUNAN — AYAN } *RAD) .
B77=SIN ({ AYDIS +4. *AYEL — GUNAN ) "RAD }

B85 = SIN ({ 2. "AYAN -- AYDIS — GUNAN + 2. *AYEL ) "RAD

TOPB1=29.69*B11 + 12.14°B14 + 8.90°B15 + 8.00°B16
+7.46°B17 + 6.76°B18 + 6.49°B20 + 5.65'821 + 533°823
4510824 + 4.86"825 + 1.77° 834 + 1.32° B39+127 840 o Lo
+1.14*B42 + 0.83°B45 + 0.81°B46 + 0.81° 'B47 + 0.80° B8

+0.34 “SINB61 +0.31 *SINB64 + 0.30 *SINBG6 + 0.24 °SINB72 + 0.22." SINB73
+0.17 "SINB76 + 0.15 - SINB77 +0.13°SINBBS -~ .. ¥ N

- “ e

1
2
3
4 «0.78 *SINB49 + 0.66 *SINB51 + 0.64 ~SINB52'+ 0.60 " SINB54 4 0.42 *SINBSS .
5
6

B43=SIN { { 2. *AYEL — 2. *GUNAN — AYDIS } *RAD )’

B58=SIN { (2. *AYEL — 2. “GUNAN + AYDIS} "RAD} = -

863 =SIN ({2 *AYEL — AYAN + AYDIS — 2. ‘GUNAN ) "RAD )

868 =~ [SIN { {AYAN + AYDIS — 2. *AYEL + 2. * GUNAN ) "RAD) )
B82=SIN ( { AYDIS — 2. *AYEL — 2. "GUNAN ) *RAD)

TOPB2= 1.10°B43 + 0.39°B59 + 0.32°B63 + 0.27f868 +0.14°B82

GEOCENTRIC MEAN LONGITUDE OF THE SUN = GLON

GLON = 1006908.04 + 129 602 768.13 ‘T + 1. 089 T 2
GLON =GLON/S

GLON = GLON / 360.

IGLON = GLON

GLON = { GLON — FLOAT [ iGLON ]} 360.

a0 cooo0o0n
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PLANETARY PERTURBATIONS IN SUN.S POSITION
MARS = OPMAR

OPMAR = 165.94905 + 16859.069 667 *T

OPMAR = OPMAR / 360.

IO0PMAR = OPMAR A
OPMAR = { OPMAR — FLOAT { lOPMAR } ) *360.

SATURN = OPSAT

- OPSAT = 193.13230 +34777.259 042 *T

OPSAT = OPSAT / 360.
10PSAT = OPSAT
OPSAT = { OPSAT — FLOAT ( 10PSAT) ) *360.

SUN, EQUATION OF CENTRE = GUNMER

GUNMER = { 6910.057 — 17.240 *T — 0,052 * T **2 ) *SIN { GUNAN *RAD)
+( 72,338 — 0.361 *T } *SIN ( 2. *GUNAN *RAD } '

+{ 1.054 - 0.001 *T } *SIN { 3. *GUNAN *RAD}

+0.018 *SIN { 4. *GUNAN *RAD)

GUNMER = GUNMER / §

NUTATION

NUTATION IN LONGITUDE = NUTLON

NUTLON = —(17.2327 + 0.01737 *T) *SIN { OMEGA *RAD )

+(0.2088 +p.00002 *T) *SIN (2. *OMEGA *RAD] — 1.273 *SIN (2. *GLON *RAD)
—0.2037 *SIN (2. *AYLON *RAD)} + 0.126 *SIN { GUNAN "RAD)

+0.0675 *SIN (AYAN *RAD) — 0.0497 SIN { { 2-*GLON + GUNAN ) *RAD)
+0.0214 *SIN { ( 2. *GLON — GUNAN } *RAD }

NUTLON = NUTLON / §

NUTATION IN OBLIQUITY = NUTOB

NUTOB = {9.2100 + 0.00091 *T} *COS (OMEGA *RAD)

~{0.0904 — 0.00004 *T) *COS (2. "OMEGA *RAD)

+0.5520 *COS ( 2. *GLON *RAD} + 0.0884 *COS (2. *AYLON *RAD)
+0.0216 *COS { { 2. *GLON + GUNAN ) “*RAD}

—~0.0093 COS { (2. *GLON — GUNAN ) *RAD}

SUN, PERTURBATION IN LONGITUDE
BY VENUS= Vi

=4.838 *COS { ( V +90.00)} *"RAD) + 5.526 *COS ( { 2. *V +90.12) *RAD)}
+0.666 *COS {{ 3. *V +270.41} *RAD) + 0.210 *COS ( (4. *V +89.80 ) *RAD )
+0.084 *COS {{ 5. *V + 270.10) *RAD) + 2.497 *COS { { 2. *V — GUNAN + 257.75) *RAD)
+1.559 *COS { { 3. *V — GUNAN + 77.96) *“RAD) + 1.024 *COS ( { 3. *V — 2. *GUNAN + 50.85) *RAD) .
+0.154 *COS ({ 5. *V — 3. *GUNAN + 34.10) *RAD) +0.152 *COS { { 4. *V ~ 2. *GUNAN + 227.40) *RAD)
+0.144 *COS ( (4. *V — GUNAN + 79.0) *RAD) +0.123 *COS { (5. *V — 2 *GUNAN + 229.8) *RAD)
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+0.116 *COS { { 2. *V + GUNAN +90.70 ) *RAD } + 0.075 “COS { (V + GUNAN +87.50 ) *RAD)
+0.074 *COS { { V — GUNAN + 358.80 ) *RAD i
Vi=VI/$§

BY SATURN =Sl

SI=0.419 *COS { { OPSAT +90.34 ) *RAD ) + 0.108 *COS { { 2. *OPSAT +270.10) *RAD }

+0.320 *COS [ { OPSAT — GUNAN +259.22) *RAD } +0.112 *COS { (2. *OPSAT — GUNAN + 273.1} *RAD)

SI=Sl/S
BY MARS =Ml

MI = 0.273 *COS ( { OPMAR + 90.6) *RAD} +2.043 *COS {{( 2 *OPMAR +89.76 ) *RAD)}
+£0.129 *COS ( { 3. *OPMAR + 273.0) *RAD) + 1.770 *COS {{ 2. *OPMAR — GUNAN + 306.27) *RAD}
+0.585 *COS { { 4. *OPMAR — 2. *"GUNAN + 185.82) *RAD)}

+0.500 *COS { { 4. "OPMAR — GUNAN + 316.94) *RAD)

+0.425 *COS { { 3. "OPMAR — GUNAN +317.70) *RAD)

+0.204 *COS { { 5. "OPMAR — 2. *GUNAN + 185.5) *RAD)

+0.154 *€COS { { 6. *OPMAR — 2. *GUNAN + 185.0) *RAD}

+0.106 *COS ( ( 7. *OPMAR — 3. *GUNAN +53.3) *RAD}

+0.101 *COS { { 6. *OPMAR — 3. *GUNAN + 53.8) *RAD)}

+0.085 *COS { { 5. "OPMAR —~ GUNAN + 138.3) "RAD )

MI=MI1/S.

BY JUPITER=J!

J1=7.208 *COS { (4+91.08) *"RAD ) +2731°COS ({2 *J + 270.25) *RAD)

+0.164 *COS { ( 3. *J +265.2) "RAD) +2.600 “COS { {J ~ GUNAN + 174.77) *RAD)

+1.610 *COS ( { 2. *J — GUNAN + 292.60) * RAD) +0.556 *COS ( (3. °J —~ GUNAN +177.31) ’RAD)
+0.210 *COS { { 3.*J — 2. *GUNAN + 193.2) *RAD) + 0.163 *COS { {4+ GUNAN +110.2) *RAD)
+0.080 *COS { { 4. *J — 2. "GUNAN + 83.9) *RAD} + 0.073 °COS { {J — 2. GUNAN + 187.9} *RAD}
+0.073 *COS { { 2. *J — 2. *GUNAN + 75.7} *RAD) + 0.069 *COS { (2. *J + GUNAN +263.9} *RAD)

JA=4/s

PERTURBATION PRODUCED BY THE MOON (IN LONGITUDE] = DLAM

DLAM = 6.454 *SIN  AYEL *RAD) +0.013 *SIN ( 3. *AYEL *RAD]

+0.177 *SIN { { AYEL + AYAN) *RAD) — 0.424 *SIN { { AYEL — AYAN) *RAD)
40,039 *SIN { { 3. *AYEL — AYAN) *RAD) — 0.064 *SIN { {AYEL + GUNAN) *RAD)
+0.172 *SIN {  AYEL — GUNAN) *RAD] -
DLAM=DLAM/S

THE SUN.S ABERRATION IN LONGITUD = ABLON

ABLON = — { 20.47 + 0.342 *COS(GUNAN *RAD}

SUN, PERTURBATIONS IN LATITUDE

BY VENUS=V2

V2 =0.210 *COS { { 3. *V — GUNAN + 64.5)*RAD) + 0.092 *COS {(V — GUNAN + 64.6) *RAD)
+0.067 *COS { { 2. *V — GUNAN + 244.8) *RAD) + 0.031 *COS { { 4. *V— GUNAN + 65.4) *RAD}
+0.028 *COS {({V + GUNAN + 116) *RAD) + 0023 “COS { { 2. *V + GUNAN + 285.0) *RAD)

+0.019 *COS { { 5. *V — 2. *GUNAN + 233.0) 'RAD) + 0,014 *COS{{3. "V + GUNAN + 114.0} *RAD)

© 4+0.014 *COS {{ 2. *V — 2. *GUNAN + 233.0} "RAD) + 0.012 *COS ({2.*V+271.0) “RAD}
+0.012 *COS ( (4. *V — 2. *GUNAN + 244.0) *RAD)
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BY JUPITER = J2

J2=0,166 "COS { { 2. *J — GUNAN +268.0} *RAD)} +0.023 *COS { (J — 2. *GUNAN} 'RAD)
+0.018 *COS (( 3. *J — 2. *GUNAN + 182.0) *RAD) +0.017 *COS { ( J + 5.0} *RAD)
+0.016 *COS { ( J — GUNAN + 272.0} *RAD}

PERTURBATION PRODUCED BY THE MOON (IN LATITUDE) = DBETA

DBETA =0.576 *SIN ( AYDIS *RAD) + 0.016 *SIN { { AYDIS + AYAN) *RAD)
- 0.047 *SIN { { AYDIS — AYAN) *RAD)

COMPUTATION OF THE MOON.S LONGITUDE = ALONG
SIGML=TOPLO + ECC *TOPL1 + ECC “2' *TOPL2

SIGML= SIGML/S .
ALONG=AYLON + AYMER + SIGML

MOON.S APPARENT LONGITUDE = APLON
APLON = ALONG + NUTLON

TRUE OBLIQUITY OF THE ECLIPTIC=TROB
TROB = OROB + NUTOB

TROB=TROB /S

COMPUTATION OF THE MOON.S LATITUDE = APPARENT
BY NUTATION = APLAT

SIGMB= TOPBO + ECC *TOB1 + ECC **2 *TOPB2
KATS = 1. + OMEG| + OMEG2

APLAT = KATS *SIGMB

APLAT = APLAT/S

CALCULATION OF THE RIGHT ASCENTION AND DECLINATION OF MOON
AYALF = RIGHT ASCENTION

AYDEL = DECLINATION

TAYALF = IAN ( APLON *RAD) *COS (TROB *RAD) — { TAN (APLAT “RAD)
SIN ( TROB *RAD } / COS { APLON *RAD ) }

AYALF = ATAN ( TAYALF) / RAD
IF(AYALF . LT.O) AYALF=360 + AYALF

SAYDEL =COS { APLAT *RAD] *SIN (APLON *RAD} *SIN (TROB "RAD} +
+SIN (APLAT *RAD) *COS (TROB *RAD)

AYDEL = ASIN (SAYDEL) / RAR
COMPUTATION OF THE SUN.S LONGITUDE = GLONG
GLONG = GLON + GUNMER + VI + Ml + Ji + S1 + DLAM

SUN.S APPARENT LONGITUDE = GAPLON

GAPLON = GLON — { 20.47 + 0.342 *COS { GUNAN *RAD } }/5+ NUTLON
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COMPUTATION OF THE SUN.S LATITUDE = GLAT
GLAT =V2+J2+DBETA -

GLAT=GLAT/S

CALCULATION OF THE RIGHT ASCENSION AND DECLINATION OF SUN
GALFA = RIGHT ASCENSION

GDELTA= DECLINATION

GALFA = TAN ( GAPLON *RAD) *COS {TROB *RAD)

GALFA = ATAN ( GALFA) / RAD
IF(GALFA . LT . 0} GALFA=360 + GALFA

GDELTA = SIN ( GAPLON *RAD) *SIN {TROB *RAD)
GDELTA = ASIN (GDELTA}/ RAD

CORRECTIONS

DALFA=—{GLAT *0.250}

DALFA=DALFA/S

D DELTA = {GLAT "0.871)

DDELTA=DDELTA/S

GALFA = GALFA + DALTA

GDELTA = GDELTA + DDELTA

CALCULATION OF THE ANGULAR DISTANCE BETWEEN SUN AND MOOM=DIS

'DIS = {SIN { GDELTA *RAD) *SIN { AYDEL *RAD 13}

+{COS ( GDELTA *RAD) *COS ( AYDEL *RAD } *COS { ( AYALF — GALFA } *RAD)

DIS = ACOS {DIS) / RAD

IF(DIS. GT. 7.9) GO TO 20

FARK= (29.5*(8.0-DIS))/360.0

JD=ID + FARK

GOTO 10

IND=IND + 1

UT= (iD-ID1) *24.0

UT=UT + HOUR + (MINUTE) / 60.0

IF (UT. EQ. 24.0. OR. UT. GT. 24.0) UT= UT-24.0

APPARENT SIDERAL TIME= APST

APST= 6.64606556 +{8640184.542° T)/3600.0+(0.0929° T **2)/3600.0
1 +{NUTLON *COS(TROB *RAD) }/15.0

APST= APST/24.0

IAPST= APST

APST={APST FLOATI{IAPST)) *24.0

EQUATION OF TIME (IN MINUTE) = EQT
EQT= (APST—(GALFA/15.0) ) *60.0

WRITE(6, 3000) DAY,MONTH,YEAR,UT,GDELTA,AYDEL,GALFA,AYALF,EOT,DIS

FORMAT (2X,12,5X,12,3X,14,3X,F12.8,2X, F12.8,2X,F12.8,2X,F12.8,2X,
1 F12.8, 2X, F6.3, 2X, F5.2)

333

22
13

33

14

77

999

ALFA= AYALF—GALFA

Ti=12-EQT

ALFA=AYALF--GALFA

DG=GDELTA

DA=AYDEL

TG=UT

WRITE (6, 333)

FORMAT (1H1)

SINDG=SIN (DG *RAD)

COSDG=COS (DG *RAD)

SINDA=SIN{DA *RAD)

COSDA=COS(DA *RAD)

TANDG=TAN{DG *RAD)

TANDA=TAN(DA *RAD)

COSAL=COS{ALFA *RAD)

SINS1=5IN(5.83 *RAD)

COSC=C0S(90,83 *RAD)

FK1=SINS1/GOSDA

FK2=COSC/COSDG

FK3=(TANDA **2+TANDG °*2)—{2,*COSAL *TANDA *TANDG)
D1=TANDA *(COSAL *FK2-FK1)+ TANDG *{COSAL °FK1-FK2)
E=FK1*FK1+FK2"FK2-2.°COSAL *EK1°FK2
F=COSAL *COSAL--1.

Cl=—(E+F}

B=—2.D1

A=F--FK3

DISK=B *B. 4.°A *C1

IF(DISK) 22, 33, 44

WRITE (6, 13)

FORMAT{1X,/THERE ARE NO REAL ROOTS")

GO TO S50

ROOT=—B/(2.0 *B)

WRITE (6, 14} ROOT, ROOT -

FORMAT{1X,"THERE ARE TWO IDENTICAL ROOTS" 2{3X,F10.2})

GOTOS50

ROOT1= (—B+SQRTIDISKIN(2.0 *A)

ROOT2={~B- SQRT(DISK)/(2.0° A}

{F(ABS(ROOT1). LE. 1.} GO TO 77

IF(ABS(ROOT2) . LE. 1.} GO TO 77

WRITE(S, 13)

GOTO50

Fl1= (ASIN {ROOT1)}/RAD

Fi2= (ASIN (ROOT2))/RAD

SINFi1= SIN(FI1 *RAD)

COSFI1= COS{FI1 *RAD)

SINFI2= SIN(FI2 *RAD)

COSFI2=COS{FIZ *RAD)

HG1= ACOSI{COSC- SINFI1*SINDG)/(COSFI1*COSDG))

HG1= HG1/RAD

AMB1=TG{HG1/154T1)

HG2=ACOS {{ COSC—SINFI2*SINDG)/(COSFI2* COSDG)

HG2=HG2/RAD

AMB2=TG—(HG2/15.+ T1)

WRITE {6, 333)

WRITE (6, 999)

FORMAT(1H/ /1)

WRITE (6, 444)

FORMAT (20X,’KANDILLI OBSERVATORY",/
15X,'THE FIRST VISIBILITY OF THE
NEW MOON’, / /}
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WRITE (6, 555) YEAR, MONTH,DAY,TG,DG,DA ALFA,T1,F11,AMB1,FI2, AMB2

FORMAT (5X,'DATE’,23X,16,213,/
5X,'TIME’,30X,F9.3,/
5X,'DECLINATION OF THE SUN‘,12X,F9.3,/
5X,'DECLINATION OF THE MOON’,11X,F9.3,/
5X,'DIFFERENCE OF THE RIGHT ASSENTION',F10.3,/
5X,"EPHEMERIS TRANSIT TIME’ ,12X,F9.3,/
5X,'FIRST LATITUDE",20X,F9.3,/
5X,’FIRST LONGITUDE DIFFERENCE',8X,F9.3,/
5X,'SECOND LATITUDE’,19X,F9.3,/
5X,’SECOND.LONGITUDE DIFFERENCE’, 7X,F9.3}

WRITE (6, 999}

WRITE (6, 888)

FORMAT (15X,’"H MOON’,8X,'LAT",8X,'D:F LONG'"}

Fl=Fi1

IF(FI.GT.FI2) GOTO 11

SINFI= SIN(FI *RAD)

COSFI= COS(FI*RAD)

HG= ACOS( { COSC—SINFI-SINDG) / (COSFI *COSDG) )

HG= HG/RAD

AMB= TG—~(HG/15.0+T1)

FARK= (HG—ALFA) *RAD

HC=ASIN (COS(FARK)*(COSFI* COSDA)+SINFI*SINDA)
HCD=HC/RAD

WRITE (6, 600)HCD,FI,AMB
FORMAT (10X, 2F10.3, F12.3)
Fi=FI+2.

GOTO99

CONTINUE

JD=JD+(2./24.)
IF(IND.LT.10.)GOTO 10
STOP

END
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