If the distance from the Kaʿba is small, its direction may be determined by a
diligent seeker, but when the distance is great, only the astronomers can determine that direction.
Abūʾl-Rayhān Muhammad ibn Ahmad al-Bīrūnī,
Kitāb Tahdīd Nihāyāt al-Amākin Li-Tashīh Masāfāt al-Masākin [The Book on the
Determination of the Coordinates of Positions for the Correction of Distances between Cities] (416 AH/1025 CE)
Note: the qibla method described on this webpage is based on the
great-circle path to the Kaʿba. An alternative qibla method,
followed by some Muslims, based on the rhumb line (a line with a
constant compass direction connecting the observer with the Kaʿba) is not discussed on this webpage.
Five times each day more than a billion Muslims around the globe face Mecca as they perform their daily prayers.
The compass direction of the qibla, the sacred
direction of Islam, is thus of the greatest importance for every Muslim (Qurʾān, sūra 2:142-152).
The determination of the qibla has in the past exercised the minds of the greatest astronomers,
geographers and mathematicians of the Islamic world. Already in the late 8th century, sophisticated mathematical solutions were
developed based on spherical trigonometry and the geographical knowledge of that period. The most commonly adopted
algorithm was based on the great-circle path (or
shortest-distance path) connecting the observer with the Kaʿba
in Mecca and determining its angle with the direction to North.
Extensive tables were prepared for each latitude and longitude of the known world and special curves were
laid out on astrolabes and prayer quadrants to assist the devout in determining the hour of the day when the sun
was in the direction of the qibla.
Usually, there is a moment in each day of the year when the sun (or the suns shadow) is in the direction to
Mecca. However, this moment of the day is not easy to calculate and it varies according to the seasons and is also different for
each place on earth.
However, there are two days in the year when the hour of the day when measured in absolute time (such as UTC)
is the same for all observers situated in the hemisphere centred on Mecca. On these days one can easily determine ones qibla
within a small fraction of a degree without needing any knowledge of geometry or mathematics. The only thing that one has to
do is to look at the sun at the right moment of the day and determine its compass direction.
As Mecca is located within the tropics there are two days in each year when the sun passes nearly exactly over
the Kaʿba. This occurs on 27 or 28 May at 9:18 UTC [12:18 Saudi local time] and on 15 or 16 July at 9:27 UTC
[12:27 Saudi local time].
Every Muslim who is located in the hemisphere centred on Mecca (i.e. is less as circa 10.000 km
from Mecca) can determine the direction of the qibla by observing the sun on these days at the right moment. The
compass direction to the sun then gives the qibla.
Muslims who are located in the other hemisphere (i.e. are more than circa 10.000 km from Mecca)
cannot use this method as the sun will then be below the horizon. However, Muslims who live in most of North America,
South America, Australia and Antarctica can use the days when the sun passes exactly under the Kaʿba (i.e. exactly
above the antipodes of the Kaʿba). This too occurs twice
in each year on 12 or 13 January at 21:29 UTC [0:29 Saudi local time] and on 28 November at 21:09 UTC [0:09
Saudi local time]. In the latter case the qibla can be determined by simply observing the compass direction of ones
shadow at the right hour.
Hemisphere centred on the antipodes of Mecca
Hemisphere centred on Mecca
Qibla Days:
12/13 January (21:29 UTC)
28 November (21:09 UTC)
Qibla Days:
27/28 May (9:18 UTC)
15/16 July (9:27 UTC)
An early description of this method can already be found in the works of the Persian astronomer
Nasīr al-Dīn Abū Jaʿfar Muhammad ibn Muhammad al-Tūsī
(12011274 CE), who wrote in his al-Tadhkira al-Nasīriyya fī ʿilm al-Hayʾa (Memoir on the Science of
Astronomy), book III, 12.3-4:
[3] As for the qibla bearing, let it be noted that the longitude of Mecca may God Most High
protect it is 77;10° from the Eternal Islands and 67;10° from the coast of the Western Sea. Its latitude is 21;40°.
[...]
[4] There are many ways to determine the qibla bearing, but it would not be appropriate to present
them here. Let us instead limit ourselves to one simple method, which is [as follows]. The sun transits the zenith of Mecca when it is in
degree 8 of Gemini and in [degree] 23 of Cancer at noontime there. The difference between its noon and the noon of other localities is
measured by the difference between the two longitudes. Let this [latter] difference be taken and let an hour be assumed for each
15 degrees and 4 minutes for each degree. The resulting total is the interval in hours from noon [for that locality]. Let an
observation be made on that day at that time before noon if Mecca is to the east or after if it [Mecca] is to the west; the
direction of the shadow [of the sun] at that time is [opposite to that of] the qibla bearing.
al-Tūsīs method was also mentioned in the slightly earlier al-Mulakhkhas fīʾl-Hayʾa (Compendium
of Astronomy) of Mahmūd ibn Muhammad ibn ‛Umar al-Jaghmīnī (died in 1221), who gives the solar longitudes
more precisely as 7;21° Gemini and 22;39° Cancer. Note that both al-Tūsī as al-Jaghmīnī do not specify the dates
in relation to the Islamic calendar, which slips about 10 days every year with respect to the astronomical seasons, but by the solar
longitude.
As the obliquity of the ecliptic is slowly decreasing, the solar longitudes for the zenith transit at Mecca are now slightly different. The
2000 values are respectively 66.665° [6;40° Gemini] and 113.335° [23;20° Cancer]. Similarly, the solar longitudes for the nadir
transit at Mecca are respectively 246.665° [6;40° Sagittarius] and 293.335° [23;20° Capricorn].
The following table specifies the Gregorian calendar dates of the first and second Qibla Day for the hemisphere centred on Mecca,
the equivalent dates in the Umm al-Qura calendar
(with the local time in Saudi Arabia) and the zenith distance (z) of the sun as it passes over the Kaʿba (note that the suns
apparent diameter is about 30').
Year
Qibla Day
(9:18 UTC)
Umm al-Qura date
(12:18 SAT)
z
Qibla Day
(9:27 UTC)
Umm al-Qura date
(12:27 SAT)
z
2010
28 May
14 Jumādā ‛l-Ākhira 1431
2.9' N
16 July
4 Sha‛bān 1431
4.4' S
2011
28 May
25 Jumādā ‛l-Ākhira 1432
0.5' N
16 July
15 Sha‛bān 1432
2.1' S
2012
27 May
6 Rajab 1433
1.9' S
15 July
25 Sha‛bān 1433
0.3' N
2013
27 May
17 Rajab 1434
4.4' S
15 July
7 Ramadān 1434
2.5' N
2014
28 May
29 Rajab 1435
3.0' N
15 July
18 Ramadān 1435
4.8' N
2015
28 May
10 Sha‛bān 1436
0.6' N
16 July
29 Ramadān 1436
2.5' S
2016
27 May
20 Sha‛bān 1437
1.8' S
15 July
10 Shawwāl 1437
0.1' S
2017
27 May
1 Ramadān 1438
4.2' S
15 July
21 Shawwāl 1438
2.3' N
2018
28 May
13 Ramadān 1439
3.2' N
15 July
2 Dhū ʾl-Qaʿda 1439
4.6' N
2019
28 May
23 Ramadān 1440
1.0' N
16 July
13 Dhū ʾl-Qaʿda 1440
2.7' S
2020
27 May
4 Shawwāl 1441
1.3' S
15 July
24 Dhū ʾl-Qaʿda 1441
0.3' S
As with the dates of the equinoxes and the solstices, the dates of Qibla Day in the Gregorian calendar are slightly variable.
However, due to the small change in the solar declination around these days (about 9 arcmin/day) observations made one or two days
before or after a Qibla Day will also give satisfactory results.
To convert the Gregorian calendar dates into tabular Islamic calendar dates,
click here.
The next table specifies the Gregorian calendar dates of the first and second Qibla Day for the hemisphere centred on the
antipodes of Mecca, the equivalent dates in the Umm al-Qura calendar (with the local time in Saudi Arabia) and the zenith distance (z) of the sun as it
passes over the antipodes of the Kaʿba (note that the suns apparent diameter is about 30').
Sky View Café Online astronomy applet for determining the position
of the sun and other celestial bodies at any time from any location.
Bibliography on the Qibla (chronological)
Craig, James Ireland, The Theory of Map-Projections, with Special Reference to the Projections used in the Survey Department (Cairo:
National Printing Department, 1910 [= Survey Department Paper, nr. 13]) for a summary, cf. C.F. Close, The
Geographical Journal, 37 (1911), 208-209 [JSTOR link].
Hammer, Ernst, Gegenazimutale Projektionen, Dr. A. Petermanns Mittheilungen aus Justus Perthes geographischer
Anstalt, 56 (1910), I. Halbband, 153-155.
Maurer, Hans, Gegenazimutale Projektionen, Dr. A. Petermanns Mittheilungen aus Justus Perthes geographischer
Anstalt, 57 (1911), I. Halbband, 255-256.
Craig, James Ireland, A Class of Map-Projections Retro-azimuthal, in: Report of the 81st Meeting of the British
Association for the Advancement of Science, Portsmouth, 1911, August 31 September 7 (London: John Murray, 1912),
pp. 448-449 [pdf copy].
Schoy, Karl, Azimutale und gegenazimutale Karten mit gleichabständigen parallelen Meridianen, Annalen der
Hydrographie und maritimen Meteorologie, 41 (1913), 33-42.
Schoy, Karl, Die gegenazimutale mittabstandstreue Karte in konstruktiver und theoretischer Behandlung, Annalen der
Hydrographie und maritimen Meteorologie, 41 (1913), 466-473.
Maurer, Hans, Die Definitionen in der Kartenentwurfslehre im Anschluss an die Begriffe Zenital, Azimutal und Gegenazimutal,
Dr. A. Petermanns Mittheilungen aus Justus Perthes geographischer Anstalt, 60 (1914), 61-67 & 116-121.
Schoy, Karl, Nochmals Azimutale und gegenazimutale Karten, Dr. A. Petermanns Mittheilungen aus Justus Perthes
geographischer Anstalt, 61 (1915), 137-138.
Schoy, Karl, Mittagslinie und Qibla: Notiz zur Geschichte der mathematischen Geographie, Zeitschrift der Gesellschaft
für Erdkunde zu Berlin, 50 (1915), 558-576 reprinted in: Beiträge zur Arabisch-Islamischen Mathematik und
Astronomie (Frankfurt am Main: Institut für Geschichte der Arabisch-Islamischen Wissenschaften, 1988), vol. 1,
pp. 132-150.
Schoy, Karl, Die Mekka- oder Qiblakarte (Gegenazimutale mittabstandstreue Projektion mit Mekka als Kartenmitte),
Kartographische und schulgeographische Zeitschrift, 6 (1917), 184-186 reprinted in: Beiträge zur
Arabisch-Islamischen Mathematik und Astronomie (Frankfurt am Main: Institut für Geschichte der Arabisch-Islamischen
Wissenschaften, 1988), vol. 1, pp. 157-159.
Maurer, Hans, Das winkeltreue gegenazimutale Kartennetz nach Littrow (Wiers Azimutdiagramm), Annalen der Hydrographie
und maritimen Meteorologie, 47 (1919), 14-22.
Schoy, Karl, Abhandlung des al-Hasan ibn al-Hasan ibn al-Haitam (Alhazen) über die Bestimmung der Richtung
der Qibla, Zeitschrift der Deutschen Morgenländischen Gesellschaft, 75 (1921), 242-258
[MENAdoc link] reprinted in:
F. Sezgin (ed.), Ibn al-Haytham: Texts and Studies (Frankfurt am Main: Institute for the History of Arabic-Islamic Science
at the Johann Wolfgang Goethe University, 1998 [= Publications of the Institute for the History of Arabic-Islamic Science: Islamic
Mathematics and Astronomy, nr. 58]), vol. II, pp. 28-39.
Schoy, Karl, Gnomonik der Araber (Berlin/Leipzig: Vereinigung Wissenschaftlicher Verleger Walter de Gruyter & Co., 1923 [=
E. von Bassermann-Jordan (ed.), Die Geschichte der Zeitmessung und der Uhren, Band I, Lieferung F]), pp. F33-F43
& F83-F86 reprinted in: F. Sezgin (ed.), Ibn Yunis, ʿAbu l-Hasan ʿAli ibn ʿAbdarrahman (d. 399/1009):
Texts and Studies (Frankfurt am Main: Institute for the History of Arabic-Islamic Science at the Johann Wolfgang Goethe University, 1997
[= Publications of the Institute for the History of Arabic-Islamic Science: Islamic Mathematics and Astronomy, nrs. 24/25]),
vol. II, pp. 253-263.
Burgess, James, The Orientation of Mosques, Journal of the Royal Asiatic Society of Great Britain and Ireland
(1924), 454-458 [JSTOR link].
Hinks, Arthur R., A Retro-Azimuthal Equidistant Projection of the Whole Sphere, The Geographical Journal,
73 (1929), 245-247 [JSTOR link].
Sarton, George, Query no. 25: Orientation of the Mihrab in Mosques, Isis, 20 (1933), 262-264
[JSTOR link] see also ibid., 24
(1935), 109-110 [JSTOR link]; 34 (1942), 24
[JSTOR link]; 35 (1944), 176
[JSTOR link] & 38 (1947), 95-96
[JSTOR link].
Ali, J., al-Biruni: The Determination of the Coordinates of Positions for the Correction of Distances between Cities (Beirut:
American University of Beirut, 1967), chapter XXIII [pp. 241-263].
King, David A., Al-Khalīlās Qibla Table, Journal of Near Eastern Studies, 34 (1975), 81-122
[JSTOR link] reprinted in: King (1987), nr. XIII.
Petri, Winfried, Mekka und Meridian: Ein Missverständnis bei al-Bīrūnī, in: Y. Maeyama & W.G. Saltzer
(eds.), ΠΡΙΣΜΑΤΑ Naturwissenschaftsgeschichtliche Studien: Festschrift für Willy Hartner
(Wiesbaden: Franz Steiner Verlag, 1977), pp. 303-304.
King, David A., Some Medieval Values of the Qibla at Cordova, Journal for the History of Arabic Science, 2
(1978), 370-387.
Berggren, J.L., A Comparison of Four Analemmas for Determining the Azimuth of the Qibla, Journal for the History
of Arabic Science, 4 (1980), 69-80.
Hawkins, Gerald S. & King, David A., On the Orientation of the Kaʿba, Journal for the History of Astronomy,
13 (1982), 102-109 [ADS link]
reprinted in: King (1993), nr. XII.
King, David A., Astronomical Alignments in Medieval Islamic Religious Architecture, Annals of the New York Academy
of Sciences, 385 (1982), 303-312 [Wiley link] reprinted in: King (1993), nr. XIII.
Ilyas, Mohammad, A Modern Guide to Astronomical Calculations of Islamic Calendar, Times & Qibla (Kuala
Lumpur: Berita Publishing, 1984), pp. 169-174.
Barmore, Frank E., Turkish Mosque Orientation and the Secular Variation of the Magnetic Declination, Journal of
Near Eastern Studies, 44 (1985), 81-98 [JSTOR
link].
King, David A., The Sacred Direction in Islam: A Study of the Interaction of Religion and Science in the Middle Ages,
Interdisciplinary Science Reviews, 10 (1985), 315-328
[Ingenta
link].
Berggren, J.L., Episodes in the Mathematics of Medieval Islam (New York [etc.]: Springer-Verlag, 1986),
pp. 182-188.
King, David A., The Earliest Islamic Mathematical Methods and Tables for Finding the Direction of Mecca, Zeitschrift
für Geschichte der Arabisch-Islamischen Wissenschaften, 3 (1986), 82-149 reprinted [with errata in ibid.,
4 (1987/88), 270] in: King (1993), nr. XIV.
King, David A., Islamic Mathematical Astronomy (Aldershot: Variorum, 1987) a revised edition was published in 1993.
Bonine, Michael E., The Sacred Direction and City Structure: A Preliminary Analysis of the Islamic Cities of Morocco,
Muqarnas: An Annual on Islamic Art and Architecture, 7 (1990), 50-72 [JSTOR link].
van den Brink, Frederik Jan & Meeder, Marja, Mekka, Nieuwe Wiskrant, 11, nr. 1 (1991), 80-84.
Barmore, Frank E., The Earth isnt Flat, and it isnt Round Either: Some Significant and Little Known Effects of the
Earths Ellipsoidal Shape, The Wisconsin Geographer, 8 (1992), 1-8 [the TEX code for this paper is available at:
Solstice: An Electronic Journal of Geography and Mathematics, 4 (1993), nr. 1
[Solstice link].
King, David A. & Lorch, Richard P., Qibla Charts, Qibla Maps, and Related Instruments, in: J.B. Harley &
D. Woodward (eds.), The History of Cartography, Volume Two, Book One: Cartography in the Traditional Islamic and
South Asian Societies (Chicago/London: University of Chicago Press, 1992), pp. 189-205.
Heatwole, Charles, Which Way is Mecca?, Journal of Geography, 92 (1993), 267-269
[PAO link].
Hogendijk, Jan Pieter, Middeleeuws islamitische methoden voor het vinden van de richting van Mekka, Nieuwe
Wiskrant, 12, nr. 4 (1993), 45-52.
King, David A., Astronomy in the Service of Islam (Aldershot: Variorum, 1993).
Ragep, F.J. (ed.), Nasīr al-Dīn al-Tūsīs Memoir on Astronomy (al-Tadhkira fī ʿilm al-hayʾa)
(Berlin/New York: Springer-Verlag, 1993 [= Sources in the History of Mathematics and Physical Sciences, nr. 12]), vol. I,
pp. 306-309, vol. II, pp. 496-499.
Hogendijk, Jan Pieter, The Qibla Table in the Ashrafi Zij, in: A. von Gotstedter (ed.), Ad Radices: Festband
zum fünfzigjährigen Bestehen des Instituts für Geschichte der Naturwissenschaften der Johann Wolfgang Goethe-Universität,
Frankfurt am Main (Stuttgart: Franz Steiner Verlag, 1994), pp. 81-94.
Dallal, Ahmad S., An Islamic Response to Greek Astronomy: Kitāb Ta‛dīl Hayʾat al-Aflāk of Sadr al-Sharī‛a
(Leiden [etc.]: E.J. Brill, 1995 [= Islamic Philosophy, Theology and Science: Texts and Studies, nr. XXIII),
especially chapter 18 [pp. 296-309 & 448-451].
Almakky, Ghazy A. & Snyder, John P., Calculating an Azimuth from One Location to Another: A Case Study in Determining
the Qibla to Makkah, Cartographica: The International Journal for Geographical Information and Geovisualization,
33 (1996), nr. 2, 29-36 [Cartographica link].
Kamal Abdali, S., The Correct Qibla (Washington: 1997) [pdf
link].
Ilyas, Mohammad, Qibla and Islamic Prayer Times, in: H. Selin (ed.), Encyclopaedia of the History of Science,
Technology, and Medicine in Non-Western Cultures (Dordrecht [etc.]: Kluwer Academic Publishers, 1997), pp. 834-836.
King, David A., Maps and Mapmaking: Islamic World Maps Centered on Mecca, in: H. Selin (ed.), Encyclopaedia of
the History of Science, Technology, and Medicine in Non-Western Cultures (Dordrecht [etc.]: Kluwer Academic Publishers,
1997), pp. 577-578.
King, David A., Two Iranian World Maps for Finding the Direction and Distance to Mecca, Imago Mundi, 49
(1997), 62-82 [JSTOR link].
Schmidl, Petra G., Two Early Arabic Sources on the Magnetic Compass, Journal of Arabic and Islamic Studies,
1 (1997/98), 81-132 [JAIS link].
Ichwan, Moch. Nur, Prayer in the Surinam-Javanese Diasporic Experience, ISIM Newsletter, nr. 3 (1999),
pp. 36 & 43.
Ichwan, Moch. Nur, Continuing Discourse on Keblat: Diasporic Experiences of the Surinamese Javanese Muslims in
the Netherlands, Sharqiyyat: Tijdschrift van de Nederlandse Vereniging voor de studie van het Midden-Oosten en de Islam,
11 (1999), 101-119.
King, David A., World-Maps for Finding the Direction and Distance to Mecca: Innovation and Tradition in Islamic Science (Leiden:
Brill, 1999).
Shtober, Simon, Lā Yajūz an Yakūn Fī Al-ʿĀlam Li-Llāhi Qiblatayn: Judaeo-Islamic
Polemics Concerning the Qibla (625-1010), Medieval Encounters: Jewish, Christian and Muslim Culture in Confluence and Dialogue,
5 (1999), 85-98
[Ingenta link].
Dekker, Elly, Cartographic Grids from Iran: An Early Version of the Retro-Azimuthal Orthographic Projection?, The
Cartographic Journal, 37 (2000), 109-116
[Ingenta link].
Rius, Mònica, La alquibla en al-Andalus y al-Maghrib al-Aqsà (Barcelona: Institut Millás Vallicrosa
dHistòria de la Ciència Arab, 2000).
Kimerling, A., Adding the Qibla to Geographic Education, Journal of Geography, 101 (2001), nr. 1,
20-26.
Tobler, Waldo R., Qibla, and Related, Map Projections, Cartography and Geographic Information Science, 29
(2002), 17-23 [Ingenta link /
pdf copy].
Kimber, Richard, Qibla, in: J.D. McAuliffe (ed.), Encyclopaedia of the Qurʾān (Leiden/Boston: Brill, 2004),
vol. 4, pp. 325-328.
King, David A., In Synchrony with the Heavens. Studies in Astronomical Timekeeping and Instrumentation in Medieval Islamic Civilization:
Volume One The Call of the Muezzin (Studies I-IX) (Leiden/Boston: Brill, 2004 [= Islamic Philosophy, Theology and
Science: Texts and Studies, nr. LV]), especially part VII [pp. 741-846].
King, David A., In Synchrony with the Heavens. Studies in Astronomical Timekeeping and Instrumentation in Medieval Islamic Civilization:
Volume Two Instruments of Mass Calculation (Studies X-XVIII) (Leiden/Boston: Brill, 2005 [= Islamic Philosophy,
Theology and Science: Texts and Studies, nr. LV]).
Moussa, Ali, Mathematical Methods in Abū al-Wafāۥs Almagest and the Qibla Determinations,
Arabic Sciences and Philosophy, 21 (2011), 1-56 [DOI link].
Daniel C. Waugh, Review of: Dan Gibson, The Quranic Geography, The Silk Road, 10 (2012), 201
[pdf link] critical review of Dan
Gibson, Qurānic Geography: A Survey and Evaluation of the Geographical References in the Qurān with Suggested Solutions for
Various Problems and Issues (Surry [BC]: Independent Scholars Press, 2011).
Michael Lecker, Review of: Dan Gibson, The Quranic Geography, Journal of Semitic Studies, 59 (2014), 465-467
[DOI link] critical review of Dan Gibson, Qurānic Geography:
A Survey and Evaluation of the Geographical References in the Qurān with Suggested Solutions for Various Problems and Issues
(Surry [BC]: Independent Scholars Press, 2011).
David A. King, From Petra back to Makka From Pibla back to Qibla
[Muslim Heritage link] critical review of Dan Gibson,
Early Islamic Qiblas: A Survey of Mosques built between 1 AH/622 C.E. and 263 AH/876 C.E. (Vancouver [BC]: Independent
Scholars Press, 2017).
Relevant Entries in The Encyclopaedia of Islam: The New Edition (Leiden: E.J. Brill)
Kaʿba, vol. 4 (1974), pp. 317-322 [Arent Jan Wensinck & J. Jomier].
Ḳibla, vol. 5 (1979), pp. 81-88 [Arent Jan Wensinck & David A. King] [addenda in vol. 8,
p. xvi, and vol. 9, p. xvi] partially reprinted in: King (1993), nr. IX.
Maghnatis: 2. The Compass, vol. 5 (1985), pp. 1168-1169 [Eilhard Wiedemann] [addenda in
vol. 9, p. xvi].
Makka: 4. As the Centre of the World, vol. 6 (1987), pp. 180-187 [David A. King] reprinted
in: King (1993), nr. X.
al-Matlaʿ, vol. 6 (1989), pp. 839-840 [David A. King] reprinted in: King (1993), nr. XI.
al-Ṣamt, vol. 8 (1995), pp. 1054-1056 [David A. King] [addenda in vol. 9, p. xvi].
al-Ṭāsa, vol. 10 (1998), pp. 312-313 [David A. King].