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Abstract - The quantification of pedestrian safety is an important research topic. If reliable quantification is 
possible, it can be used to predict and prevent dangerous situations, such as the crowd crush at the 2010 Love 
Parade. To quantify safety, we can use several metrics like density, velocity, flow and pressure. Unfortunately, 
there are several methods to evaluate these metrics, which may give different results. This can lead to different 
interpretations of similar situations. Researchers compare these metrics visually or search for trends in 
fundamental diagrams. This is inherently subjective. We propose an objective methodology to compare these 
methods, where we emphasize the different quantifications of peak “dangerousness”. Furthermore, we refine 
existing methods to include the obstacles in environments by replacing the Euclidean distance with the geodesic 
distance. In our experimental analysis, we observe large differences between different methods for the same 
scenarios. We conclude that switching to a different method of analysing crowd safety can lead to different 
conclusions, which asks for standardisation in this research field. Since we are concerned with human safety, we 
prefer to err on the side of caution. Therefore, we advocate the use of our refined Gaussian-based method, which 
consistently reports higher levels of danger. 
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1. Introduction 
 At the 2010 Love Parade [4], 21 people were crushed to death and hundreds got injured. In 2006 
and 2015 hundreds of pilgrims got trampled during the Hajj to Mecca due to dangerously overcrowded 
situations [5]. Motivated by such disasters, researchers study ways of preventing these from happening 
again. By studying metrics like density, velocity, flow and pressure, early warning signs for potentially 
dangerous situations can be found.  

In this paper, we refer to density, velocity, flow and pressure as metrics. Different methods exist to 
evaluate them. For density, the best-known method is the grid-based method [3]. A regular grid is 
superimposed on the environment, dividing the environment into cells. Another way of determining 
density uses Gaussian distributions [5,10]. Such methods place two-dimensional Gaussian distributions 
on the pedestrian’s locations. By adding the Gaussian distributions together, a density field is formed. 
A third method to determine local density uses Voronoi diagrams [11]. A Voronoi diagram is a division 
of the environment in cells, such that all points within a cell are closest to a single pedestrian. The 
density within each cell is 1 divided by the area of the cell. Details for these methods can be found in 
Section 2.1.  

It is possible to determine the velocity by using density [13]. Using the density and velocity, both 
flow and pressure can be determined [5]. We describe their implementation in Section 2.2. 

Fruin [3] computes the danger level based on the value of these metrics within a (small) region of 
the environment, which is mapped to six non-overlapping intervals. This method is called Level of 
Service (LoS). The different intervals encode situations from safe to dangerous. The exact boundaries 
of these intervals depend on different factors, such as the measurement location and even culture [1].  
 When using LoS, the outcome of the safety evaluation is dependent on the measurement location 
and on how obstacles are handled. Quantifying these different outcomes is no easy task. One way to 
compare different methods is by visually inspecting the results. An example of two density fields is 
given in Figs. 1(a) and 1(b). We can observe a difference between the two images, but this difference 
is hard to quantify. The absolute difference between the two fields (Fig. 1(c)) only emphasizes that 
differences exist.  
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 Duives et al. [2] compare density methods using fundamental diagrams. For different scenarios 
they formulate what trends they expect to be present in these diagrams, and look for them. One 
drawback of this method is that it requires expert knowledge about what trends are to be expected. 
Furthermore, it is inherently subjective due to the human classification step. 
 Duives et al. [2] also propose an objective measure of similarity between density methods called 
scatter. The scatter is the range of measured velocities for non-overlapping density intervals. One 
downside of this measure is the interdependency between these metrics. A small change in the density 
method can result in a large shift in the measured scatter due to the potential recategorization of 
measured velocities. 

 
1.1. Our Contribution 
 In this paper, we propose an objective methodology for comparing methods that compute safety 
metrics. We also refine existing methods to consider obstacles in the environment. We achieve this by 
replacing the Euclidean distance by the geodesic distance [8]. The resulting differences are showcased 
in Fig. 1. Method 1 uses the Euclidean distance, whereas method 2 uses the geodesic distance. 
 We also performed experiments on environments to test if our methodology yielded new insights 
into the differences between methods. We conclude that the classification of a situation as being safe 
depends on the method that is used, and that our refined methods consistently classify situations as more 
dangerous.  
 
1.2. Overview 
 In Section 2, we discuss the different methods used for evaluating the metrics. Here we also 
introduce our refinements of two methods. Next, in Section 3 we give details of the four measures used 
to quantify the differences between the methods. These measures are used in Sections 4 and 5 to 
evaluate the different methods on three basic environments and several scenarios. We end with a 
conclusion in Section 6. 
 
2. Methods for Measuring Safety 
 As discussed in Section 1, different metrics exist. Furthermore, there are different methods for 
computing each metric. In Section 2.1, we discuss different density methods. The considered methods 
are either grid-, Voronoi- or Gaussian-based. How the resulting density fields can be used to determine 
velocity, flow and pressure fields will be discussed in Section 2.2. 
 
2.1. Density methods 
 The grid-based method was first defined by Fruin [3]. Intuitively, this method counts the number 
of pedestrians in a cell 𝐶 , where the cells are defined by a regular grid which is placed over the 
environment. This grid does not consider the obstacles in the environment. Next, this number is divided 
by the area 𝐴  of the cell to get the local density. All the pedestrians are considered to be points, and 
can therefore only be in one cell at a time. The only parameter for this method is the width 𝑤 of a cell. 

   
(a) Method 1 (b) Method 2 (c) Difference between methods 

Fig. 1: An environment with pedestrians, represented by orange discs. The environment measures 6𝑚 × 7𝑚. An 
arrow symbolises a pedestrian's direction of movement, while a stationary pedestrian does not have an arrow. (a)
and (b): Two density fields determined by using different methods. (c): The absolute differences between the two 
methods. 
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A problem with this method is that obstacles, such as walls, have no effect on the measured density. 
This can be seen in Fig. 2(a). The large jumps in density when a pedestrian moves to the next cell cause 
another problem. This last issue can be partially alleviated by modelling pedestrians as discs and 
measuring the fraction of the disc in a cell. 
 Steffen and Seyfried [11] take another approach at minimizing these large jumps in density. Their 
Voronoi-based method describes the free space that is available to a pedestrian by using Voronoi 
diagrams. A Voronoi diagram of 𝑛 input points is the partitioning of the environment into 𝑛 cells, 
such that every position within that cell is closest to exactly one point. Steffen and Seyfried [11] use the 
locations of the pedestrians for calculating a Voronoi diagram as the input points. After obtaining this 
diagram, the density within each Voronoi cell 𝑖 is defined as 1/𝐴. Here, 𝐴  is the area of Voronoi 
cell 𝑖. Next, this Voronoi cell density is used to calculate the density within grid cells by using a 
weighted average of all the Voronoi cells that intersect that grid cell.  
 One drawback of this method is that the area of a Voronoi cell can be large, while it is locally very 
dense (e.g. pedestrians on the perimeter of a dense group). To this end, Steffen and Seyfried suggest a 
limit of 2 square meters on the area of a Voronoi cell. Furthermore, it is not mentioned how the obstacles 
should be handled. In our experiments with the Voronoi method, we will remove the area of a cell that 
is covered by obstacles. As a result, higher (more accurate) densities are reported.  
 However, only removing obstructed regions from a Voronoi cell can still give the illusion of too 
much free space. We show an example of this in Fig. 2(b). Here, a Voronoi cell is split into two 
disconnected pieces by an obstacle. To remedy this, we propose to use a geodesic Voronoi diagram [8], 
which accounts for the obstacles in an environment. This also changes the shape of the Voronoi cells. 
We exemplify this in Fig. 2(b) and (c). Some line segments are replaced by curves, because of the 
nearby obstacles. 
 Gaussian-based methods measure density for points instead of areas. Here, the contribution of a 
pedestrian to a point depends on the distance between the pedestrian and the point. This distance is used 
as input for a function 𝑓 that determines the contribution. More formally, the density at point 𝑙 is 
defined as 𝜌(𝑙)  = ∑ 𝑓(𝑒𝑑(𝑙, 𝑝))∈ . Here, 𝑃  is the set of all pedestrians and 𝑒𝑑(𝑙, 𝑝)  is the 
Euclidean distance between point 𝑙 and pedestrian 𝑝.  
 One of the first methods that uses this is due to Helbing et al. [5]. They use the following function: 
 
 

𝑓(𝑥) =
1

𝜋𝑅ଶ
𝑒

−
𝑥2

ோమ (1) 

 
This equation is a variation of a Gaussian distribution. Here, 𝑥 is the distance between a pedestrian 
and a point. 𝑅 is the only parameter of this method. It influences the pedestrian’s contribution to the 
perceived density. Duives et al. [2] point out that 𝑅 influences the contribution and should be picked 
carefully. 
 Plaue et al. [10] suggest a method that bypasses this issue altogether. Instead of having 𝑅 as a 
fixed parameter, it is dependent on the current locations of the pedestrians at time 𝑡. With all locations 
given as 𝑃(𝑡), the function used to determine 𝑅 for a pedestrian at location 𝑝 is 
 
 

𝑑(𝑝) = ቌ  𝑒𝑑(𝑝, 𝑝ᇱ)ି

ᇲ∈(௧),    ஷᇲ

ቍ

ି
ଵ


 (2) 

 
In their experiments the parameter 𝑞 is set to 4.  
 In addition to using a dynamic value for 𝑅, Plaue et al. also take obstacles into account. They do 
this by setting 𝑓(𝑥)  =  0 for points that are inside obstacles. The volume of the Gaussian distribution 
that would normally fall inside the obstacles is redistributed amongst the obstacle-free points. As a 
result, the contribution to the density of a pedestrian in closed-off places increases, resulting in higher 
local densities. This becomes clear when we compare Figs. 2(d) and 2(e). However, this method still 
increases the density at the opposite side of an obstacle. In our example, we can see that there is a region 
with higher density close to walls because of the presence of pedestrians at both sides. 
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 To further take the obstacles into account, we use the geodesic distance. When two pedestrians 
have the same Euclidean distance to a measurement point, they should not always contribute equally to 
the local density, because one or more obstacles may cause a detour for the pedestrian. The geodesic 
distance takes this detour into account. Such a geodesic Gaussian density field can be seen in Fig. 2(f). 
 
2.2. Derived Metrics 
 Although density is an important metric for determining pedestrian safety, it is not the only one 
available. We mentioned velocity, flow and pressure in Section 1 and gave an intuitive definition. In 
this section, we will show how these metrics can be determined.  
 To compute (local) velocities, we use an adaptation of the method described in Helbing et al. [5, 
Equation 6]. In this method, the local velocity is defined as: 
 
 

𝑉ሬ⃗ (𝑙, 𝑡) =  
∑ �⃗�𝑓(𝑙, 𝑝)∈(௧)

∑ 𝑓(𝑙, 𝑝)∈(௧)
 (3) 

 
Here, 𝑙 is a location, 𝑡 is the current time, 𝑃(𝑡) is the set of locations of the pedestrians, 𝑣 is the 
velocity of the pedestrian at location 𝑝 and 𝑓(𝑙, 𝑝) is a weighing factor. Helbing et al. use a Gaussian 
distance-dependent function for the weighing factor. This is the same function as given in Eq. 1. 
 Since we used different density methods, we will have 𝑓(𝑙, 𝑝) reflect this. That is, we use different 
definitions of 𝑓(𝑙, 𝑝) for the grid-, Voronoi- and Gaussian-based methods respectively. We do this to 
better reflect the underlying division of the environment in regions. These functions are given in Eqs. 4 
through 6. In these equations, 𝑝 is the location of a pedestrian, 𝐶 is a cell used by the density method, 
𝑙 a point and 𝐴 is the area for the Voronoi cell 𝑉. Finally, the function 𝑑(𝑙, 𝑝) is the geodesic 
distance gd(𝑙, 𝑝) when evaluating our refined method, and the Euclidean distance 𝑒𝑑(𝑙, 𝑝) in the 
other situations. 
 
 

𝑓 ௗ(𝐶 , 𝑝) = ൜
1, 𝑖𝑓 𝑝 ∈ 𝐶

   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 
𝑓(𝑙, 𝑝) = ቐ

1

𝐴
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   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

 
𝑓 ௨௦௦(𝑙, 𝑝) =

1

𝜋𝑅ଶ
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 The flow is calculated with the usual equation 𝑄ሬ⃗ (𝑡, 𝑙)  =  �⃗�(𝑡, 𝑙) 𝑉ሬ⃗ (𝑡, 𝑙) for location 𝑙 at time 𝑡. 
Since we have different definitions of 𝜌, we will also use the corresponding definition of 𝑉 . For 
calculating the pressure, we use the definition given in Helbing et al. [5, Equation 9]. That is, the 
pressure is defined as 𝑃(𝑙, 𝑡) =  𝜌(𝑙, 𝑡)𝑉𝑎𝑟,௧(𝑉ሬ⃗ ), with 𝑉𝑎𝑟,௧(𝑉ሬ⃗ )  the variance of velocity around 

location 𝑙 at time 𝑡. It is defined as 𝑉𝑎𝑟,௧(𝑉ሬ⃗ )  =  〈 𝑉ሬ⃗ (𝑙, 𝑡) − 〈𝑉ሬ⃗ 〉ଶ
〉 . Here, 〈𝑋〉is the average of 

𝑋 of the points in region 𝐶. 

     
(a) Classical [3] (b) Voronoi [11] (c) Voronoi (geo) (d) Gaussian [5]  (e) Gaussian [10] (f) Gaussian (geo) 

Fig. 2: Different density fields. The orange disks represent pedestrians. (a): Fruin's classical density [3] with 𝑤 =
1𝑚. (b) and (c): The Voronoi diagram as used by Steffen and Seyfried [11] and the geodesic Voronoi diagram. 
(d), (e) and (f): The Gaussian-based density method by Helbing et al. [5] with 𝑅 =  1𝑚, the method proposed by 
Plaue et al. [10] and a Gaussian density method using the geodesic distance. 



18-5 

 
3. Comparing different methods 

From Fig. 2 it is clear that different methods can give different results, but are these differences 
significant? We will look at four measures for comparing these methods to try and answer that question. 

When we analyse a method 𝑀 , we will look at a region of interest 𝑅  within the studied 
environment. This area is divided into a set of cells 𝐶  for 1 ≤ 𝑖 ≤ 𝑁. These cells follow from the 
method we choose. The value for such a cell is given by 𝑣(𝐶 , 𝑀).  
 First, we look at the maximal value for 𝑀 within 𝑅, which enables us to compare measured peak 
densities, velocities, flows and pressures. We also look at the maximal difference between two methods. 
They are given in Eqs. (7) and (8). 

 
 max(𝑀) =  max

ଵஸஸே
𝑣(𝐶, 𝑀) (7) 

 max(𝑀ଵ, 𝑀ଶ) =  max
ଵஸஸே

|𝑣(𝐶 , 𝑀ଵ) − 𝑣(𝐶 , 𝑀ଶ)| (8) 
 
 These two measures do not offer more information than a visual inspection. The differences are 
accented, but other information is lost. For that reason, we introduce two new measures. For these 
measures it is important that 𝑅 is centred within the area we want to study. This, however, should not 
be a problem since we are interested in local values. We call the first one the quadratic score (qs). We 
define it as follows: 
 
 

𝑞𝑠(𝑀) =  
1

𝐴ோ
 ൭

𝑣(𝐶, 𝑀)

max(𝑀)
൱

ே

ୀଵ

ଶ

𝐴  (9) 

 
 Here, 𝐴  is the obstacle-free area of cell 𝐶 and 𝐴ோ = ∑ 𝐴

ே
ୀଵ  is the obstacle-free area of 𝑅. 

The resulting value is a number in the range of 0 to 1. A value of 1 denotes that all 𝑁 cells are at 
the maximal value. When 𝑞𝑠 gets closer to 0, it means that a large area of 𝑅 has low values. This 
function ensures that regions which are closer to high (i.e. dangerous) values are emphasized. 
Furthermore, this method evaluates to simple scalars. Therefore, it is possible to use existing statistical 
methods to determine if there is a statistically significant difference. 
 The last measure we discuss is a comparison based on how the industry often interprets the values 
from the metrics. Usually, a certain threshold value is used or categories are specified. An example is 
the LoS concept [3]. Eq. 10 calculates the difference in categorization between two different methods.  
 
 

𝑏𝑑(𝑀ଵ, 𝑀ଶ) =  
1

𝐴ோ
 ൫𝑏𝑖𝑛(𝐶 , 𝑀ଵ) −  𝑏𝑖𝑛(𝐶 , 𝑀ଶ)൯

ଶே

ୀଵ
𝐴 (10) 

 
Here, 𝑏𝑖𝑛(𝐶, 𝑀) is a function that maps 𝑣(𝐶 , 𝑀) to the category's number. For example, when a 
single threshold 𝑡 is given, a value 𝑣(𝐶  , 𝑀)  <  𝑡 maps to 0 and all other values to 1. A higher 
score means that there are many differently classified cells. The difference between the classifications 
is squared to emphasize larger differences.  
 
4. Experimental Setup 
 We performed experiments to test whether there are statistical differences between the methods. 
To that end, we implemented all the methods and measures described in Sections 2 and 3 in the Utrecht 
University Crowd Simulation framework [12]. The different parameters we used for the methods are 
shown in Table 1. The Voronoi-based method is the one that Steffen and Seyfried [11] refer to as 𝐷. 
 We tested the methods on the three environments depicted in Fig. 3. These environments are 
building blocks for larger environments. For both the U-turn and corner environment, simulated 
pedestrians (agents) moved from line 𝐴 to line 𝐵. For the T-junction environment, we tested two 
different variations. One with one entrance at line 𝐴 and two exits located at 𝐵 and 𝐶 (scenario 1), 
and one variation where the agents entered from 𝐵 and 𝐶 and moved towards 𝐴 (scenario 2). The 
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agents were created at a random position behind the starting lines. The rate at which the agents were 
added was varied from 0.5/𝑠 to 2.5/𝑠. The agents' preferred speed was set at 1.4 𝑚/𝑠. 
 We recorded the location and velocity of the pedestrians every tenth of a second for 10 simulated 
minutes, starting 2 minutes after the first pedestrian reached the exit. We used this data to calculate the 
different fields. We also calculated the time-average fields over a timespan of 1s, 10s and 60s.  
 
5. Results 
 The analysis of the results is split into three parts. First, we look at how the size of the averaging 
window influences our analyses. Second, we will perform an in-depth analysis for the U-turn 
environment   to show what information can be extracted using the discussed measures. Third and 
last, we make general observations for all the different environments tested. We only discuss the 𝑞𝑠 
and 𝑏𝑑 measures. Other results are available on the author’s website [7]. 
 
5.1. The Size of the Averaging Window 
 We analysed the effect of different averaging windows. The size of the averaging windows seems 
to be of little effect for the Gaussian-based methods when looking at the maximum values. Furthermore, 
the shape of the curves for the reported maxima stay the same. In case of the quadratic score, some 
details disappear when we increase the size of the averaging window. We found that averaging windows 
larger than 10s are not needed. Therefore, we will report all results for an averaging window of 10𝑠.  
 
5.2. In-depth Analysis of the U-turn Environment 
 We summarized the results in Figs. 4 and 5. At first glance, it seems that the results for 𝑞𝑠 for the 
Voronoi-based density methods give unexpected results for lower inflows: the entire environment is at 
the peak density. When the inflow is increased, it steadily declines. This is an artefact of how the 
Voronoi-based method is defined. Steffen and Seyfried [11] defined a minimal density within all 
Voronoi cells. When the cells are large enough, the reported local density value is only determined by 
this maximal area. When the inflow is increased, this setting becomes less and less influential on the 
maximal measured values. 
 Another interesting observation is the ordering of the different Gaussian-based methods. For the 
density, flow and pressure, the 𝑞𝑠 score is always lower, but for velocity it is always higher. This is a 
result of the use of the geodesic distance. The Gaussian-curves are more localized around the locations 
of the pedestrians in our version. As a result, less of the curves are on the opposite side of the obstacle 
and opposing velocities do not cancel each other out near the obstacle. This means that the geodesic 
Gaussian does not influence the area on the opposite side of the walls. 
  We also determined the 𝑏𝑑 for density and velocity measurements. The bins that were used are 
shown in Table 2. In case of the Gaussian method, it is interesting to note that the differences according 

 
  

(a) U-turn (b) Corner (c) T-junction 
Fig. 3: Visual representations of the three basic environments used in the experiments. 

Table 1: Overview of the settings for determining the fields used in the experiments. 

Method Settings 
Grid-based [3] 𝑤 = 1 meter 
Gaussian-based [5] 𝑅 = 1 meter; Sampling distance = 0.1 meter 
Gaussian-based [10] 𝑅 = 0.7 meter; Sampling distance = 0.1 meter 
Gaussian-based (geodesic) 𝑅 = 0.7 meter; Sampling distance = 0.1 meter 
Voronoi-based [11] 𝑤 = 1 meter; Max. Voronoi cell area = 2 meter 
Voronoi-based (geodesic) 𝑤 = 1 meter; Max. Voronoi cell area = 2 meter 
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to the velocity measurements were much bigger. It is also interesting to see that the Voronoi-based 
methods also show differences, although the 𝑞𝑠 was similar for all different inflows. However, at what 
inflow these differences register differs greatly on what metric we use. Further research is needed to 
determine what metric is more suitable or if more metrics should be used in conjunction. 
 
5.3. Analyses of All Environments 
 For each environment, we also performed statistical analyses for 𝑞𝑠 and 𝑏𝑑 using ANOVA with 
a significance level of 0.05. This reported that there were differences between the different methods. 
Using Tukey-HSD post-hoc analyses, we found that at almost all flows, all methods were different from 
each other at almost all levels of inflow. 
 The situations where these differences were insignificant were at the lower inflows for the Voronoi-
based methods. This is probably a result of the maximal Voronoi cell size, as discussed in Section 5.2. 
For the other environments, similar results were found. That is, the geodesic Gaussian consistently 
reports higher values than the other Gaussian-based methods and the two Voronoi-based methods seem 
to generate similar results (although the differences are still significant). This was also tested with 
ANOVA. 
 Therefore, we cannot simply use one cut-off point for determining if a situation is safe. This is 
already widely known when looking at different situations and cultures, but to the best of our knowledge 
it was not yet shown for different methods. This asks for standardisation in this research field. 
 
6. Conclusion 
 In this paper, we have discussed different metrics for evaluating pedestrian safety. Each metric can 
be evaluated by a number of different methods. We described a refinement for existing methods, namely 
the usage of the geodesic distance instead of the Euclidean distance, which takes obstacles into account. 
We have shown experimentally that this change results in significantly higher densities, flows and 
pressures.  
 Furthermore, we discussed four measures for comparing different methods. The maximum (𝑚𝑎𝑥) 
and maximum difference (𝑚𝑎𝑥𝑑𝑖𝑓𝑓) are already used to show differences between two methods. We 

 
Fig. 4: The different 𝑞𝑠 valies for the U-turn environment. The averaging window is set to 10 seconds. 

 
Fig. 5: The different 𝑏𝑑 values for the U-turn environment. The averaging window is set to 10 seconds. Upper 
and lower borders show the 5 and 95 percentiles. 

Table 2: The categories used for the 𝑏𝑑 measure. These are based on the Levels of Service by Fruin [3]. 

Level Density Velocity  Level Density Velocity 
A [0,0.31] (∞, 1.3]  D (0.72,1.08] (1.22, 1.14] 
B (0.31, 0.3] (1.3, 1.27]  E (1.08, 2.17] (1.14, 0.76] 
C (0.43, 0.72] (1.27, 1.22]  F (2.17, ∞) (0.76, 0] 
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introduced the quadratic score (𝑞𝑠) and bin distance (𝑏𝑑) to better show the differences between 
methods. We analysed all methods by using these four measures and concluded that the differences 
between the methods are significant. Since we are concerned with human safety, we prefer to err on the 
side of caution. Therefore, we advocate the use of our method, which consistently reports higher levels 
of “danger”. 
  One major selling point of analysing the differences between different methods using 𝑚𝑎𝑥 , 
𝑚𝑎𝑥𝑑𝑖𝑓𝑓, 𝑞𝑠 and 𝑏𝑑 is that it leaves no room for subjective interpretation of the results. As a result, 
any researcher performing a similar study should be able to end up with similar conclusions. 
 
6.1. Future Work 
 Although the measures described in this paper show that there is a difference between different 
methods, it is still not easy to explain what causes them. Therefore, it stays important to look at 
renderings of the respective fields. It would be interesting to research if there is an automatic 
classification possible that captures what causes the differences. Furthermore, we only tested on smaller 
environments. We still need to determine if these measures are effective for larger environments, such 
as a building or a city. 
 It would also be interesting to see how the geodesic distance influences the measurements for the 
different metrics on multi-layered environments [6]. Previously, this was difficult because the Euclidean 
distance for pedestrians in multi-layered environments is not well defined, but the geodesic distance is. 
Therefore, it is possible to use the two methods described in this paper for multi-layered buildings. 
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