
Computers & Graphics 91 (2020) 52–82

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Comparing navigation meshes: Theoretical analysis and practical

metrics

✩

Wouter van Toll a , ∗, Roy Triesscheijn

f , Marcelo Kallmann

b , Ramon Oliva

c , Nuria Pelechano

d ,
Julien Pettré a , Roland Geraerts e

a Univ Rennes, Inria, CNRS, IRISA, France
b University of California Merced, USA
c Universitat de Barcelona, Spain
d Universitat Politècnica de Catalunya, Spain
e Utrecht University, The Netherlands
f Roy Triesscheijn was previously a student at Utrecht University.

a r t i c l e i n f o

Article history:

Received 31 March 2020

Revised 27 May 2020

Accepted 20 June 2020

Available online 4 July 2020

Keywords:

Navigation meshes

Virtual environments

Geometry processing

Path planning

a b s t r a c t

A navigation mesh is a representation of a 2D or 3D virtual environment that enables path planning and

crowd simulation for walking characters. Various state-of-the-art navigation meshes exist, but there is no

standardized way of evaluating or comparing them. Each implementation is in a different state of ma-

turity, has been tested on different hardware, uses different example environments, and may have been

designed with a different application in mind. In this paper, we develop and use a framework for com-

paring navigation meshes. First, we give general definitions of 2D and 3D environments and navigation

meshes. Second, we propose theoretical properties by which navigation meshes can be classified. Third,

we introduce metrics by which the quality of a navigation mesh implementation can be measured objec-

tively. Fourth, we use these properties and metrics to compare various state-of-the-art navigation meshes

in a range of 2D and 3D environments. Finally, we analyze our results to identify important topics for

future research on navigation meshes. We expect that this work will set a new standard for the evalua-

tion of navigation meshes, that it will help developers choose an appropriate navigation mesh for their

application, and that it will steer future research in interesting directions.

© 2020 Elsevier Ltd. All rights reserved.

d

s

i

w

w

w

p

r

p

t

i

a

C

t
1. Introduction

Path planning for moving characters in virtual environments

is a fundamental task in simulations and games. Modern applica-

tions feature increasingly large crowds of characters; each charac-

ter needs to autonomously compute and follow a path while avoid-

ing collisions with obstacles and other characters. This leads to

many queries related to e.g. path planning, path following, point

location, and collision avoidance [1] . A crowd simulation is ex-

pected to run in real-time despite all these demands. This stresses

the need for high-quality data structures and algorithms.

Path planning for characters is different from robot motion

planning, in which the high-dimensional configuration space of

a robot [2] is often represented as a sampling-based graph

(e.g. [3,4]). In our domain, the environments are typically three-
✩ This article was recommended for publication by R Boulic
∗ Corresponding author.

E-mail address: wouter.van-toll@inria.fr (W. van Toll).

a

q

n

c

a

https://doi.org/10.1016/j.cag.2020.06.006

0097-8493/© 2020 Elsevier Ltd. All rights reserved.
imensional, but characters are constrained to surfaces that are

ufficiently flat to walk on. The behavior of characters may also

nclude crawling, running, and other surface-based movement, but

e will speak of walking and walkable surfaces for simplicity. The

alkable surfaces of an environment form the free space E free ,

hich is usually less complex than the environment itself.

A navigation mesh is a representation of E free as a set of (usually

olygonal) regions, along with a graph that describes how these

egions are connected. For path planning, characters first find a

ath in the graph and then compute a suitable geometric route

hrough the corresponding regions. A research topic of increasing

mportance is the automatic construction of a navigation mesh for

ny input environment (an arbitrary collection of polygons in 3D).

urrent construction algorithms can roughly be placed into one of

wo categories: voxel-based algorithms that approximate the walk-

ble surfaces from raw 3D geometry, or exact algorithms that re-

uire pre-processed input (e.g. a set of 2D layers) to compute a

avigation mesh with a provable worst-case complexity. These two

ategories are difficult to compare, especially because voxel-based

lgorithms introduce a trade-off between accuracy and speed. Fur-

https://doi.org/10.1016/j.cag.2020.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.06.006&domain=pdf
mailto:wouter.van-toll@inria.fr
https://doi.org/10.1016/j.cag.2020.06.006

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 53

t

s

i

m

t

h

o

a

B

r

i

o

m

W

m

d

i

t

r

v

a

(

c

d

c

(

2

2

t

p

i

i

f

v

c

n

s

t

t

t

a

o

e

t

T

e

i

i

i

t

l

m

s

t

v

v

s

g

s

[

[

t

w

n

v

p

o

t

l

n

e

o

f

I

t

m

p

p

i

w

2

p

d

n

c

A

l

t

w

a

c

p

t

c

v

s

i

fi
hermore, each method uses its own set of test environments to

how its own (dis)advantages. To steer subsequent research into

nteresting directions, an objective comparison between navigation

eshes is required.

Goals and contributions. In this paper, we conduct a compara-

ive study of navigation mesh implementations by using the same

ardware, quality metrics, and input environments for all meth-

ds. Our goal is to propose a way to objectively measure how suit-

ble particular navigation meshes are for particular environments.

ecause navigation meshes have many applications with different

equirements, it is difficult to propose a single criterion that can

dentify ‘the best’ navigation mesh. Instead, we present a collection

f criteria, each of which is relevant for particular applications. Our

ain contributions are the following:

• We propose properties by which the data structures and algo-

rithms of navigation meshes can be classified (Section 4), and

we use them in a theoretical comparison of various state-of-

the-art navigation meshes (Section 5).
• We present quantitative metrics to measure the quality and

performance of a navigation mesh implementation for a given

input environment (Section 6). In particular, we address the

concept of coverage in 3D.
• We combine these metrics into a benchmark tool, and we use

it to compare state-of-the-art navigation mesh implementations

in a range of 2D and 3D environments (Section 7). This compar-

ison identifies limitations of voxel-based methods in terms of

connectivity preservation and scalability to large environments.
• We discuss our results to identify the most important topics for

future work (Section 9), such as the comparison of path quality

across navigation meshes, and the development of non-voxel-

based algorithms for filtering a 3D environment.

e emphasize that our goal is not to expose which navigation

esh implementation is ‘the best’. Instead, by presenting generic

efinitions and metrics and using one common test platform, we

ntend to set a standard for the analysis of navigation meshes, and

o expose areas for future research.

This paper is an extension of our previous work [5] which

eported partial results available at the time. In this extended

ersion, we describe our full study. Specifically, we now include

 more thorough theoretical comparison of navigation meshes

 Section 5), a larger set of input environments (Section 7.3), a more

areful consideration of parameter settings (Section 7.2), a more

etailed analysis of the results (Section 7.4), and an updated dis-

ussion of future work based on recent research developments

 Section 9).

. Related work

.1. Navigation meshes

Snook [6] and Tozour [7] were among the first to use the

erm ‘navigation mesh’ for a subdivision of the walkable space into

olygonal regions. Because constructing a navigation mesh by hand

s time-consuming and subject to human error, there has been

ncreasing interest in automatically computing a navigation mesh

rom an input environment.

Voxel-based methods [8–11] usually take an unprocessed 3D en-

ironment as their input. To construct a navigation mesh, they dis-

retize the environment into a 3D grid of voxels using GPU tech-

iques, extract the voxels that correspond to walkable regions, and

ummarize this information in a navigation mesh that approximates

he geometry of E free . This reconstruction is based on the assump-

ion that the environment has a single direction of gravity � g , and

hat characters are cylinders with a fixed height and (sometimes)
 fixed radius. Voxel-based methods can handle arbitrary 3D ge-

metry; the approximation automatically resolves issues caused by

.g. intersecting obstacles. However, the precision and efficiency of

hese methods depends to a certain degree on the grid resolution.

he quality of the navigation mesh depends on how well E free is

xtracted from the 3D geometry.

Exact methods [7,12–16] require that the exact geometry of E free

s already known, and that this free space has been pre-processed

nto one or more planar layers. In exchange, they represent their

nput precisely , and they often have provable worst-case construc-

ion times and storage sizes, which implies better scalability to

arge environments. However, extracting E free from a 3D environ-

ent without using approximations is still a topic of ongoing re-

earch [17–19] .

Researchers have also investigated navigation meshes for other

ypes of geometry or movement. An environment can be subdi-

ided into 3D volumes to encode height differences and variable

ertical clearance [20,21] . Alternatively, one could perform crowd

imulations on arbitrary surfaces with no consistent direction of

ravity [22,23] . Other methods allow characters to jump between

urfaces by either checking for jumping possibilities on the fly

24] or annotating a navigation mesh with jump links beforehand

25,26] . Another possible extension is to consider different ‘terrain

ypes’ in the environment (such as sidewalks, roads, and grass),

here each terrain type has a weight that indicates its attractive-

ess for navigation. These so-called weighted or heterogeneous en-

ironments require their own kinds of data structures and path-

lanning algorithms [27,28] . These extensions are outside the scope

f our study.

Navigation meshes are useful for simulating crowds of charac-

ers with individual properties and goals. Crowd simulation is a

arge research field with many components including path plan-

ing, collision avoidance between characters, animation, and the

valuation of realism. Several books exist that give good overviews

f this field [29–32] . Also, there are multiple crowd-simulation

rameworks in which navigation meshes play a central role [1,33] .

n this paper, we focus on the fundamental properties of naviga-

ion meshes, so we will not treat the field of crowd simulation in

ore detail. On a related note, this paper does not look into path

lanning itself, but only at the geometric data structures used for

ath planning. However, path planning and crowd simulation are

mportant motivations for many of the properties and metrics that

e will propose.

.2. Comparative studies

Our comparative study is inspired by comparisons for other as-

ects of path planning and crowd simulation. Sturtevant [34] has

eveloped a test set of environments for 2D grid-based path plan-

ing . This set includes mazes of various sizes and levels from

omputer games, and it is often used to analyze variants of the

∗ search algorithm [35] . The same research group has recently

aunched a similar benchmark set for 3D (voxel) grids [36] . Al-

hough we study general navigation meshes rather than grids, we

ill also include grid-based environments in our experiments.

SteerBench [37] focuses on local behavior such as collision

voidance. It presents a comprehensive set of scenarios that lo-

al methods are expected to solve, such as two characters crossing

aths, or characters switching places in a narrow corridor. Given

he output of a crowd simulation for such a scenario, SteerBench

an compute metrics such as the distance that all characters tra-

erse and the amount of energy that they spend. However, the re-

ults need to be put in perspective because steering methods typ-

cally have many parameters and implementation choices.

Another inspiring example of benchmarking can be found in the

eld of 3D character animation. Reitsma and Pollard [38] have pre-

54 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Fig. 1. Different representations of an environment, and an example of its navigation mesh. (a) A 3D environment consists of unprocessed 3D geometry. (b) A walkable

environment (WE) contains only walkable surfaces. It is the free space E free of a 3D environment. (c) A multi-layered environment (MLE) is a WE subdivided into layers such

that each layer is non-overlapping when projected to 2D. (d) A navigation mesh is a description of a WE for path planning purposes.

t

f

e

k

g

i

t

g

t

e

w

d

t

f

t

b

v

p

p

s

t

n

3

2

d

e

T

i

t

i

t

i

I

t

t

m

c

s

g

a

S

2

sented metrics for objectively evaluating the quality of a motion

graph, a data structure used for transitioning between animation

clips of (for example) a walking character.

In this paper, we apply the same philosophy to a different field

of study. We compare navigation meshes based on metrics, input

environments, and a single test platform.

3. Definitions

In this section, we give definitions of environments and nav-

igation meshes. This is useful because all existing papers and

algorithms use slightly different terminology; the content of

Sections 4 and 6 requires unified definitions.

3.1. 2D environment

A 2D environment (2DE) is a finite subset of the 2D plane with

polygonal holes; we refer to these holes as obstacles. We will not

consider point or line segment obstacles in this paper. The obstacle

space E obs is the union of all obstacles. Its complement is the free

space E free . Let n be the number of vertices required to define E obs

or E free using simple polygons. We call n the complexity of E .

In our experiments, we want to treat 2D and 3D environments

similarly. We will therefore embed our 2DEs in R

3 by assigning a

height component of zero to each vertex.

3.2. 3D environment

In this paper, a 3D environment (3DE) is a raw collection of pla-

nar polygons in R

3 . These polygons may include floors, ceilings,

walls, or any other type of geometry. Fig. 1 a shows an example. To

define the free space E free of a 3DE, we need parameters that de-

scribe on which surfaces a character may walk. Examples of such

parameters are the maximum slope with respect to the direction

of gravity, the maximum height difference between nearby poly-

gons (e.g. the maximum step height of a staircase), and the re-

quired minimum vertical distance between a floor and a ceiling.

Characters are typically approximated by cylinders. Some nav-

igation mesh construction algorithms use a predefined character

radius to determine E free , while others do not. In this paper, for

any navigation mesh that is based on a predefined radius, we will

use a radius of zero to enable an objective comparison to other

methods.

3.3. Walkable environment

A walkable environment (WE) is a set of interior-disjoint poly-

gons in R

3 on which characters can stand and walk. Thus, a WE

is a clean representation of the free space E free of a 3DE, based on

the filtering parameters and character properties mentioned ear-

lier. Any two polygons are directly connected if and only if char-

acters can walk directly between them. Furthermore, polygons in
he 3DE that are nearly adjacent are typically merged in the WE;

or example, staircases are converted to ramps. Fig. 1 b shows an

xample. In our experiments, all environments will be WEs, so we

now beforehand which area is supposed to be covered by a navi-

ation mesh. This ‘ground truth’ is required for some of the metrics

n Section 6 .

All polygons in the WE have a maximum slope with respect

o the ground plane P , which is the plane perpendicular to the

ravity direction

�
 g . It is common for a navigation mesh to project

he length of a path onto P as well, i.e. to ignore height differ-

nces along a path during planning. Therefore, in this paper, we

ill not judge a navigation mesh by its preservation of height

ifferences.

The complexity of a WE is the total number of polygon ver-

ices, which we denote by n just like in 2D environments. The

ree space E free is simply the set of polygons itself. Its complement,

he obstacle space E obs , can be thought of as ‘anything beyond the

oundary of E free ’, but (unlike in 2D) it is difficult to represent or

isualize because it does not necessarily consist of polygons on a

lane.

It is important to see that a WE can be self-overlapping when

rojected onto the ground plane P , i.e. it is not guaranteed that all

urfaces are visible from a single top view. This strongly influences

he construction of navigation meshes: an algorithm for 2DEs can-

ot easily be applied to WEs in general.

.4. Multi-layered environment

Some navigation meshes require the WE to be subdivided into

D components. A multi-layered environment (MLE) [11,16] is a sub-

ivision of a WE into layers such that the walkable polygons of

ach individual layer are non-overlapping when projected onto P .

he layers are connected by line segments. An example of an MLE

s shown in Fig. 1 c.

Although layers do not need to have a particular meaning, a

ypical example of a layer is one floor of a building. A subdivision

nto layers is useful for other purposes as well, including visualiza-

ion (each layer can be drawn in 2D) and identification (all points

n E free can be uniquely specified using a 2D position and a layer

D).

The complexity of an MLE is given by the number of layers l ,

he number of connections k , and the number of boundary ver-

ices n in all layers combined. Converting a WE to an MLE with a

inimal number of connections is NP-hard [39] , but good results

an be obtained using heuristics [40] . In our experiments, we will

ubdivide all WEs into layers to facilitate the construction of navi-

ation meshes.

A 2DE is essentially an MLE with only one layer (or, equiv-

lently, a WE that can be projected onto P without overlap).

ection 6 will define quality metrics for WEs in general, so that

D and 3D input can be treated equally.

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 55

3

d

m

p

p

e

c

d

a

S

s

3

t

4

n

p

m

p

u

o

‘

G

f

i

p

a

“

w

c

r

Fig. 2. An example image of the LCT navigation mesh. Image courtesy of Kallmann

[14] .

m

t

o

e

m

p

p

t

5

d

w

t

c

w

s

a

s

p

a

i

2

r

5

F

a

a

i

t

p

p

r

s

i

l

a

O

O

T

n

d

s
.5. Navigation mesh

Now that we have a definition of the free space E free , we can

efine a navigation mesh as a tuple M = (R , G) :

• R = { R 0 , R 1 , . . . } is a collection of geometric regions in R

3 that

represents E free . Each region R i is P - simple , by which we mean

that a region cannot intersect itself when projected onto the

ground plane P .
• G = (V, E) is an undirected graph that describes how characters

can navigate between the regions in R .

Fig. 1 d shows an abstract example of a navigation mesh. For

any navigation meshes, R consists of non-overlapping simple

olygons, and G is simply the dual graph of R , with one vertex

er region and one edge per pair of adjacent region sides. How-

ver, other possibilities exist. In the Clearance Disk Graph [11] , R
onsists of overlapping disks, and G contains an edge wherever two

isks overlap. The Explicit Corridor Map [16] is explicitly defined as

 graph, and the mesh regions can be derived from its annotations.

till, all meshes have in common that they represent R and G in

ome way.

.6. Summary

For further reference throughout this paper, we now summarize

he definitions from this section.

• A 3D environment (3DE) is an unprocessed collection of poly-

gons in R

3 .
• A walkable environment (WE) is a ‘clean’ representation of the

free space E free of a 3DE, i.e. the surfaces on which characters

can stand and walk. We refer to its number of distinct polygon

vertices n as its complexity .
• A multi-layered environment (MLE) is a WE subdivided into l lay-

ers connected via k line segments, so that each individual layer

can be projected onto the horizontal plane without overlap.
• A 2D environment (2DE) is an MLE with l = 1 and k = 0 , or

(equivalently) a WE that can be entirely seen from a single top

view.
• Given an input environment, a navigation mesh is a set of re-

gions that is supposed to cover the free space E free , plus a graph

that describes how to navigate between regions.

. Properties of navigation meshes

In this section, we propose a set of properties that describe a

avigation mesh’s data structure, algorithms, and limitations. These

roperties do not depend on a specific implementation or environ-

ent. They can serve as a ‘checklist’ to simplify choosing an ap-

ropriate mesh for a particular application. In Section 5 , we will

se these properties to compare various navigation meshes.

Region type: The type of regions in R , e.g. triangles, polygons,

r disks.

Graph type: A description of the path planning graph G, e.g.

the dual graph of R ’ or ‘the medial axis of E free ’.

Overlap: Whether the regions in R can overlap by definition.

enerally, overlap is discouraged because it may cause problems

or geometric algorithms that assume non-overlapping input. Also,

t may complicate path planning and crowd simulation if a query

oint (i.e. an agent) can be in multiple regions at the same time.

Pipeline: The conversion steps performed by the construction

lgorithm, e.g. “from a 2D environment to a navigation mesh” or

from a 3DE via an MLE to a navigation mesh”. We also indicate

hether this pipeline is voxel-based or exact.

Parameters: The parameters that the user needs to set for the

onstruction algorithm of the navigation mesh. Having fewer pa-

ameters implies a more automated process for computing the
esh. These parameters are often related to the filtering process

hat extracts the walkable surfaces from the 3D geometry.

Computational complexity: The asymptotic construction time

f the navigation mesh. This is usually expressed in terms of the

nvironment complexity or a grid resolution.

Storage complexity: The asymptotic size of the navigation

esh data structure.

Clearance: Whether the navigation mesh supports the com-

utation of paths with an arbitrary clearance from obstacles, i.e.

aths for disks with an arbitrary radius.

Dynamic updates: Whether the mesh supports dynamic inser-

ions and deletions of obstacles.

. Theoretical comparison

Based on the theoretical properties listed in Section 4 , we now

escribe and compare the state-of-the art navigation meshes that

ill also be included in our experiments in Section 7 . The first

wo navigation meshes are exact; the others are voxel-based and

over the full 3D pipeline. Although more navigation meshes exist,

e currently include only the navigation meshes that are designed

pecifically for the types of environments described in Section 3 ,

nd for which we could obtain robust source code from their re-

pective authors. Table 1 summarizes our comparison using the

roperties from Section 4 .

For each navigation mesh, we will include a representative ex-

mple image obtained from its corresponding publication or from

ts software. For more examples, we refer the reader to Figs. 11–

3 , which give side-by-side visual impressions of our experiment

esults.

.1. Local Clearance Triangulation

The Local Clearance Triangulation (LCT) by Kallmann [14] (see

ig. 2) subdivides a 2D environment of complexity n into O(n) tri-

ngles with all vertices on the boundary of E free . These triangles

re the regions of R , and G is their dual graph. Each triangle edge

s annotated with clearance values encoding minimum distances to

he relevant obstacles when crossing this edge. Therefore, during

ath planning, the LCT can determine in constant time whether a

articular move is collision-free for a character with a particular

adius.

The triangles of the LCT need to adhere to certain local con-

traints in order for their clearance annotations to work. The LCT

s constructed by first computing a constrained Delaunay triangu-

ation in O(n log n) time, and then applying O(n) refinements until

ll constraints are satisfied. This sequence of refinements may take

(n 2) time in the worst case. The tested implementation runs in

(n
√

n) expected time by using a special point-location method.

he LCT also supports dynamic updates. An extension to MLEs has

ot been developed, but an approach similar to the Explicit Corri-

or Map (see next subsection) should be possible.

The LCT takes a set of 2D line segment constraints as input,

o our benchmark program first needs to compute the boundary

56 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Table 1

Overview of the navigation meshes compared in this paper. In the “Construction time” and “Storage” columns, n indicates the number of distinct polygon vertices of the

input environment, k is the number of connections in an MLE, and S is the number of grid cells used by a voxel-based algorithm. ‘ ? ” means that an algorithm and its

implementation are so tightly coupled that a reliable asymptotic bound cannot be given. For the rightmost columns, ‘ + ” means that a property is supported in the current

implementation, ‘ +/- ’ means that a property is currently not supported but can be added, and ‘ - ’ means that a property is not supported by definition.

Navigation Region Graph Overlap Pipeline Parameters Construction time Storage Dynamic Arbitrary

mesh type type updates clearance

LCT Triangles Dual of R No 2D → M None 2D: O(n
√

n) O(n) + +

(exact) (expected)

ECM Polygons Medial axis No 2D/MLE → M None 2D: O(n log n) O(n) + +

(exact) MLE: O(kn log n) O(kn)

CDG Disks Dual of R Yes 3D → M 3D filtering ? O(S) + /- +

(voxel-based) Voxel precision

Min character radius

Min/max disk size

Recast Convex Dual of R No 3D → M 3D filtering ? ? + /- -

polygons (voxel-based) Voxel precision

Region refinement

Character radius

NEOGEN (Convex) Dual of R No 3D → MLE → M 3D filtering 2D: O(n 2) O(n) + /- + /-

polygons (voxel-based Voxel precision MLE: O(n 2) O(n)

+ exact) Convexity relaxation 3D: ?

Grid Squares Dual of R No 3D → M 3D filtering ? O(S) + -

(voxel-based) Voxel precision

Fig. 3. An example image of the ECM navigation mesh. Image courtesy of van Toll

et al. [41] .

Fig. 4. An example image of the CDG, showing walkable voxels (left) and the re-

sulting navigation mesh (right). Image courtesy of Pettré et al. [11] .

t

O

t

i

e

5

f

c

d

C

s

d

a

h

e

o

g

o

n

m

s

t

m

S

segments of an environment. The output of the LCT program is a

set of constrained and unconstrained segments, and the set of tri-

angles conforming to these segments. In our comparison, we will

filter out the triangles that lie inside the obstacle space. These pre-

processing and post-processing steps will not be included in our

time measurements.

5.2. Explicit Corridor Map

The Explicit Corridor Map (ECM) by Geraerts et al. [12,41] (see

Fig. 3) is an exact navigation mesh. Its graph G = (V, E) is the me-

dial axis of E free , where V contains the medial axis vertices of de-

gree 1, 3, or higher. Each edge in E is a sequence of medial axis

arcs between two vertices of V . An edge consists of its two end-

points and a sequence of bending points at which the medial axis

changes shape. These points are all annotated with their nearest

obstacle point on the left and right side of the medial axis. This

induces a subdivision of E free into polygonal regions. Each region in

R is a (possibly non-convex) polygon of at most 6 distinct vertices.

Because the distance to the nearest obstacle is known at each

bending point, the ECM can be used to plan paths for characters of

an arbitrary radius. The nearest obstacle point for any query point

q can be found in constant time when the region containing q is

known (which is not the case for polygon subdivisions in general).

The ECM also supports dynamic updates.

For a 2D environment of complexity n , the ECM has size O(n)

and is computed in O(n log n) time. For an MLE with k connec-

tions as defined in Section 3 , the medial axis has size O(n) and

can be computed in O(n log n log k) time by iteratively opening
he connections. The implementation used for this paper runs in

(kn log n) time, and it splits the ECM’s edges whenever they in-

ersect a connection, which yields a size of O(kn) . In exchange for

ts advantages, the ECM is conceptually slightly more difficult than

.g. a triangulation; it may be a less intuitive choice at first sight.

.3. Clearance Disk Graph

Pettré et al. [11] presented the first voxel-based navigation mesh

or 3D environments (see Fig. 4). They introduced many new con-

epts that have evolved in later algorithms. This navigation mesh

oes not have an official name; in this paper, we refer to it as the

learance Disk Graph (CDG).

The CDG uses voxelization to approximate where characters can

tand. Next, the voxels are extracted for which the clearance (the

istance to the nearest obstacle) is locally largest. These form an

pproximation of the medial axis of E free . Each remaining voxel

as an obstacle-free disk associated to it. A subset of these vox-

ls is chosen such that their disks overlap but do not contain each

ther’s centers. The resulting disks are the regions of R , and the

raph G has a vertex for each disk and an edge for each pair of

verlapping disks. A disadvantage of the CDG is that its disks can

ever fully cover the free space. Extra disks (that do not lie on the

edial axis) can be added to improve coverage.

The asymptotic construction time of the CDG is difficult to as-

ess because the algorithm relies on rendering techniques. Also,

he number of disks cannot be expressed in terms of the environ-

ent complexity, but it is at least limited by the number of voxels

 .

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 57

Fig. 5. An example image of the Recast navigation mesh. This is a screenshot of the

Recast software by Mononen [9] .

Fig. 6. An example image of NEOGEN, showing walkable voxels (left) and the re-

sulting navigation mesh (right). Image courtesy of Oliva and Pelechano [10] .

5

u

R

p

t

j

l

c

o

t

u

m

t

w

G

E

a

c

v

g

5

a

e

e

p

C

l

t

s

c

o

Fig. 7. Mapping and coverage. (a) 3D view of a navigation mesh region R 0 . Only a

part of R 0 can be vertically mapped onto E free . The mapped region R ∗0 is highlighted in

blue. (b) Top-view of a different example with two regions R 0 and R 1 . The mapped

regions R ∗0 and R ∗1 , highlighted in blue, partly overlap. The union of all mapped

regions,
⋃

i R
∗
i
, is well-defined because the mapped regions are subsets of E free . (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

t

i

m

o

m

t

c

c

a

b

[

5

p

a

m

f

c

v

g

i

v

c

h

t

t

s

i

r

f

r

g

n

.4. Recast

The Recast Navigation toolkit by Mononen [9] (see Fig. 5) also

ses voxelization to approximate E free . However, unlike the CDG,

ecast converts the walkable voxels to non-overlapping convex

olygonal regions. The method offers many detailed settings for

his conversion, e.g. for tracing obstacle boundaries, grouping ad-

acent polygons, and discarding regions that are too small. This

arge number of parameters complicates a comparative study be-

ause each environment may have its own optimal settings. An-

ther parameter is the character radius, which is subtracted from

he navigation mesh during its construction. As mentioned, we will

se a radius of zero to allow a fair comparison to other methods.

Recast computes two versions of the navigation mesh: a coarse

esh that is used for path planning, and a detailed mesh that cap-

ures height differences more accurately. In our experiments, we

ill use the coarse mesh to determine the regions R and the graph

, and the detailed mesh to measure how well the result covers

 free .

Recast does not provide theoretical guarantees of running times,

ccuracy, or storage size. However, the source code of Recast is

onsidered to be fast, robust, and a popular choice for game de-

elopment. A variant of Recast is included in the popular Unity3D

ame engine [42] .

.5. NEOGEN

The NEOGEN method by Oliva and Pelechano [10] (see Fig. 6)

lso starts with voxelization, but it then groups the walkable vox-

ls into 2D layers, which yields an approximation of an MLE. For

ach layer, NEOGEN then uses GPU techniques to obtain a more

recise floorplan in a way that does not depend on the voxel size.

ompared to Recast, the overall precision of NEOGEN is therefore

ess dependent on the grid resolution.

Based on these floorplans, an exact 2D algorithm [15] is used

o compute the navigation mesh for each layer. This 2D algorithm

ubdivides the free space of a layer into convex polygons. For each

onvex obstacle corner, the algorithm draws line segments to other

bstacles within an angular range. This algorithm runs in O (nr)
ime, where n is the total number of obstacle vertices, and r ∈ O(n)

s the number of convex obstacle corners. Finally, the navigation

eshes of each layer are merged into a single data structure. In

ur experiments, for simplicity, we will use the “full” voxel-based

ethod in both MLEs and 2D environments.

A contribution of NEOGEN is the convexity relaxation parame-

er that can be used to allow slightly non-convex regions. This de-

reases the total number of regions in exchange for having more

omplex region shapes. NEOGEN does not use a predefined char-

cter radius, and its regions do not encode clearance information

y default. However, such information could be added if desired

43] .

.6. Grid

As a baseline for our comparison, we have implemented a sim-

le grid method. It voxelizes the environment similarly to Recast

nd NEOGEN, but it uses the walkable voxels directly as navigation

esh regions. Therefore, each region in R is a square.

We include this method because grids are still frequently used

or path planning. They are easy to implement and a common

hoice for games that are grid-based by design [34] . Another ad-

antage is that algorithms such as A

∗ search can be optimized for

rids [44–47] . Many variants of A

∗ are either designed with grids

n mind [48] or explained in terms of grids [49–51] . Another ad-

antage of grids is that they are relatively easy to update dynami-

ally when obstacles appear or disappear, because a grid does not

ave to satisfy advanced geometric properties such as in triangula-

ions or Voronoi diagrams.

However, grids are typically more dense than other naviga-

ion meshes (e.g. they require many cells to represent large open

paces), which makes them less suitable for planning many paths

n real-time. Also, a high grid resolution is required if the envi-

onment contains many details, and a grid cannot fully cover the

ree space if the input geometry is not axis-aligned. To alleviate

esolution-related issues, there are several ways to use a dynamic

rid-cell size [52,53] . Such adaptive variants of 2D or 3D grids are

ot included in our study for now.

58 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Fig. 8. Partial rendering of the Recast navigation mesh for the Tower environment.

The ground truth is shown in gray. The navigation mesh (shown in blue) connects

surfaces incorrectly, which is reflected in bad connectivity values. (For interpreta-

tion of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

e

q

S

b

s

s

(

i

m

t

d

i

d

t

6

e

s

c

t

a

i

6

u

s

c

H

o

a

p

p

d
5.7. Comparison

The distinction between exact and voxel-based navigation

meshes is clear. Exact methods have the advantages of provable

running times, scalability to large environments, and guaranteed

precision. However, if an application features 3D geometry that

has not yet been pre-processed into planar layers, then these exact

methods cannot be applied immediately. By contrast, voxel-based

methods offer a full conversion pipeline from raw 3D geometry to

a navigation mesh. These methods are less scalable, and we expect

that they cannot achieve perfect coverage when an environment is

very detailed or not axis-aligned.

The LCT and ECM have many properties in common: they are

exact, they do not require any parameters, they encode clearance

information, and their size is O(n) . A difference is that the ECM

currently supports MLEs as well. Also, the ECM construction algo-

rithm has a better asymptotic worst-case running time, but this

difference might only be noticeable at a very high complexity or in

very uncommon types of environments. Therefore, we expect that

the two algorithms will perform similarly in practice.

NEOGEN and Recast both convert voxels to convex polygonal re-

gions. Recast has more parameters: it aims at a semi-automatic

construction process in which the user tweaks parameters to

achieve the desired result. The main advantages of NEOGEN are

its techniques to obtain a higher precision per layer, the use of an

exact 2D algorithm, and the convexity relaxation parameter. An ad-

vantage of Recast is the maturity of its code.

The CDG has similar parameters to NEOGEN for filtering the

3D environment, but its representation with overlapping disks is

different. In polygonal environments, a finite set of disks cannot

cover the free space completely. However, the advantage of disks

is that they trivially encode clearance information. Furthermore,

the algorithm for computing a CDG is relatively easy to understand

and implement. A practical matter to take into account is that the

CDG source code is not optimized for e.g. gaming applications; we

therefore expect that the other methods will be more efficient in

their current state.

Finally, we expect that our naive grid implementation yields the

largest graphs, and that it does not cover E free well if the obstacles

are not aligned with the grid cells. Other voxel-based methods use

post-processing steps to convert voxels to smooth regions, which

improves coverage and simplifies the graph.

6. Quality metrics for navigation meshes

For a navigation mesh M = (R , G) that has been constructed

for an environment using a particular implementation, we want to

objectively measure the quality. Many possible evaluation criteria

exist, and each application area may have its own view of what is

good or desirable. In this paper, we choose to focus on the navi-

gation mesh itself and on the performance of its construction al-

gorithm. We will present metrics that answer the following ques-

tions:

• Coverage. How accurately do the regions of R cover the geome-

try of E free ? If parts of the free space are not covered, characters

might not find a path in G even though a path exists in E free . If

parts outside the free space are covered, characters might acci-

dentally find paths through obstacles.
• Connectivity. How accurately does the graph G represent the

connectivity of E free ? This question is related to coverage be-

cause it determines whether or not appropriate paths can be

found; however, it concerns topology rather than geometry.
• Complexity. How efficiently does M represent E free , i.e. how

‘compact’ is the mesh? This can refer to the size of the graph G
(a smaller graph allows faster path planning queries) or to the
complexity of each individual region in R (simpler regions al-

low faster basic operations such as point location). It depends

on the application which property is more desirable.
• Performance. How efficiently is M computed in terms of time

and memory? An efficient algorithm allows the construction of

navigation meshes in interactive applications such as level edi-

tors. Even if the navigation mesh is precomputed in an off-line

stage, performance is still desirable.

Of course, many other interesting questions could be asked,

.g. related to the peformance of path planning queries, or to the

uality or realism of paths. We will discuss several options in

ection 9 as suggestions for future work.

Analyzing coverage and connectivity is only useful for voxel-

ased navigation meshes that attempt to ‘discover’ E free them-

elves; exact methods are known to yield perfect coverage. Also,

ome of our questions can only be answered if the ground truth

the structure of E free) is known. Therefore, each input environment

n our experiments will be a ‘clean’ walkable environment, i.e. a

anifold that contains only walkable polygons. While this implies

hat voxel-based methods will not fully use their advantage of han-

ling raw (non-clean) 3D geometry, we believe that using the same

nput for all methods yields a more objective comparison.

Since the outcome of each metric depends on implementation

etails, the results should always be judged in combination with

he theoretical properties of Section 4 .

.1. Coverage

The first set of metrics describes how well the free space is cov-

red. Coverage is a complicated property to evaluate due to the 3D

tructure of R and E free . We need to introduce a number of con-

epts before we can define actual metrics. These concepts assume

hat the environment has a consistent direction of gravity. Cover-

ge is the only category of metrics in which this assumption comes

nto play.

.1.1. Mapping the navigation mesh onto the free space

Comparing the geometry of R to the geometry of E free requires

s to vertically map these two structures onto each other. This is

traight-forward if the environment consists of a single layer be-

ause everything can then be projected onto the ground plane P .

owever, for general WEs in R

3 , mapping R onto E free is ambigu-

us. In an abstract sense, we require a function m such that, for

ny point p in a navigation mesh, m (p) vertically maps p to an ap-

ropriate point in E free if possible. If this mapping is not possible,

 is assumed to lie outside E free . Several choices can be made in

efining m precisely, such as the maximum allowed height differ-

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 59

e

t

g

R

e

r

p

p

r

r

r

6

o

p

s

6

l

v

b

R

t

a

m

C

t

t

t

a

c

A

N

‘

i

i

n

d

r

R

O

I

(

i

o

m

i

6

t

n

c

a

t

s

c

t

i

l

T

t

o

c

c

6

m

a

p

e

n

t

p

T

m

s

o

s

o

t

d

q

s

h

p

n

a

m

s

b

w

6

a

i
nce between p and m (p). We will describe our own implementa-

ion of m in Section 7 .

Using the function m , we define a mapped region R ∗
i

as a re-

ion R i that has been mapped onto E free wherever possible, i.e.

∗
i

= { m (p) | p ∈ R i and m (p) exists } .
Fig. 7 a shows an example of a region and its mapping. Because

ach mapped region is a subset of E free , we can use the mapped

egions to define unions, coverage, and overlap. This allows us to

roperly compare the navigation mesh to the free space. An exam-

le is illustrated in Fig. 7 b.

Let the mapped region set R

∗ be a version of R in which all

egions have been mapped onto E free , i.e. R

∗ = { R ∗
i

| R i ∈ R} . The

egions in R

∗ may overlap: in that case, some points of E free are

epresented more than once.

.1.2. Computing the projected area

Because we ignore height differences in our problem domain,

ur coverage metrics are based on projected areas onto the ground

lane P . We define the projected area of a shape S as follows:

• If S does not overlap itself when projected onto P (i.e. if S is

a P -simple shape as defined in Section 3.5), the projected area

|| S || is the signed area of the projection of S onto P .
• Otherwise, let { S 0 , . . . , S s −1 } be any subdivision of S into P -

simple shapes. The projected area of S is the sum of projected

areas of these components, i.e. || S|| =

∑

i || S i || .
We assume that E free is given as a subdivision into P -simple

hapes, such that ||E free || can be computed.

.1.3. Coverage metrics

We introduce three coverage metrics. Each metric has a regu-

ar version M with range R ≥0 (measured in m

2), and a normalized

ersion M

′ with range [0, 1], as described below.

Free space covered: The area of E free that is correctly covered

y at least one navigation mesh region. Because the regions in

∗ may overlap and we do not want to count overlapping regions

wice, we first compute the union of R

∗ in R

3 . It is desirable that

 navigation mesh has high coverage: this allows characters to use

ore of E free .

ov = || ⋃

i

R

∗
i || and Cov ′ =

Cov

||E free ||
Incorrect area: The area of the mesh that could not be mapped

o E free , i.e. the area of the mesh that ‘overshoots’ E free and lies in

he obstacle space. Intuitively, this is the difference between R and

he part of R that can be mapped onto E free . Ideally, the incorrect

rea should be zero because areas outside E free should not be ac-

essible to characters.

 inc =

∑

i

(|| R i || − || R

∗
i ||) and A

′
inc =

A inc ∑

i || R i ||
ote: while it may seem more intuitive to express this metric as

the area of the obstacle space E obs that is covered’, this would be

mpossible because E obs does not have an area for WEs in 3D.

Overlap: The amount of overlap among the regions in the nav-

gation mesh. Intuitively, overlap is the sum of all region areas mi-

us the area that is covered at least once. Because coverage is only

efined properly inside E free , overlap is also based on the mapped

egion set R

∗. The normalized version indicates which fraction of

∗ is redundant.

v =

∑

i

|| R

∗
i || −|| ⋃

i

R

∗
i || and Ov ′ =

Ov ∑

i || R

∗
i
||

f a navigation mesh is deliberately based on overlapping regions

such as the Clearance Disk Graph [11]), then this metric simply
ndicates how much space is covered more than once. Otherwise,

verlap most likely indicates a bug in the navigation-mesh imple-

entation, and this metric helps detect problems without requir-

ng tedious visual inspection.

.2. Connectivity

The second set of metrics analyzes how well the graph G =
(V, E) represents the dual graph of E free . These metrics concern

opology whereas coverage metrics are related to geometry.

Connected components: The number of connected compo-

ents in G. Ideally, this value is equal to the number of connected

omponents in E free . Having more components implies that not all

djacencies in E free are captured. Having fewer components implies

hat regions have been made adjacent while there are actually ob-

tacles in-between.

Boundaries: The number of environment boundaries per-

eived by the navigation mesh. Ideally, this value is equal to the ac-

ual number of boundaries of E free . It can be computed by travers-

ng the graph G, checking the corresponding regions in R , and col-

ecting the region edges that are not shared by multiple regions.

he number of boundaries is the number of closed loops that are

raced. Note: if the number of boundaries perfectly matches that

f E free , this does not automatically mean that the geometry of R is

orrect. This is one example of the fact that the metrics of different

ategories should be interpreted in a combined manner.

.3. Complexity

The third set of metrics measures how efficiently the navigation

esh represents E free . The size of G, the number of regions in R ,

nd the complexity of these regions may affect the efficiency of

ath planning and crowd simulation.

Vertices, # Edges: The number of vertices and the number of

dges in G, i.e. | V | and | E |. A larger graph implies that path plan-

ing queries (and other algorithms that browse the graph) typically

ake more time to answer. Therefore, lower numbers imply faster

ath planning.

Regions: The number of regions in the navigation mesh: |R| .
his indicates how efficiently the free space is represented by ele-

entary parts. It also suggests how often a character in a (crowd)

imulation may move from one region to another. Moving to an-

ther region typically triggers computational overhead in such a

imulation. Hence, having fewer regions may cause some aspects

f the simulation to run more efficiently.

If G is simply the dual graph of R , then |R| = | V | . In our study,

he ECM is the only navigation mesh for which |R| and | V | may be

ifferent.

Region complexity: The number of floating-point numbers re-

uired to describe the regions in R . Since we treat regions as

hapes in R

3 , we will say that a polygonal region with p vertices

as complexity 3 p , and that a disk has a complexity of 4 (a center

oint in R

3 and a radius). Some navigation meshes have extra an-

otations, such as the maximum allowed radius of a character for

n edge traversal [14] . We do not include such annotations in this

etric. We measure the average complexity among all regions, the

tandard deviation, and the total complexity of all regions com-

ined. A low region complexity implies that geometric operations

ithin these regions are computationally cheap.

.4. Performance

The final set of metrics concerns the practical performance of

 navigation mesh implementation. One issue to take into account

s that voxel-based methods include a conversion from a 3DE to

60 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Table 2

Summary of the navigation mesh quality metrics described in Section 6 .

Metric Range Preferred value

Free space covered (m

2): Cov R ≥0 Ground truth

Normalized: Cov ′ [0,1] 1

Incorrect area (m

2): A inc R ≥0 0

Normalized: A ′
inc

[0, 1] 0

Overlap (m

2): Ov R ≥0 0

Normalized: Ov ′ [0, 1] 0

Connected components N Ground truth

Boundaries N Ground truth

Graph vertices: | V | N As small as possible

Graph edges: | E | N As small as possible

Regions: | R | N As small as possible

Region complexity Total: N As small as possible

Avg/SD: R ≥0

Construction time (ms) Avg/SD: R ≥0 As small as possible

Memory usage (MB) Avg/SD: R ≥0 As small as possible

m

m

c

p

g

o

7

a

t

m

e

m

b

i

p

p

i

t

f

c

a

c

g

f

t

m

u

p

u

t

e

fi

7

F

m

o

n

t

f

W

n

R

a

o

e

f

1

i

a

(

m

i

t
a WE, whereas exact methods do not. Another issue is that dif-

ferent implementations are in drastically different states: some are

a ‘proof of concept’ for research purposes, while others are highly

optimized for the gaming and simulation industry. Still, these met-

rics can indicate if an implementation corresponds to the asymp-

totic complexity of a navigation mesh, and how well a navigation

mesh scales to large or complex environments.

Construction time: The time (in milliseconds) spent on com-

puting the navigation mesh. Naturally, fast construction is encour-

aged because it makes the algorithm suitable for interactive appli-

cations.

Memory usage: The maximum amount of memory (in MB)

used during the execution of the program. A small value implies

that the mesh can be computed in situations with limited re-

sources, e.g. on a game console with little working memory.

To obtain more reliable results in this category, we will run

each navigation mesh program 10 times and report the average

values and standard deviations. This is not needed for the other

categories of metrics because the output of each program is deter-

ministic.

6.5. Summary

Table 2 summarizes all metrics described in this section. The

metrics for coverage and connectivity are easy to interpret because

we know their optimal values. The metrics for performance are

also intuitive: the more efficiently a mesh is constructed, the bet-

ter. The complexity metrics are more difficult to judge because not

all values can be minimized at the same time: for example, a small

set of regions will typically imply that the regions themselves are

complex.

Different applications may assign different priorities to each

metric. For instance, in games where the mesh needs to be com-

puted at run-time, it is likely that efficiency and real-time perfor-

mance are preferred over exact coverage. By providing all metrics,

we leave their interpretation to the developers of the application at

hand. We emphasize that choosing a navigation mesh will always

imply a trade-off of the advantages and disadvantages of each al-

gorithm. Not all metrics can be optimized simultaneously, and the

theoretical properties from Section 4 are at least equally important.

7. Experimental comparison

In this section, we use our metrics to experimentally compare

various navigation meshes in a range of environments. All experi-

ments were run on a Windows 10 laptop with a 3.10 GHz Intel i7-

7920HQ CPU, an NVIDIA Quadro M2200 GPU, and 32 GB of RAM.
The supplementary files of this paper contain all input environ-

ents (described in Section 7.3) and the output of all navigation

eshes. Next to providing OBJ files for all input and output (which

an be opened in any 3D viewer or editor), we also provide out-

ut in two easy-to-read custom file formats: ADJ files that describe

raphs, and MSH files that combine the graph and the regions into

ne file.

.1. Implementation

We have converted each navigation mesh program to a stand-

lone executable that reads an input file, computes a naviga-

ion mesh, and returns the result. We have written a bench-

ark tool that communicates with these programs, converts

nvironments between different file formats, and calculates all

etrics.

The CDG and the grid method require the walkable surfaces to

e visible from all sides. For these two methods, we extrude all

nput polygons downwards by a small amount.

An important implementation detail is our choice of the map-

ing function m that is used to compute coverage. For a point

 in the navigation mesh, we define m (p) as the nearest point

n E free above or below p up to a threshold distance T . The

hreshold distance is required to prevent erroneous points of R
rom getting mapped onto surfaces that are too far away. We

hoose a value of T = 1 meter because the vertical clearance is

t least 2 meters in all our test environments. Admittedly, this

hoice for m requires that the height coordinates of the navi-

ation mesh are sufficiently close to the ground truth. It may

ail in environments with gradual yet large height differences

hat are not captured by the navigation mesh. (In 2D environ-

ents, T can be ignored because a vertical mapping is already

nambiguous.)

To compute coverage for the CDG navigation meshes, we ap-

roximated the disks of the CDG by polygons of 16 vertices. We

sed inner approximations: the approximated disks were smaller

han the actual disks. This leads to slightly lower numbers for cov-

rage, incorrect area, and overlap, but the chosen precision is suf-

cient for comparative purposes.

.2. Parameter settings

Most navigation meshes are built based on various parameters.

or simplicity, we use one set of parameter settings for all experi-

ents. These settings are described below.

Precision. For the CDG, Recast, and NEOGEN, we used voxels

f 0.1 × 0.1 × 0.2 m. This precision was sufficiently high to generate

avigation meshes without large artifacts. (In our previous publica-

ion, we used voxels of 0.2 × 0.2 × 0.2 m instead, which caused un-

air artifacts in the output of Recast for several 2D environments.)

ith these standard settings, the BigCity environment caused most

avigation-mesh programs to crash, and the City environment let

ecast return empty output. Thus, for these two environments

lone, we let Recast use the coarser voxels of 0.2 × 0.2 × 0.2 m in

rder to obtain a result.

For the CDG, we enforced a maximum resolution of 512 pix-

ls in all dimensions, to keep the construction times manageable

or large environments. For the grid, we reduced the voxel size to

 × 1 m in the horizontal plane to prevent the program from tak-

ng too much time and memory. We could keep the voxel height

t 0.2 m. For the CDG, we used a minimum disk radius of 0.1 m

to prevent the method from generating many small disks) and a

aximum disk radius of 10 0, 0 0 0 m (which is essentially infinite

n our examples).

Filtering. We have created our input environments such that

hey are entirely walkable and no more surfaces need to be filtered

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 61

Fig. 9. Top views of the 2D environments used in our experiments. The number of polygon vertices n and the physical dimensions d (in meters) are shown in brackets.

o

fi

t

o

m

t

u

s

l

m

e

d

p

a

n

o

‘

m

g

t

m

o

a

l

c

a

r

ut. Therefore, for all voxel-based methods, we use very lenient

ltering parameters to ensure that these environments could (in

heory) be covered completely. We used a maximum surface slope

f 75 degrees, a character radius of 0, and a character height of 0.5

.

Recast offers various other parameters that would ideally need

o be tweaked for each environment to get the best results. We

sed the following settings: Tiling: Off; Max climb: 0.5; Min region

ize: 0; Merged region size: 100; Partitioning: Watershed; Max edge

ength: 100; Max edge error: 1.3; Vertices per polygon: 6; Detail

esh sample distance: 6; Detail mesh max error: 1. The param-

ters printed in italics are the only ones who do not have their

efault value suggested by the Recast software. These are all post-

rocessing parameters that determine how any detected surfaces

re merged or removed. Setting ‘Min region size’ to 0 means that
o surfaces get removed for being too small. This reduces the risk

f obtaining bad coverage values. Setting ‘Merged region size’ and

Max edge length’ to a high value means that Recast can merge

ore regions into one, which reduces the complexity of the navi-

ation mesh. We have experimented with even higher values, but

hese caused unexpected geometric errors in some of our environ-

ents.

Other. To compute ECMs, we used the implementation based

n the Boost Voronoi library [54] . It computes a 2D Voronoi di-

gram in O(n log n) worst-case time, and it can process multiple

ayers of an MLE on parallel threads.

For NEOGEN, we used a convexity relaxation parameter of 0. In-

reasing this parameter leads to fewer regions (i.e. a smaller graph)

nd a higher region complexity. Thus, the ‘best’ value for this pa-

ameter depends on the application.

62 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Fig. 10. Renderings of the multi-layered environments used in our experiments. Each layer of an environment is shown in a different color. Connections between layers

are shown in red. The number of polygon vertices n and the physical dimensions d (width × depth × height, in meters) are shown in brackets. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 63

Fig. 11. Navigation meshes computed for the Simple environment. Regions are shown in different colors. The corresponding graphs have been omitted for clarity.

Fig. 12. Navigation meshes computed for the Military environment. Regions are shown in different colors.

64 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Fig. 13. Navigation meshes computed for the University environment. Regions are shown in different colors.

Fig. 14. Navigation meshes computed for the Zelda environment. Regions are shown in different colors.

n

v

l

r

v

7.3. Environments

We have computed navigation meshes for the 2D and 3D in-

put environments shown in Fig. 9 and 10 . Most of them have

been used in previous publications or were included in one of the
avigation mesh implementations. Furthermore, we have obtained

arious levels of the FPS game Counter-Strike 1.6 [55] from an on-

ine repository [56] . Finally, to test for scalability, we have added

andomly generated 2D mazes of various sizes, inspired by Sturte-

ant [34] .

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 65

Fig. 15. Navigation meshes computed for the Zelda2x2 environment. Regions are shown in different colors.

Fig. 16. Navigation meshes computed for the Zelda4x4 environment. Regions are shown in different colors.

66 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Fig. 17. Navigation meshes computed for the City environment. Regions are shown in different colors.

Fig. 18. Navigation meshes computed for the Maze8 environment. Regions are shown in different colors.

h

m

R

t

M

t

c

h

b

t

m

a

o

r

a
Using CGAL-based filtering software [17] and manual editing,

we have converted each environment to a clean representation of

E free , subdivided into layers when necessary.

7.4. Discussion of results

For our 2D environments, the navigation meshes produced by

all algorithms are shown in Fig. 11–22 . For the MLEs, the results

are difficult to visualize in a single image; as a representative ex-

ample, Fig. 23 shows the results for Library .

Tables 3 –10 contain the quantitative results. We have created

separate tables for each category of metrics. We will now discuss

the most important observations in all categories.

7.4.1. Coverage (Tables 3 and 4).

Despite our use of small voxels, the voxel-based methods some-

times missed large areas or covered large incorrect parts, up to
undreds of square meters in large enviroments. However, the nor-

alized coverage was still high (typically over 90%). Interestingly,

ecast always gave slightly ‘distorted’ output coordinates, even if

he input was perfectly grid-aligned. This is easiest to see in the

aze8 environment (Fig. 18 d). (Decreasing the voxel size reduces

his distortion, but it never fully disappears.) However, the relative

overage of Recast in the mazes remained decent at over 80%.

NEOGEN generally yielded high coverage due to its additional

igh-precision processing step per layer. This indicates that voxel-

ased methods can work well, given enough precision in the phase

hat converts voxels to polygons. It would be interesting to let

ethods automatically choose an appropriate resolution based on

 user-specified balance between coverage and performance. A the-

retically stronger alternative would be to reconstruct E free without

elying on a grid resolution.

For completeness, we have also calculated coverage for the ex-

ct methods. As expected, these methods usually scored nearly

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 67

Fig. 19. Navigation meshes computed for the Maze16 environment. Regions are shown in different colors.

Fig. 20. Navigation meshes computed for the Maze32 environment. Regions are shown in different colors.

68 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Fig. 21. Navigation meshes computed for the Maze64 environment. Regions are shown in different colors.

Fig. 22. Navigation meshes computed for the Maze128 environment. Regions are shown in different colors.

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 69

Fig. 23. Renderings of the navigation meshes computed for the Library environment. Regions are shown in blue and outlined in black. The corresponding graphs have been

omitted for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

p

fl

i

n

a

l

n

t

t

i

n

r

t

s

i

t

m

7

e

C

n

b

E

n

l

a

c

r

i

f

n
erfectly; any tiny deviations from a perfect score are caused by

oating-point precision in our benchmark software. In the BigC-

ty environment, the ECM could not produce any height coordi-

ates, most likely due to an implementation error. This caused

ll navigation-mesh regions to be mapped onto the ground plane,

eading to poor coverage results. However, upon inspection, the

avigation mesh appears to be geometrically correct except for

hese height coordinates.

As explained in Section 7.1 , we use a vertical threshold dis-

ance T = 1 m to compute coverage. This can give incorrect results

n MLEs with large height differences that are not represented by

avigation-mesh regions. An example of this is the Neogen1 envi-

onment (Fig. 10 g) for which some navigation meshes do not cap-

ure the ‘hill’ shape in the bottom-left corner. This hill is then con-

idered as ‘not covered’, even though there is clearly a correspond-

ng (flat) region in the navigation mesh. Aside from exceptions like

his one, our coverage calculations are sufficiently accurate in al-
ost all environments. n
.4.2. Connectivity (Tables 5 and 6).

Recast and NEOGEN captured connectivity quite well for most

nvironments, except in some of the more complex MLEs. For the

DG, the graph usually contained too many connected compo-

ents, and gaps in the covered space led to a large number of

oundaries.

Again, we have also included the results for the LCT and the

CM, for completeness. These methods usually yielded perfect con-

ectivity values. There were a few exceptions for the LCT, most

ikely caused by our own process of converting E free to a bound-

ry representation.

It is motivating to see that any clearly bad connectivity values

orresponded to navigation meshes that were also visually incor-

ect. For example, Recast accidentally connected layers vertically

n the Tower environment (see Fig. 8), which led to a high value

or the ‘number of boundaries’ metric. This suggests that our con-

ectivity metrics are suitable for quickly detecting large errors in a

avigation mesh. However, to find the exact nature of the error, vi-

70 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Table 3

Results for the coverage metrics in the 2D environments. The descriptions of all metrics can be found in Section 6 . Numbers in boldface indicate a perfect

value.

Environment Navigation mesh Coverage

Total area (m

2) Cov Cov ′ A inc A ′
inc

Ov Ov ′

Simple 6,859.29 LCT 6,859.25 1.00 0.03 0.00 0.01 0.00

ECM 6,859.26 1.00 0.03 0.00 0.00 0.00

CDG 6,623.67 0.97 4.42 0.00 3,096.95 0.32

Recast 6,776.79 0.99 1.46 0.00 0.00 0.00

NEOGEN 6,859.26 1.00 0.03 0.00 0.00 0.00

Grid 6,713.73 0.98 116.27 0.02 0.00 0.00

Military 36,876.82 LCT 36,876.81 1.00 0.00 0.00 0.01 0.00

ECM 36,876.80 1.00 0.04 0.00 0.00 0.00

CDG 36,207.40 0.98 7.99 0.00 15,604.37 0.30

Recast 36,752.50 1.00 1.66 0.00 0.00 0.00

NEOGEN 36,876.83 1.00 0.00 0.00 0.00 0.00

Grid 36,772.79 1.00 117.21 0.00 0.01 0.00

University 8,370.68 LCT 8,370.63 1.00 0.04 0.00 2.41 0.00

ECM 8,370.68 1.00 0.00 0.00 0.00 0.00

CDG 7,823.18 0.93 11.45 0.00 3,385.77 0.30

Recast 8,206.46 0.98 9.60 0.00 0.01 0.00

NEOGEN 8,370.68 1.00 0.00 0.00 0.00 0.00

Grid 7,982.70 0.95 578.56 0.07 0.00 0.00

Zelda 5,642.24 LCT 5,642.24 1.00 0.00 0.00 0.00 0.00

ECM 5,642.23 1.00 0.01 0.00 0.00 0.00

CDG 5,269.79 0.93 9.04 0.00 2,343.15 0.31

Recast 5,453.28 0.97 0.67 0.00 0.00 0.00

NEOGEN 5,642.24 1.00 0.00 0.00 0.00 0.00

Grid 5,480.73 0.97 55.27 0.01 0.00 0.00

Zelda2x2 22,632.42 LCT 22,632.42 1.00 0.00 0.00 0.00 0.00

ECM 22,632.38 1.00 0.08 0.00 0.00 0.00

CDG 19,369.98 0.86 85.94 0.00 6,784.67 0.26

Recast 21,878.87 0.97 2.31 0.00 0.00 0.00

NEOGEN 22,632.42 1.00 0.00 0.00 0.00 0.00

Grid 21,978.13 0.97 221.87 0.01 0.00 0.00

Zelda4x4 90,529.70 LCT 90,529.69 1.00 0.00 0.00 0.00 0.00

ECM 90,529.55 1.00 0.18 0.00 0.00 0.00

CDG 65,836.02 0.73 844.11 0.01 16,331.52 0.20

Recast 87,794.71 0.97 32.48 0.00 0.00 0.00

NEOGEN 90,529.69 1.00 0.01 0.00 0.00 0.00

Grid 87,912.54 0.97 887.45 0.01 0.01 0.00

City 207,518.40 LCT 207,284.10 1.00 0.11 0.00 0.10 0.00

ECM 207,518.10 1.00 0.28 0.00 0.03 0.00

CDG 197,066.40 0.95 302.06 0.00 82,839.06 0.30

Recast 206,250.00 0.99 80.04 0.00 0.00 0.00

NEOGEN 207,518.30 1.00 0.13 0.00 0.00 0.00

Grid 206,227.00 0.99 1,255.12 0.01 0.00 0.00

Maze8 31.00 LCT 31.00 1.00 0.00 0.00 0.00 0.00

ECM 31.00 1.00 0.00 0.00 0.00 0.00

CDG 24.06 0.78 0.00 0.00 8.54 0.26

Recast 25.58 0.83 0.00 0.00 0.00 0.00

NEOGEN 31.00 1.00 0.00 0.00 0.00 0.00

Grid 31.00 1.00 0.00 0.00 0.00 0.00

Maze16 127.00 LCT 127.00 1.00 0.00 0.00 0.00 0.00

ECM 127.00 1.00 0.00 0.00 0.00 0.00

CDG 101.74 0.80 0.03 0.00 46.18 0.31

Recast 106.14 0.84 0.00 0.00 0.00 0.00

NEOGEN 127.00 1.00 0.00 0.00 0.00 0.00

Grid 127.00 1.00 0.00 0.00 0.00 0.00

Maze32 511.00 LCT 511.00 1.00 0.00 0.00 0.00 0.00

ECM 511.00 1.00 0.00 0.00 0.00 0.00

CDG 408.38 0.80 0.15 0.00 171.84 0.30

Recast 427.98 0.84 0.02 0.00 0.00 0.00

NEOGEN 511.00 1.00 0.00 0.00 0.00 0.00

Grid 511.00 1.00 0.00 0.00 0.00 0.00

Maze64 2,047.00 LCT 2,047.00 1.00 0.00 0.00 0.00 0.00

ECM 2,047.00 1.00 0.00 0.00 0.00 0.00

CDG 1,582.16 0.77 7.14 0.00 601.59 0.28

Recast 1,716.27 0.84 0.00 0.00 0.00 0.00

NEOGEN 2,047.00 1.00 0.00 0.00 0.00 0.00

Grid 2,047.00 1.00 0.00 0.00 0.00 0.00

(continued on next page)

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 71

Table 3 (continued)

Environment Navigation mesh Coverage

Total area (m

2) Cov Cov ′ A inc A ′
inc

Ov Ov ′

Maze128 8,191.00 LCT 8,191.00 1.00 0.00 0.00 0.00 0.00

ECM 8,191.00 1.00 0.00 0.00 0.00 0.00

CDG 5,067.01 0.62 109.55 0.02 896.18 0.15

Recast 6,861.23 0.84 0.00 0.00 0.00 0.00

NEOGEN 8,191.00 1.00 0.00 0.00 0.00 0.00

Grid 8,191.00 1.00 0.00 0.00 0.00 0.00

Table 4

Results for the coverage metrics in the multi-layered environments. An empty row indicates that the navigation mesh could not be com-

puted for the corresponding algorithm and environment. Numbers in boldface indicate a perfect value.

Environment Navigation mesh Coverage

Total area (m

2) Cov Cov ′ A inc A ′
inc

Ov Ov ′

as_oilrig 75,746.52 ECM 74,976.05 0.99 766.87 0.01 3.55 0.00

CDG - - - - - -

Recast 75,302.81 0.99 18.62 0.00 5.41 0.00

NEOGEN - - - - - -

Grid 74,772.91 0.99 1,389.73 0.02 0.37 0.00

cs_assault 21,779.29 ECM 19,475.67 0.89 2,303.61 0.12 0.00 0.00

CDG 19,190.24 0.88 2,599.88 0.09 8,530.28 0.31

Recast 21,531.92 0.99 32.14 0.00 0.03 0.00

NEOGEN 17,998.92 0.83 2,934.28 0.16 0.01 0.00

Grid 21,110.20 0.97 726.38 0.03 0.00 0.00

cs_siege 26,207.49 ECM 26,173.85 1.00 33.61 0.00 0.05 0.00

CDG 23,521.03 0.90 507.83 0.02 9,959.50 0.30

Recast 25,899.19 0.99 13.82 0.00 0.55 0.00

NEOGEN 24,671.52 0.94 1,404.44 0.06 3.81 0.00

Grid 25,649.85 0.98 628.54 0.02 0.00 0.00

de_dust 25,106.82 ECM 24,755.99 0.99 350.81 0.01 0.00 0.00

CDG 22,954.53 0.91 1,217.82 0.04 8,787.81 0.28

Recast 24,824.24 0.99 6.10 0.00 0.01 0.00

NEOGEN 24,920.51 0.99 185.82 0.01 0.48 0.00

Grid 24,571.73 0.98 600.34 0.02 0.00 0.00

de_dust2 20,243.71 ECM 20,172.35 1.00 71.36 0.00 0.00 0.00

CDG 18,589.43 0.92 1,547.66 0.06 7,214.72 0.28

Recast 20,036.42 0.99 7.53 0.00 0.00 0.00

NEOGEN 19,869.34 0.98 357.22 0.02 17.14 0.00

Grid 19,804.10 0.98 650.92 0.03 0.00 0.00

Jardin 2,802.35 ECM 2,651.16 0.95 143.28 0.05 7.94 0.00

CDG 2,447.30 0.87 432.51 0.13 1,011.72 0.29

Recast 2,750.82 0.98 9.47 0.00 0.68 0.00

NEOGEN 2,246.60 0.80 356.63 0.16 7.54 0.00

Grid 2,744.80 0.98 73.70 0.03 0.00 0.00

Neogen1 4,748.47 ECM 4,671.50 0.98 73.46 0.02 3.48 0.00

CDG 4,389.95 0.92 565.87 0.09 1,747.39 0.28

Recast 4,708.47 0.99 2.66 0.00 0.33 0.00

NEOGEN 4,429.13 0.93 223.37 0.05 89.10 0.02

Grid 4,691.59 0.99 137.75 0.03 4.66 0.00

Neogen2 9,600.56 ECM 9,600.43 1.00 0.17 0.00 0.02 0.00

CDG 9,277.86 0.97 301.94 0.02 4,220.22 0.31

Recast 9,518.50 0.99 8.46 0.00 2.68 0.00

NEOGEN 9,371.74 0.98 20.84 0.00 0.00 0.00

Grid 9,414.95 0.98 253.79 0.03 1.27 0.00

Neogen3 9,642.51 ECM 9,642.28 1.00 0.13 0.00 0.00 0.00

CDG 9,444.76 0.98 39.43 0.00 3,920.22 0.29

Recast 9,554.90 0.99 6.27 0.00 0.00 0.00

NEOGEN 9,527.22 0.99 15.10 0.00 0.00 0.00

Grid 9,494.22 0.98 288.90 0.03 0.00 0.00

Dungeon 2,114.80 ECM 2,114.71 1.00 0.07 0.00 0.01 0.00

CDG 1,958.18 0.93 201.40 0.08 599.81 0.23

Recast 2,087.57 0.99 7.25 0.00 0.00 0.00

(continued on next page)

72 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Table 4 (continued)

Environment Navigation mesh Coverage

Total area (m

2) Cov Cov ′ A inc A ′
inc

Ov Ov ′

NEOGEN - - - - - -

Grid 2,016.20 0.95 115.98 0.06 0.00 0.00

NavTest 5,202.13 ECM 5,199.64 1.00 2.33 0.00 0.00 0.00

CDG 4,632.57 0.89 681.27 0.11 1,671.97 0.27

Recast 5,133.04 0.99 3.22 0.00 0.01 0.00

NEOGEN 4,532.81 0.87 450.52 0.10 0.00 0.00

Grid 4,971.44 0.96 310.22 0.06 0.00 0.00

ParkingLot 1,921.50 ECM 1,921.39 1.00 0.10 0.00 0.02 0.00

CDG 1,842.43 0.96 0.13 0.00 750.19 0.29

Recast 1,890.67 0.98 2.14 0.00 0.05 0.00

NEOGEN - - - - - -

Grid 1,884.49 0.98 203.28 0.11 6.25 0.00

Library 3,154.06 ECM 3,153.85 1.00 0.10 0.00 0.02 0.00

CDG 3,023.70 0.96 9.22 0.00 1,168.79 0.28

Recast 3,094.35 0.98 4.06 0.00 0.07 0.00

NEOGEN 3,132.67 0.99 21.39 0.01 0.00 0.00

Grid 2,986.48 0.95 201.53 0.07 0.00 0.00

Tower 12,093.88 ECM 12,092.38 1.00 1.43 0.00 0.00 0.00

CDG 10,997.80 0.91 24.59 0.00 3,606.29 0.25

Recast 11,840.82 0.98 288.76 0.02 0.69 0.00

NEOGEN - - - - - -

Grid 11,367.29 0.94 1,074.77 0.09 0.00 0.00

BigCity 280,876.10 ECM 191,738.30 0.68 40,652.61 0.17 48,505.70 0.20

CDG - - - - - -

Recast 277,278.10 0.99 2,787.79 0.01 0.00 0.00

NEOGEN - - - - - -

Grid - - - - - -

Table 5

Results for the connectivity metrics in the 2D environments. ‘#CCs’ is an abbreviation of ‘number

of connected components’. The descriptions of all metrics can be found in Section 6 . Numbers in

boldface indicate a perfect value.

Environment Navigation mesh Connectivity

#CCs #Boundaries #CCs #Boundaries

Simple 1 3 LCT 1 3

ECM 1 3

CDG 2 1,329

Recast 1 3

NEOGEN 4 6

Grid 1 3

Military 1 16 LCT 1 16

ECM 1 16

CDG 3 906

Recast 1 16

NEOGEN 1 16

Grid 1 16

University 1 82 LCT 2 86

ECM 1 82

CDG 274 1,391

Recast 1 82

NEOGEN 4 83

Grid 1 53

Zelda 1 57 LCT 1 57

ECM 1 57

CDG 3 1,313

Recast 1 57

NEOGEN 1 57

Grid 1 57

Zelda2x2 1 226 LCT 1 226

ECM 1 226

(continued on next page)

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 73

Table 5 (continued)

Environment Navigation mesh Connectivity

#CCs #Boundaries #CCs #Boundaries

CDG 9 3,088

Recast 1 226

NEOGEN 1 226

Grid 1 226

Zelda4x4 1 906 LCT 1 906

ECM 1 906

CDG 244 4,928

Recast 1 906

NEOGEN 1 906

Grid 1 906

City 1 181 LCT 2 178

ECM 1 181

CDG 203 2,209

Recast 1 183

NEOGEN 12 177

Grid 2 184

Maze8 1 1 LCT 1 1

ECM 1 1

CDG 1 41

Recast 1 1

NEOGEN 1 1

Grid 1 1

Maze16 1 1 LCT 1 1

ECM 1 1

CDG 1 272

Recast 1 1

NEOGEN 1 1

Grid 1 1

Maze32 1 1 LCT 1 1

ECM 1 1

CDG 1 1,021

Recast 1 1

NEOGEN 1 1

Grid 1 1

Maze64 1 1 LCT 1 1

ECM 1 1

CDG 289 5,434

Recast 1 1

NEOGEN 1 1

Grid 1 1

Maze128 1 1 LCT 1 1

ECM 1 1

CDG 1188 22,151

Recast 1 1

NEOGEN 1 1

Grid 1 1

s

t

c

R

7

t

t

f

m

a

c

a

i

w

t

a

t

t

p

o

p

g

u

e

7

t

a

m

t

p

ual inspection is still needed. (In the example of Fig. 8 , decreasing

he voxel size did not solve the problem. The issue is most likely

aused by our use of a character radius of zero, a setting for which

ecast does not seem to be designed.)

.4.3. Complexity (Tables 7 and 8).

NEOGEN and Recast typically yielded small graphs and a low

otal region complexity. These methods produce compact descrip-

ions of the environment, thanks to their extra processing steps

or grouping voxels into polygons. This suggests that voxel-based

ethods are (currently) ideal whenever a low memory footprint

nd fast path planning are more important than coverage.

The ECM often produced smaller graphs than the LCT, in ex-

hange for a higher total region complexity. Both methods usu-

lly yielded more complex meshes than NEOGEN or Recast. This

s because exact methods capture all details of the environment,

hereas voxel-based methods inherently simplify E free to some ex-

ent. In future research, exact methods could also benefit from such

 simplification, to prevent them from ‘getting lost’ in tiny details.
It should be noted that Recast contains several parameters (e.g.

he maximum number of vertices per region) that allows users

o adjust the balance between graph complexity and region com-

lexity. The ideal balance depends heavily on the application. With

ur current settings, though, Recast already scored well in both as-

ects.

As expected, our grid implementation usually gave the largest

raph, except in some of the mazes. This confirms that grids are

sually inefficient representations, although we acknowledge their

ase of use and their attractiveness for grid-aligned applications.

.4.4. Performance (Tables 9 and 10).

The LCT implementation was the fastest in all environments, al-

hough it did require pre-processing (i.e. conversion to a bound-

ry representation) that we have not included in our measure-

ents. A similar conversion is included in the ECM implementa-

ion, which makes the two a bit difficult to compare in terms of

erformance.

74 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Table 6

Results for the connectivity metrics in the multi-layered environments. ‘#CCs’ is an abbreviation of ‘number of connected components’. An empty row indicates

that the navigation mesh could not be computed for the corresponding algorithm and environment. Numbers in boldface indicate a perfect value.

Environment Navigation mesh Connectivity

#CCs #Boundaries #CCs #Boundaries

as_oilrig 1 26 ECM 1 26

CDG - -

Recast 1 29

NEOGEN - -

Grid 1 21

cs_assault 10 24 ECM 10 24

CDG 647 1,580

Recast 7 43

NEOGEN 10 24

Grid 6 18

cs_siege 11 39 ECM 11 39

CDG 501 1,214

Recast 9 34

NEOGEN 14 41

Grid 13 31

de_dust 3 14 ECM 3 15

CDG 452 1,146

Recast 3 13

NEOGEN 5 15

Grid 4 17

de_dust2 1 6 ECM 1 6

CDG 363 1,267

Recast 2 5

NEOGEN 9 12

Grid 3 16

Jardin 12 33 ECM 13 35

CDG 80 1,074

Recast 9 28

NEOGEN 1 22

Grid 15 56

Neogen1 3 12 ECM 3 12

CDG 91 1,253

Recast 3 12

NEOGEN 3 11

Grid 3 14

Neogen2 11 33 ECM 11 33

CDG 314 1,938

Recast 10 31

NEOGEN 13 32

Grid 14 33

Neogen3 9 19 ECM 10 20

CDG 60 2,345

Recast 9 19

NEOGEN 10 20

Grid 22 42

Dungeon 10 12 ECM 10 12

CDG 166 555

Recast 5 9

NEOGEN - -

Grid 16 21

NavTest 23 43 ECM 23 43

CDG 374 1,398

Recast 22 39

NEOGEN 9 29

Grid 21 36

ParkingLot 1 9 ECM 1 9

CDG 1 574

Recast 1 9

NEOGEN - -

Grid 1 15

(continued on next page)

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 75

Table 6 (continued)

Environment Navigation mesh Connectivity

#CCs #Boundaries #CCs #Boundaries

Library 1 4 ECM 1 4

CDG 301 1,549

Recast 1 4

NEOGEN 6 8

Grid 1 4

Tower 1 19 ECM 1 19

CDG 6 9,770

Recast 1 208

NEOGEN - -

Grid 1 195

BigCity 1 305 ECM 1 305

CDG - -

Recast 3 1,790

NEOGEN - -

Grid - -

Table 7

Results for the complexity metrics in the 2D environments. The descriptions of all metrics can be found in Section 6 . Numbers in boldface

indicate the lowest metric value (among all methods) for a particular environment.

Environment Navigation mesh Complexity

Region complexity

| V | | E | |R| Average SD Total

Simple LCT 111 112 111 9.00 0.00 999

ECM 94 95 191 14.81 2.29 2,829

CDG 1746 3107 1746 4.00 0.00 6,984

Recast 84 85 84 12.00 2.58 1,008

NEOGEN 44 42 44 15.34 3.52 675

Grid 6830 12,971 6830 12.00 0.00 81,960

Military LCT 123 137 123 9.00 0.00 1,107

ECM 58 72 214 14.83 2.16 3,174

CDG 1168 2078 1168 4.00 0.00 4,672

Recast 124 138 124 11.98 2.86 1,485

NEOGEN 52 66 52 15.40 3.58 801

Grid 36,890 72,851 36,890 12.00 0.00 442,680

University LCT 738 818 738 9.00 0.00 6,642

ECM 329 409 1134 15.04 2.29 17,055

CDG 3308 4369 3308 4.00 0.00 13,232

Recast 428 508 428 12.19 2.91 5,217

NEOGEN 261 334 261 16.80 8.13 4,386

Grid 8518 15,718 8518 12.00 0.00 102,216

Zelda LCT 553 608 553 9.00 0.00 4,977

ECM 289 344 895 14.93 2.30 13,359

CDG 3381 4786 3381 4.00 0.00 13,524

Recast 343 398 343 12.41 2.84 4,257

NEOGEN 204 259 204 16.09 6.25 3,282

Grid 5536 9895 5536 12.00 0.00 66,432

Zelda2x2 LCT 2250 2474 2250 9.00 0.00 20,250

ECM 1148 1372 3602 14.92 2.30 53,754

CDG 5636 8850 5636 4.00 0.00 22,544

Recast 1345 1569 1345 12.48 2.85 16,782

NEOGEN 822 1,046 822 16.13 6.31 13,260

Grid 22,200 39,678 22,200 12.00 0.00 266,400

Zelda4x4 LCT 9004 9908 9004 9.00 0.00 81,036

ECM 4580 5484 14,436 14.92 2.30 215,424

CDG 11,996 16,564 11,996 4.00 0.00 47,984

Recast 5424 6332 5424 12.45 2.86 67,503

NEOGEN 3,295 4,199 3,295 16.13 6.33 53,142

Grid 88,800 158,740 88,800 12.00 0.00 1,065,600

City LCT 2556 2730 2556 9.00 0.00 23,004

ECM 1442 1621 4679 14.42 2.16 67,491

CDG 3449 5276 3449 4.00 0.00 13,796

Recast 1645 1837 1645 11.88 3.13 19,548

NEOGEN 1,164 1,319 1,164 13.61 5.17 15,846

Grid 207,478 408,234 207,478 12.00 0.00 2,489,736

(continued on next page)

76 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Table 7 (continued)

Environment Navigation mesh Complexity

Region complexity

| V | | E | |R| Average SD Total

Maze8 LCT 26 25 26 9.00 0.00 234

ECM 30 29 51 14.71 2.32 750

CDG 110 151 110 4.00 0.00 440

Recast 15 14 15 11.20 1.33 168

NEOGEN 13 12 13 14.77 2.99 192

Grid 31 30 31 12.00 0.00 372

Maze16 LCT 82 81 82 9.00 0.00 738

ECM 84 83 156 14.85 2.25 2,316

CDG 566 950 566 4.00 0.00 2,264

Recast 40 39 40 12.00 1.64 480

NEOGEN 39 38 39 15.00 3.11 585

Grid 127 126 127 12.00 0.00 1,524

Maze32 LCT 363 362 363 9.00 0.00 3,267

ECM 358 357 686 14.89 2.23 10,212

CDG 2255 3404 2255 4.00 0.00 9,020

Recast 183 182 183 11.89 1.42 2,175

NEOGEN 175 174 175 15.02 2.88 2,628

Grid 511 510 511 12.00 0.00 6,132

Maze64 LCT 1421 1420 1421 9.00 0.00 12,789

ECM 1392 1391 2672 14.88 2.24 39,756

CDG 9783 14,721 9783 4.00 0.00 39,132

Recast 722 721 722 11.88 1.56 8,574

NEOGEN 673 672 673 15.09 3.00 10,155

Grid 2047 2046 2047 12.00 0.00 24,564

Maze128 LCT 5681 5680 5681 9.00 0.00 51,129

ECM 5567 5566 10,710 14.88 2.24 159,336

CDG 25,135 44,910 25,135 4.00 0.00 100,540

Recast 2862 2861 2862 11.95 1.59 34,206

NEOGEN 2,703 2,702 2,703 15.08 2.98 40,755

Grid 8191 8190 8191 12.00 0.00 98,292

Table 8

Results for the complexity metrics in the multi-layered environments. An empty row indicates that the navigation mesh could not be

computed for the corresponding algorithm and environment. Numbers in boldface indicate the lowest metric value (among all methods)

for a particular environment.

Environment Navigation mesh Complexity

Region complexity

| V | | E | |R| Average SD Total

as_oilrig ECM 603 629 1283 14.73 2.23 18,894

CDG - - - - - -

Recast 527 558 527 12.01 3.04 6,330

NEOGEN - - - - - -

Grid 76,163 141,560 76,163 12.00 0.00 913,956

cs_assault ECM 308 312 625 14.76 2.26 9,228

CDG 2802 3212 2802 4.00 0.00 11,208

Recast 334 363 334 10.98 2.53 3,666

NEOGEN 145 149 145 15.35 5.27 2,226

Grid 21,835 38,665 21,835 12.00 0.00 262,020

cs_siege ECM 836 853 1712 14.46 2.26 24,756

CDG 2482 2712 2482 4.00 0.00 9,928

Recast 525 546 525 12.05 3.09 6,327

NEOGEN 362 375 362 15.70 6.24 5,682

Grid 26,278 47,145 26,278 12.00 0.00 315,336

de_dust ECM 636 645 1271 14.16 2.14 18,003

CDG 2272 2586 2272 4.00 0.00 9,088

Recast 455 465 455 11.99 2.95 5,454

NEOGEN 302 309 302 14.80 6.23 4,470

Grid 25,170 44,065 25,170 12.00 0.00 302,040

de_dust2 ECM 552 556 1122 14.27 2.18 16,008

CDG 2349 2904 2349 4.00 0.00 9,396

Recast 403 406 403 11.69 3.10 4,713

NEOGEN 292 286 292 13.87 5.27 4,050

Grid 20,450 34,220 20,450 12.00 0.00 245,400

(continued on next page)

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 77

Table 8 (continued)

Environment Navigation mesh Complexity

Region complexity

| V | | E | |R| Average SD Total

Jardin ECM 654 667 1395 14.51 2.43 20,238

CDG 1753 2715 1753 4.00 0.00 7,012

Recast 212 231 212 12.25 3.20 2,598

NEOGEN 233 260 233 17.78 16.56 4,143

Grid 2813 2842 2813 12.00 0.00 33,756

Neogen1 ECM 442 448 1152 14.66 2.39 16,890

CDG 1766 2849 1766 4.00 0.00 7,064

Recast 150 159 150 11.56 3.28 1,734

NEOGEN 185 190 185 23.22 31.83 4,296

Grid 4834 5843 4834 12.00 0.00 58,008

Neogen2 ECM 390 403 1238 14.87 2.30 18,414

CDG 3880 5262 3880 4.00 0.00 15,520

Recast 249 264 249 11.58 3.17 2,883

NEOGEN 295 301 295 15.31 7.11 4,515

Grid 9670 17,021 9670 12.00 0.00 116,040

Neogen3 ECM 439 439 985 14.55 2.34 14,328

CDG 3571 5834 3571 4.00 0.00 14,284

Recast 262 263 262 11.83 3.20 3,099

NEOGEN 217 217 217 14.90 8.27 3,234

Grid 9781 17,854 9781 12.00 0.00 117,372

Dungeon ECM 633 625 1370 14.92 2.43 20,445

CDG 1317 1546 1317 4.00 0.00 5,268

Recast 256 260 256 12.22 3.08 3,129

NEOGEN - - - - - -

Grid 2131 2918 2131 12.00 0.00 25,572

NavTest ECM 365 362 812 14.87 2.43 12,078

CDG 2665 3335 2665 4.00 0.00 10,660

Recast 182 179 182 12.25 3.06 2,229

NEOGEN 98 109 98 18.46 10.78 1,809

Grid 5280 6661 5280 12.00 0.00 63,360

ParkingLot ECM 61 68 108 15.08 2.33 1,629

CDG 803 1399 803 4.00 0.00 3,212

Recast 50 57 50 11.88 2.40 594

NEOGEN - - - - - -

Grid 2094 3781 2094 12.00 0.00 25,128

Library ECM 216 218 377 14.50 2.36 5,466

CDG 2866 3873 2866 4.00 0.00 11,464

Recast 122 124 122 11.95 2.66 1,458

NEOGEN 74 70 74 20.64 8.85 1,527

Grid 3188 5670 3188 12.00 0.00 38,256

Tower ECM 4988 5019 9421 14.37 2.38 135,345

CDG 17,970 27,866 17,970 4.00 0.00 71,880

Recast 1,467 1,701 1,467 12.07 2.87 17,709

NEOGEN - - - - - -

Grid 12,442 22,074 12,442 12.00 0.00 149,304

BigCity ECM 32,175 32,562 69,181 14.41 2.37 997,236

CDG - - - - - -

Recast 9,380 11,326 9,380 12.27 3.11 115,137

NEOGEN - - - - - -

Grid - - - - - -

t

m

t

m

T

m

v

s

a

e

o

v

g

t

t

(

t

8

As expected, exact methods scaled better to large environments

han some voxel-based methods: while the LCT and the ECM re-

ained fast, the running times increased strongly for Recast and

he CDG in particular. NEOGEN was usually the fastest voxel-based

ethod, remaining on par with the ECM in most environments.

he BigCity environment challenged the limits of all voxel-based

ethods: only Recast could produce a result (when using a larger

oxel size), while all other programs crashed, even with coarser

ampling settings. Decreasing the voxel size caused Recast to crash

s well, most likely due to memory usage. Recast can subdivide the

nvironment into tiles to alleviate this, but we have excluded this

ption to simplify our comparison.

f
These differences in scalability are difficult to judge because

oxel-based methods include the reconstruction of E free in their al-

orithm. Combined with the results for coverage and connectivity,

his indicates that obtaining E free without voxels is an interesting

opic for future work. NEOGEN already does this to some extent

i.e. it does not use voxels for everything), which already appears

o make NEOGEN more scalable than the CDG or Recast.

. Conclusions

A navigation mesh enables path planning and crowd simulation

or walking characters in 2D and 3D environments. In this paper,

78 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Table 9

Results for the performance metrics in the 2D environments. The descriptions of all metrics can be found in Section 6 . Numbers in boldface

indicate the lowest metric value (among all methods) for a particular environment.

Environment Navigation mesh Performance

Construction time (ms) Memory usage (MB)

Average SD Average SD

Simple LCT 1.20 0.28 1.13 0.02

ECM 5.97 0.82 33.45 0.05

CDG 12,597.63 164.29 57.07 0.09

Recast 375.19 19.96 20.83 0.14

NEOGEN 7.80 1.08 67.97 0.18

Grid 94.49 10.13 27.02 0.08

Military LCT 1.10 0.15 1.14 0.02

ECM 7.85 1.12 33.46 0.12

CDG 28,310.23 654.68 64.63 0.17

Recast 7,796.13 36.15 92.37 0.15

NEOGEN 12.45 2.82 69.36 0.24

Grid 278.86 29.92 62.37 2.22

University LCT 8.93 0.88 1.35 0.11

ECM 35.35 3.61 36.84 0.06

CDG 15,160.81 160.35 50.49 0.14

Recast 614.44 15.37 24.92 0.22

NEOGEN 48.05 3.58 79.21 0.59

Grid 115.21 12.81 32.16 0.12

Zelda LCT 5.12 0.59 1.23 0.02

ECM 26.27 2.05 36.14 0.07

CDG 14,433.28 101.29 53.24 0.10

Recast 297.77 13.71 19.67 0.17

NEOGEN 29.75 1.55 74.98 0.30

Grid 94.37 7.32 29.04 0.05

Zelda2x2 LCT 23.23 2.16 2.03 0.03

ECM 112.19 9.12 46.32 0.11

CDG 18,477.72 155.17 55.99 0.20

Recast 1,521.38 33.44 74.46 0.49

NEOGEN 124.55 9.30 99.87 0.29

Grid 201.03 12.79 49.18 0.51

Zelda4x4 LCT 93.98 6.26 4.98 0.03

ECM 442.78 21.11 84.74 0.39

CDG 33,448.68 270.42 65.71 0.21

Recast 6,310.88 53.18 291.51 0.23

NEOGEN 516.55 15.83 197.73 0.12

Grid 947.03 13.08 121.54 3.01

City LCT 40.94 2.28 2.30 0.04

ECM 167.30 9.50 49.78 0.15

CDG 29,421.39 277.12 64.31 0.12

Recast 9,833.90 76.47 134.09 0.01

NEOGEN 180.90 13.33 104.41 0.18

Grid 2,419.58 112.02 191.66 12.81

Maze8 LCT 0.24 0.05 1.10 0.02

ECM 1.45 0.18 33.00 0.01

CDG 269.66 6.11 21.77 0.17

Recast 1.40 0.48 1.91 0.03

NEOGEN 1.60 0.73 67.53 0.22

Grid 63.91 6.40 19.84 0.06

Maze16 LCT 0.76 0.14 1.13 0.02

ECM 4.14 0.35 33.36 0.07

CDG 665.82 9.56 23.61 0.20

Recast 10.27 1.34 2.28 0.07

NEOGEN 5.05 0.92 68.16 0.19

Grid 63.50 3.69 21.07 0.56

Maze32 LCT 4.17 0.46 1.19 0.00

ECM 17.79 0.68 35.50 0.04

CDG 3,162.39 124.76 33.14 0.21

Recast 68.02 7.51 4.03 0.08

NEOGEN 21.95 1.43 75.13 0.39

Grid 66.49 3.47 23.79 0.04

(continued on next page)

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 79

Table 9 (continued)

Environment Navigation mesh Performance

Construction time (ms) Memory usage (MB)

Average SD Average SD

Maze64 LCT 14.53 1.76 1.79 0.02

ECM 71.13 4.00 44.15 0.19

CDG 23,876.64 168.19 55.87 0.21

Recast 273.41 14.18 9.66 0.30

NEOGEN 85.45 4.65 93.41 0.18

Grid 93.23 7.98 30.40 0.06

Maze128 LCT 57.57 4.03 4.22 0.04

ECM 309.60 11.58 77.14 0.34

CDG 61,867.47 349.41 67.76 0.20

Recast 1,115.27 32.11 33.67 0.54

NEOGEN 350.60 11.77 171.75 0.22

Grid 204.91 5.83 63.67 0.17

Table 10

Results for the performance metrics in the multi-layered environments. An empty row indicates that the navigation mesh could not be

computed for the corresponding algorithm and environment. Numbers in boldface indicate the lowest metric value (among all methods)

for a particular environment.

Environment Navigation mesh Performance

Construction time (ms) Memory usage (MB)

Average SD Average SD

as_oilrig ECM 58.14 1.74 40.56 0.17

CDG - - - -

Recast 11,549.74 38.86 178.34 0.33

NEOGEN - - - -

Grid 2,627.48 22.19 686.75 0.09

cs_assault ECM 16.04 0.43 36.90 0.20

CDG 11,762.23 120.80 51.30 0.20

Recast 2,650.00 23.16 63.54 0.01

NEOGEN 22.20 1.21 72.75 0.32

Grid 689.74 15.69 194.07 0.29

cs_siege ECM 56.34 0.95 41.60 0.19

CDG 8,533.73 108.86 45.21 0.16

Recast 3,200.50 22.28 105.15 0.01

NEOGEN 55.85 1.98 81.88 0.18

Grid 1,399.37 25.35 483.14 0.09

de_dust ECM 60.36 0.78 39.38 0.17

CDG 7,226.04 70.76 44.23 0.17

Recast 3,037.14 25.38 101.23 0.02

NEOGEN 46.00 2.45 79.81 0.31

Grid 583.62 11.13 174.64 0.08

de_dust2 ECM 65.72 0.92 38.11 0.10

CDG 10,121.20 118.74 50.90 0.22

Recast 2,265.68 27.08 67.13 0.01

NEOGEN 40.65 2.92 76.21 0.19

Grid 492.85 13.57 137.71 0.53

Jardin ECM 115.60 2.13 41.09 0.14

CDG 34,541.99 250.60 78.77 0.23

Recast 181.04 5.89 9.42 0.05

NEOGEN 486.75 9.60 107.22 0.28

Grid 370.58 6.66 75.33 2.19

Neogen1 ECM 162.66 6.25 49.52 0.11

CDG 41,102.63 239.13 89.02 0.21

Recast 816.09 16.65 14.10 0.00

NEOGEN 1,613.20 41.21 136.10 0.17

Grid 604.13 24.79 136.35 14.39

Neogen2 ECM 52.58 1.59 39.35 0.16

CDG 92,932.59 608.03 145.79 0.28

Recast 798.30 14.23 23.50 0.20

NEOGEN 183.35 7.44 87.09 0.24

Grid 361.75 9.71 58.12 5.02

(continued on next page)

80 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

Table 10 (continued)

Environment Navigation mesh Performance

Construction time (ms) Memory usage (MB)

Average SD Average SD

Neogen3 ECM 26.83 0.74 38.41 0.16

CDG 24,093.69 275.04 59.29 0.18

Recast 907.61 16.33 23.37 0.11

NEOGEN 59.85 3.48 76.08 0.43

Grid 481.46 10.69 86.99 1.32

Dungeon ECM 68.12 0.94 39.99 0.20

CDG 5,284.11 43.13 38.95 0.16

Recast 143.82 5.69 10.92 0.01

NEOGEN - - - -

Grid 428.65 10.88 71.02 0.87

NavTest ECM 39.67 0.58 37.87 0.17

CDG 15,004.41 135.66 56.44 0.24

Recast 367.19 23.71 16.56 0.04

NEOGEN 46.40 1.62 74.16 0.41

Grid 260.76 6.60 49.62 0.53

ParkingLot ECM 8.89 0.33 34.27 0.11

CDG 14,380.66 88.70 61.95 0.12

Recast 88.87 6.92 6.32 0.01

NEOGEN - - - -

Grid 119.22 2.16 25.21 0.06

Library ECM 15.04 0.46 35.95 0.14

CDG 20,841.33 110.17 67.26 0.11

Recast 163.97 5.52 10.27 0.17

NEOGEN 23.00 1.79 71.86 0.19

Grid 211.74 10.35 30.60 0.09

Tower ECM 143.20 7.35 75.30 0.46

CDG 242,254.50 4.50 106.59 145.06

Recast 1,281.85 26.13 33.29 0.00

NEOGEN - - - -

Grid 1,323.31 13.15 174.45 4.69

BigCity ECM 893.74 30.44 308.02 0.59

CDG - - - -

Recast 12,972.87 79.74 191.40 0.01

NEOGEN - - - -

Grid - - - -

9

e

l

d

3

b

t

l

s

p

c

9

a

t

s

t

p

i
we have performed a comparative study of multiple state-of-the-

art navigation meshes. We have proposed properties by which a

mesh and its construction algorithm can be classified, and metrics

that objectively measure the quality of a mesh in practice. We have

used these components to compare the Local Clearance Triangula-

tion, the Explicit Corridor Map, the Clearance Disk Graph, NEOGEN,

Recast Navigation, and a grid.

Although the study can be extended in various ways, our re-

sults already suggest interesting properties. Voxel-based methods

can yield compact navigation meshes and even good coverage, but

their algorithms does not seem to scale well to physically large en-

vironments. Furthermore, grids are usually not space-efficient rep-

resentations of E free , although they may be attractive for particu-

lar applications, and we have not yet explored the possibilities of

adaptive grid resolutions. Finally, exact methods often yield more

complex navigation meshes because they capture all details. These

methods could benefit from simplifications of E free .

The goal of this paper was not to find ‘the best’ navigation

mesh, but to develop a way of comparing them via theoretical

properties and quantitative metrics. We expect that our study will

set a standard for the evaluation and develop-ment of navigation

meshes, and that it can help users choose an appropriate naviga-

tion mesh for their applications.

9. Future work

Based on the findings of this paper, we identify several possible

directions for future work.
.1. Environment dataset

A limitation of our comparison lies in the current set of input

nvironments. We have focused on examples from previous pub-

ications and from an existing popular 3D game. Also, we have

eliberately only used ‘clean’ walkable environments and not raw

D geometry, to allow a fair comparison between exact and voxel-

ased methods.

We hope that our set of 2D and 3D input environments can be

he start of an open dataset for navigation-mesh research, simi-

arly to the ones that exist for local steering [37] and grid-based

earch [34,36] . Finding a set of environments that covers the com-

lete ‘problem space’ (i.e. that contains all types of features that

an occur in practice) is a challenging direction for future work.

.2. Variants of grids

As expected, our simple fixed-resolution grid turned out to be

n inefficient navigation mesh for many environments. This naviga-

ion mesh can be improved in various ways [52,53] so that its cell

ize adapts locally to the required level fo detail. This will make

he grid more suitable for large or detailed input. For a more com-

rehensive overview of all possible navigation meshes, it would be

nteresting to include such ‘advanced grids’ in a future comparison.

W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82 81

9

r

s

o

r

y

t

a

o

t

e

9

t

w

p

G

u

b

t

m

p

i

t

a

t

t

p

i

a

w

m

u

c

i

c

a

f

g

c

a

h

t

a

a

9

o

r

g

m

p

E

t

t

t

s

p

o

g

g

L

i

a

a

b

r

r

t

p

D

c

i

D

C

V

W

c

W

t

&

t

V

a

e

R

s

t

A

t

f

b

s

S

f

R

.3. Parameter settings

To simplify the comparison, we have chosen a single set of pa-

ameter settings for all methods. However, for navigation meshes

uch as Recast, (manual) parameter tuning is considered to be part

f the navigation-mesh construction process. For any given envi-

onment, it is likely that there are specific parameter settings that

ield better results. It would therefore be interesting to analyse fur-

her how parameter settings affect the output. For example, Oliva

nd Pelechano have discussed how the voxel size affects the results

f Recast and NEOGEN [10] . In future work, we could possibly use

he metrics from this paper to automatically find the best param-

ter settings for a specific environment.

.4. Path-related metrics

We would also like to investigate metrics that are more related

o paths than to the navigation meshes themselves. For instance, it

ould be useful to measure the efficiency of a navigation mesh for

ath planning: how much time does it take to compute paths in

, and how efficiently can these be converted to geometric routes

sing the regions of R ? We have currently excluded such metrics

ecause they are heavily implementation-dependent; each naviga-

ion mesh implementation can apply its own improvements that

ake a comparison difficult or unfair. A generic implementation of

ath planning for embedded graphs would be more objective, but

t would also miss the potential advantages of each specific naviga-

ion mesh. For now, we are confident that our complexity metrics

re good indicators of path planning efficiency.

To go even further, another option is to look at the quality of

he routes that are computed: how short are they, and how well do

hey correspond to real-life behavior? We have excluded this as-

ect because route quality is not necessarily a property of the nav-

gation mesh itself, but more of the (path planning and smoothing)

lgorithms applied to it. Ultimately, we would like to quantify how

ell a navigation mesh captures the navigation abilities of real hu-

ans. This is a challenging research question that is still largely

nanswered. We expect that not everything can be analyzed me-

hanically, and that user studies will also be required.

It is worth noting that there have recently been developments

n path-planning research that reduce the dependency on the spe-

ific navigation mesh that is used. For example, there are now any-

ngle path-planning algorithms that can compute shortest paths

rom arbitrary polygonal navigation meshes [57] . Using such al-

orithms, different navigation meshes can (in theory) be used to

ompute the exact same paths. Furthermore, there are hierarchical

lgorithms that speed up path-planning queries by exploiting the

ierarchy of any navigation mesh [58] . These developments suggest

hat path planning and navigation-mesh quality are turning more

nd more into disjoint topics that can (and should) be treated sep-

rately.

.5. 3D-Environment processing

Finally, an important topic for future work is the development

f robust and scalable algorithms that convert a ‘raw’ 3D envi-

onment to a ‘clean’ walkable environment. Our experiments sug-

est that voxel-based approaches are not scalable to large environ-

ents; however, they provide the advantage of simplifying the in-

ut environment, leading to possibly simpler navigation meshes.

xact filtering algorithms (that do not use voxels) should scale bet-

er, but they may be sensitive to small details or imperfections in

he input (such as gaps or overlap), and they may be more likely

o crash if the geometry contains difficult exceptional cases.

Since our conference publication in 2016 [5] , there has been

ome work on environment pre-processing using aspects of com-
utational geometry [17,19] and graph theory [39] . However, some

f the corresponding software relies on exact number types for

uaranteed robustness, which greatly affects its efficiency. Some

eometric algorithms, such as the construction algorithm of the

CT [14] , can be implemented with non-exact numbers by leverag-

ng robust geometric predicates [59] . Unfortunately, this does not

pply for the conversion of a 3DE to a WE because it is treated

 ‘pipeline’ of steps [17] , where the output of each step needs to

e exact to guarantee correctness. To make the conversion pipeline

obust and computationally efficient, future work should focus on

elaxing this number-type constraint. In the end, the best solu-

ion might be to combine various approaches, such as a filtering

ipeline where each step is based on rounded coordinates.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

eclaration of Competing Interest

None.

RediT authorship contribution statement

Wouter van Toll: Conceptualization, Methodology, Software,

alidation, Investigation, Data curation, Writing - original draft,

riting - review & editing, Visualization. Roy Triesscheijn: Con-

eptualization, Methodology, Software, Validation, Investigation,

riting - original draft, Visualization. Marcelo Kallmann: Concep-

ualization, Methodology, Validation, Resources, Writing - review

 editing. Ramon Oliva: Conceptualization, Methodology, Valida-

ion, Resources. Nuria Pelechano: Conceptualization, Methodology,

alidation, Writing - review & editing. Julien Pettré: Conceptu-

lization, Methodology, Validation, Resources, Writing - review &

diting, Supervision, Project administration, Funding acquisition.

oland Geraerts: Conceptualization, Methodology, Validation, Re-

ources, Writing - review & editing, Supervision, Project adminis-

ration, Funding acquisition.

cknowledgments

We thank all research groups involved in this study for sharing

heir source code and environments, and for joining us in help-

ul discussions. Furthermore, we thank Mihai Polak and Arne Hille-

rand for helping us with pre-processing 3D geometry using their

oftware.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cag.2020.0 6.00 6 .

eferences

[1] van Toll W , Jaklin N , Geraerts R . Towards believable crowds: A generic multi-
-level framework for agent navigation. ASCI.OPEN; 2015 .

[2] Lozano-Perez T . Spatial planning: a configuration space approach. IEEE Trans
Computing 1983;32(2):108–20 .

[3] Kavraki LE , Švestka P , Latombe J-C , Overmars MH . Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Trans Robot Au-

tom 1996;12(4):566–80 .
[4] LaValle SM . Planning algorithms. Cambridge University Press; 2006 .

[5] van Toll W , Triesscheijn R , Kallmann M , Oliva R , Pelechano N , Pettré J , et al. A

comparative study of navigation meshes. In: Proc. 9th ACM SIGGRAPH Int.
Conf. Motion in Games; 2016. p. 91–100 .

[6] Snook G . Simplified 3D movement and pathfinding using navigation meshes.
In: DeLoura M, editor. Game Programming Gems. Charles River Media; 20 0 0.

p. 288–304 .

https://doi.org/10.1016/j.cag.2020.06.006
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0006

82 W. van Toll, R. Triesscheijn and M. Kallmann et al. / Computers & Graphics 91 (2020) 52–82

[

[7] Tozour P . Building a near-optimal navigation mesh. In: Rabin S, editor. AI Game
Programming Wisdom. Charles River Media; 2002. p. 171–85 .

[8] Deusdado L , Fernandes AR , Belo O . Path planning for complex 3D multilevel
environments. In: Proc. 24th Spring Conf. Computer Graphics; 2008. p. 187–94 .

[9] Mononen M.. Recast Navigation. https://github.com/recastnavigation/
recastnavigation/ ; 2019.

[10] Oliva R , Pelechano N . NEOGEN: Near optimal generator of navigation meshes
for 3D multi-layered environments. Computers & Graphics 2013;37(5):403–12 .

[11] Pettré J , Laumond J-P , Thalmann D . A navigation graph for real-time crowd

animation on multilayered and uneven terrain. In: Proc. 1st Int. Workshop on
Crowd Simulation; 2005. p. 81–9 .

[12] Geraerts R . Planning short paths with clearance using Explicit Corridors. In:
Proc. IEEE Int. Conf. Robotics and Automation; 2010. p. 1997–2004 .

[13] Hale DH , Youngblood GM , Dixit PN . Automatically-generated convex region de-
composition for real-time spatial agent navigation in virtual worlds. In: Proc.

4th Artificial Intelligence and Interactive Digital Entertainment Conf.; 2008.

p. 173–8 .
[14] Kallmann M . Dynamic and robust Local Clearance Triangulations. ACM Trans

Graph 2014;33(5) .
[15] Oliva R , Pelechano N . Automatic generation of suboptimal navmeshes. In: Proc.

4th Int. Conf. Motion in Games; 2011. p. 328–39 .
[16] van Toll WG , Cook IV AF , Geraerts R . Navigation meshes for realistic multi-

-layered environments. In: Proc. 24th IEEE/RSJ Int. Conf. Intelligent Robots and

Systems; 2011. p. 3526–32 .
[17] Polak RM . Extracting walkable areas from 3D environments. Utrecht Univer-

sity; 2016. Master’s thesis .
[18] Oliva R . A framework for navigation of autonomous characters in complex vir-

tual environments. Universitat Politècnica de Catalunya; 2016 .
[19] Vermeulen JL , Hillebrand A , Geraerts R . Annotating traversable gaps in walk-

able environments. In: Proc. IEEE Int. Conf. Robotics and Automation; 2018.

p. 3045–52 .
[20] Hale DH , Youngblood GM . Full 3D spacial decomposition for the generation of

navigation meshes. In: Proc. 5th Artificial Intelligence and Interactive Digital
Entertainment Conf.; 2009. p. 143–7 .

[21] Lamarche F . TopoPlan: a topological path planner for real time hu-
man navigation under floor and ceiling constraints. Comput Graph Forum

2009;28(2):649–58 .

[22] Ricks BC , Egbert PK . A whole surface approach to crowd simulation on arbi-
trary topologies. IEEE Trans Vis Comput Graphics 2014;20:159–71 .

[23] Berseth G , Kapadia M , Faloutsos P . ACCLMesh: Curvature-based navigation
mesh generation. In: Proc. 8th ACM SIGGRAPH Conf. Motion in Games; 2015.

p. 97–102 .
[24] Lopez T , Lamarche F , Li T-Y . Space-time planning in changing environ-

ments: using dynamic objects for accessibility. Comput Animat Virtual Worlds

2012;23:87–99 .
[25] Budde S . Automatic generation of jump links in arbitrary 3D environments for

navigation meshes. Humboldt-Universität zu Berlin; 2013. Master’s thesis .
[26] Kapadia M , Xianghao X , Nitti M , Kallmann M , Coros S , Sumner R . PRECISION:

Precomputing environment semantics for contact-rich character animation. In:
Proc. 20th ACM SIGGRAPH Symp. Interactive 3D Graphics and Games; 2016.

p. 29–37 .
[27] Jaklin NS , Cook IV AF , Geraerts R . Real-time path planning in heterogeneous

environments. Comput Animat Virtual Worlds 2013;24(3):285–95 .

[28] Jaklin NS , Tibboel M , Geraerts R . Computing high-quality paths in weighted
regions. In: Proc. 7th Int. Conf. Motion in Games; 2014. p. 77–86 .

[29] Ali S , Nishino K , Manocha D , Shah M . Modeling, simulation and visual analysis
of crowds: a multidisciplinary perspective. Springer; 2013 .

[30] Kapadia M , Pelechano N , Allbeck J , Badler NI . Virtual crowds: steps toward be-
havioral realism. Morgan & Claypool Publishers; 2015 .

[31] Pelechano N , Allbeck JM , Kapadia M , Badler NI . Simulating heterogeneous

crowds with interactive behaviors. CRC Press; 2016 .
[32] Thalmann D , Musse SR . Crowd simulation. 2. Springer; 2013 .
[33] Curtis S , Best A , Manocha D . Menge: a modular framework for simulating
crowd movement. Collective Dynamics 2016;1(A1):1–40 .

[34] Sturtevant N. Benchmarks for grid-based pathfinding. Trans Computational In-
telligence and AI in Games 2012;4(2):144–8 . http://web.cs.du.edu/ ∼sturtevant/

papers/benchmarks.pdf
[35] Hart PE , Nilsson NJ , Raphael B . A formal basis for the heuristic determina-

tion of minimum cost paths. IEEE Trans Systems Science and Cybernetics
1968;4(2):100–7 .

[36] Brewer D , Sturtevant NR . Benchmarks for pathfinding in 3D voxel space. In:

Proc. Symposium on Combinatorial Search; 2018 .
[37] Singh S , Kapadia M , Faloutsos P , Reinman G . An open framework for develop-

ing, evaluating, and sharing steering algorithms. In: Proc. 2nd Int. Workshop
on Motion in Games; 2009. p. 158–69 .

[38] Reitsma PSA , Pollard NS . Evaluating motion graphs for character animation.
ACM Trans Graph 2007;26(4) . 18es

[39] Hillebrand A , van den Akker JM , Geraerts R , Hoogeveen JA . Performing mul-

ticut on walkable environments. In: Proc. 10th Int. Conf. Combinatorial Opti-
mization and Applications; 2016. p. 311–25 .

[40] Hillebrand A , van den Akker JM , Geraerts R , Hoogeveen JA . Separating a walk-
able environment into layers. In: Proc. 9th ACM SIGGRAPH Int. Conf. Motion

in Games; 2016. p. 101–6 .
[41] van Toll W , Cook IV AF , van Kreveld MJ , Geraerts R . The medial axis of a mul-

ti-layered environment and its application as a navigation mesh. ACM Trans

Spatial Algorithms and Systems 2018;4(1) 2:1-2:34 .
[42] Unity3D Game Engine. http://www.unity3d.com/ ; 2016.

[43] Oliva R , Pelechano N . A generalized exact arbitrary clearance technique for
navigation meshes. In: Proc. 6th Int. Conf. Motion in Games; 2013. p. 103–10 .

44] García FM , Kapadia M , Badler NM . GPU-based dynamic search on adaptive
resolution grids. In: Proc. IEEE Int. Conf. Robotics and Automation; 2014.

p. 1631–8 .

[45] Harabor D , Grastien A . Online graph pruning for pathfinding on grid maps. In:
Proc. 52th AAAI Conf. Artificial Intelligence; 2011. p. 1114–19 .

[46] Lee W , Lawrence R . Fast grid-based path finding for video games. In: Advances
in Artificial Intelligence. In: Lecture Notes in Computer Science, 7884. Springer;

2013. p. 100–11 .
[47] Sturtevant N , Rabin S . Canonical orderings on grids. In: Proc. Int. Joint Conf.

Artificial Intelligence; 2016. p. 683–9 .

[48] Botea A , Müller M , Schaeffer J . Near optimal hierarchical path-finding. Journal
of Game Development 2004;1:7–28 .

[49] Koenig S , Likhachev M . D ∗ Lite. In: Proc. AAAI Conf. of Artificial Intelligence;
2002. p. 476–83 .

[50] Koenig S , Likhachev M , Furcy D . Lifelong Planning A ∗ . Artif Intell
2004;155(1–2):93–146 .

[51] Likhachev M , Ferguson D , Gordon G , Stentz A , Thrun S . Anytime Dynamic A ∗:

An anytime, replanning algorithm. In: Proc. Int. Conf. Automated Planning and
Scheduling; 2005. p. 262–71 .

[52] Finkel RA , Bentley JL . Quad trees: a data structure for retrieval on composite
keys. Acta Informatica 1974;4:1–9 .

[53] Sturtevant N . A sparse grid representation for dynamic three-dimensional
worlds. In: Proc. AAAI Conf. Artificial Intelligence and Interactive Digital En-

tertainment; 2011 .
[54] Boost. The Boost C++ library. http://www.boost.org/ ; 2019.

[55] Valve Software. Counter-Strike 1.6. https://www.valvesoftware.com/ ; 2003.

[56] cs-bg. Fan-made Counter-Strike 1.6 map repository. http://maps.cs-bg.info/
maps/cs/ ; accessed in 2017.

[57] Cui ML , Harabor DH , Grastien A . Compromise-free pathfinding on a navigation
mesh. In: Proc. 26th Int. Joint Conf. Artificial Intelligence; 2017. p. 496–502 .

[58] Rahmani V , Pelechano N . Multi-agent parallel hierarchical path finding in nav-
igation meshes (MA-HNA ∗). Computers & Graphics 2020;86:1–14 .

[59] Shewchuk JR . Robust adaptive floating-point geometric predicates. In: Proc.

12th Symp. Computational Geometry; 1996. p. 141–50 .

http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0008
https://github.com/recastnavigation/recastnavigation/
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0016
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0017
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0018
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0020
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0022
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0023
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0024
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0025
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0027
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0028
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0030
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0031
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0032
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0032
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0034
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0034
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0034
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0034
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0036
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0037
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0038
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0039
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0040
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0040
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0040
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0040
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0040
http://www.unity3d.com/
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0041
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0041
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0041
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0042
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0042
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0042
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0042
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0043
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0043
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0043
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0044
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0044
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0044
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0045
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0045
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0045
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0046
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0046
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0046
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0046
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0047
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0047
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0047
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0048
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0048
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0048
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0048
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0049
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0049
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0049
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0049
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0049
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0049
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0050
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0050
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0050
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0051
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0051
http://www.boost.org/
https://www.valvesoftware.com/
http://maps.cs-bg.info/maps/cs/
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0052
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0052
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0052
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0052
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0053
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0053
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0053
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0054
http://refhub.elsevier.com/S0097-8493(20)30095-9/sbref0054

	Comparing navigation meshes: Theoretical analysis and practical metrics
	1 Introduction
	2 Related work
	2.1 Navigation meshes
	2.2 Comparative studies

	3 Definitions
	3.1 2D environment
	3.2 3D environment
	3.3 Walkable environment
	3.4 Multi-layered environment
	3.5 Navigation mesh
	3.6 Summary

	4 Properties of navigation meshes
	5 Theoretical comparison
	5.1 Local Clearance Triangulation
	5.2 Explicit Corridor Map
	5.3 Clearance Disk Graph
	5.4 Recast
	5.5 NEOGEN
	5.6 Grid
	5.7 Comparison

	6 Quality metrics for navigation meshes
	6.1 Coverage
	6.1.1 Mapping the navigation mesh onto the free space
	6.1.2 Computing the projected area
	6.1.3 Coverage metrics

	6.2 Connectivity
	6.3 Complexity
	6.4 Performance
	6.5 Summary

	7 Experimental comparison
	7.1 Implementation
	7.2 Parameter settings
	7.3 Environments
	7.4 Discussion of results
	7.4.1 Coverage (Tables 3 and 4).
	7.4.2 Connectivity (Tables 5 and 6).
	7.4.3 Complexity (Tables 7 and 8).
	7.4.4 Performance (Tables 9 and 10).

	8 Conclusions
	9 Future work
	9.1 Environment dataset
	9.2 Variants of grids
	9.3 Parameter settings
	9.4 Path-related metrics
	9.5 3D-Environment processing

	Declaration of Competing Interest
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	References

