Realistic Crowd Simulation with Density-Based Path Planning

If all characters in a virtual crowd follow the shortest path, traffic jams will occur in popular regions.

Other regions will remain unused. To solve this, we store **crowd density information** in a navigation mesh to guide a **density-based path planning algorithm**. In our framework, characters are willing to take detours through less crowded regions. Combined with replanning, this leads to an efficient and realistic crowd flow.

Method

The Explicit
Corridor Map
navigation mesh
subdivides an
environment into
non-overlapping
walkable regions.

Environment

Explicit Corridor Map

As a crowd moves through the environment, we keep track of the crowd density in each region.

Observed in real life:
When the density is high,
people walk more slowly.

Characters can compute their expected walking speed in a region, and thus the expected delay.

Look for a **fast path**: a short path with little expected delay due to density-based slowdowns.

Crowd density: the fraction of a region that is currently occupied by moving characters.

We use A* search with time-based costs.

The sensitivity to delay is intuitive to control:

 $cost(edge) = time_{min}(edge) + w \cdot delay(edge)$

As densities change over time, characters must re-evaluate their paths regularly.

In the real world, people are only aware of the density in their local neighborhood.

Our characters can only "see" density information within a viewing distance. For other areas, they assume that there will be no delay.

When replanning a path, a character can re-use invisible parts of its previous path, without loss of optimality.

Results

With multi-threading techniques, we can simulate **tens of thousands** of walking and replanning characters in real-time.

Partial replanning can reduce the planning time, allowing more replanning without losing real-time performance.

More information

Wouter G. van Toll Atlas F. Cook IV Roland Geraerts

To learn more about our crowd simulation framework, visit http://people.cs.uu.nl/roland/

