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Abstract— Modern simulations feature crowds of AI-
controlled agents moving through dynamic environments, with
obstacles appearing or disappearing at run-time. A dynamic
navigation mesh can represent the traversable space of such en-
vironments. The A* algorithm computes optimal paths through
the dual graph of this mesh. When an obstacle is inserted
or deleted, the mesh changes and agents should re-plan their
paths. Many existing re-planning algorithms are too memory-
intensive for crowds, or they cannot easily be used on graphs
where vertices and edges are added or removed.

In this paper, we present Dynamically Pruned A* (DPA*), an
extension of A* for re-planning optimal paths in dynamic navi-
gation meshes. DPA* has similarities to adaptive algorithms that
make the A* heuristic more informed based on previous queries.
However, DPA* prunes the search using only the previous path
and its relation to the dynamic event. We describe the four re-
planning scenarios that can occur; DPA* uses different rules
in each scenario. Our algorithm is memory-friendly and robust
against structural changes in the graph, which makes it suitable
for crowds in dynamic navigation meshes. Experiments show
that DPA* performs particularly well in complex environments
and when the dynamic event is visible to the agent. We integrate
the algorithm into crowd simulation software to model large
crowds in dynamic environments in real-time.

I. INTRODUCTION

In modern simulations, crowds of virtual characters (or
agents) must plan and traverse paths through complicated
environments in real-time. Agents should move smoothly and
avoid collisions with obstacles and other agents. A common
approach is to let a navigation mesh represent the areas in
which the agents can move. The dual graph of this mesh has
a vertex for each mesh polygon and an edge for each pair
of adjacent polygons. Agents use the A* search algorithm
[1] on this graph to find global routes, which they traverse
while locally avoiding other agents.

In dynamic environments, obstacles can appear, disappear,
or move during the simulation. When the effect is sufficiently
large, a local collision avoidance method may not be able to
guide agents towards their goals: an agent may get stuck
along its old route, instead of looking for a detour. For
example, imagine a bridge collapsing, an explosion opening
up a new route, or a large vehicle blocking an alley.

When such a dynamic event occurs, the navigation mesh
should be updated and agents should re-plan their global
paths. Efficient re-planning algorithms exist for graphs with
dynamic costs and for high-dimensional motion planning
problems. However, many of these algorithms require too
much memory for crowds (because agents need to remember
parts of the previous search), or they are difficult to imple-
ment for graphs in which vertices and edges (dis)appear.

In this paper, we present Dynamically Pruned A* (DPA*),
an extension of A* that efficiently re-plans an optimal global
path when an obstacle has been inserted or removed. DPA*
prunes the search based only on the agent’s previous path
and its relation to the event, which can always be described
using one of four scenarios. Conceptually, DPA* is closest to
adaptive A* techniques [2] which improve the A* heuristics
based on memory of the previous search. However, DPA*
prunes the search based only the previous path and the re-
planning scenario; hence, it is tailored for applications with
limited memory per agent. We show that DPA* outperforms
A* in large graphs, especially when the dynamic event is
visible to the agent. DPA* can be used for large real-time
crowds in dynamic environments.

II. RELATED WORK AND PRELIMINARIES

A. Crowd Simulation in Static Environments

In many crowd simulation systems, an agent finds a global
route through the environment by performing an A* search
on a grid or (more generally) a graph. Graphs are commonly
used for high-dimensional motion planning [3], [4] where
paths are often smoothed afterwards. They are less suitable
for crowds on walkable surfaces: agents would need to
either follow the edges exactly (which may lead to collisions
between agents) or perform expensive geometric tests to
check how they can deviate from an edge. Grids subdivide
the environment into regular cells. They are intuitive and easy
to implement [5]. However, grids have resolution problems:
a coarse grid does not capture the environment’s details,
whereas a fine grid is expensive to store and query.

By contrast, navigation meshes efficiently subdivide the
walkable space into polygonal regions. Using a mesh, an
agent finds a sequence of regions to move through, and it can
use the surrounding free space to locally adjust its movement.
Many navigation meshes exist for 2D environments [6]–[8]
and for multi-layered 3D environments [9]–[12].

Global planning on a navigation mesh leads to an in-
dicative route that the agent can traverse smoothly in real-
time [13] while locally avoiding other agents [14]–[18].
Hence, the agents themselves are typically not modelled as
navigation mesh obstacles. Local avoidance is outside the
scope of this paper, but it is worth noting that local avoidance
is not sufficient when the global path needs to change.

B. A* search

The A* algorithm [1] finds a path through a graph from
a start vertex S to a goal vertex G by performing best-first



search. Starting at S, A* iteratively expands the vertex V for
which the sum g(V )+h(V ) is lowest. Here, g(V ) is the cost
of the best discovered path from S to V so far, and h(V ) is
a heuristic that estimates the cost of the optimal path from
V to G. The vertices to explore are stored in an open list,
sorted by their values of g+h. Vertices that have already been
expanded can be stored in a closed list. If h is admissible
(i.e. it never overestimates the optimal path cost), then A*
computes an optimal path. If h is also consistent (i.e. the
decrease in h is never larger than the increase in g), then the
vertices in the closed list never need to be revisited. Costs
and heuristics are often distance-based, but not necessarily.

Since our DPA* algorithm prunes the standard A* search
without changing any costs or heuristics, it does not affect
admissibility or consistency. When an admissible heuristic is
used, DPA* computes optimal paths.

C. Dynamic Environments

When a large or complex obstacle appears or disappears
dynamically, local collision avoidance is often not sufficient
to let an agent reach its goal. Instead, the environment
representation should be updated, and agents should re-plan
their global paths (e.g. to find a detour).

In theory, a time dimension can be added to represent
changes in the environment [4], but this is impractical for
large crowds in real-time. Early approaches for crowds
in dynamic environments were based on adaptive graphs
[19], [20]. Modern navigation meshes allow efficient on-line
insertions and deletions of obstacles [21], [22].

D. Re-planning Algorithms

To efficiently re-plan optimal paths after a dynamic event,
incremental variants of A* deal with changing costs by re-
membering information from the previous query. Algorithms
such as D* Lite and Fringe-Saving A* remember the g and h
values of each graph vertex and update the values that change
due to the event [23]–[26]. These are related to anytime
algorithms that iteratively improve a sub-optimal path [27]–
[29]. However, remembering the A* search space of each
agent is not feasible for large crowds. Also, re-planning in a
dynamic navigation mesh is more complex than in a graph in
which the costs change but the structure does not. A dynamic
event may cause parts of the dual graph to (dis)appear;
we cannot simply apply different costs to graph edges that
already existed. Handling these effects in a memory-based
algorithm is possible in theory, but difficult and costly in
practice. For these reasons, DPA* does not require memory
of the previous search other than the path itself.

Another approach is to use experience graphs [30], in
which only an abstract higher-level graph is remembered.
This is particularly useful for high-dimensional motion plan-
ning problems; it is less applicable to our problem, since
navigation meshes are already compact.

E. Re-planning: Adaptive A*

The Adaptive A* algorithm and its successors are closest
to our work: they make the h values of vertices more

informed by using the previous query, in such a way that h
remains consistent [2], [31]–[33]. Under certain conditions,
the algorithms can immediately stop when a vertex of the
old path is expanded. These algorithms require less memory
of the previous search than e.g. D* Lite, and they are more
suitable for dynamic navigation meshes.

By contrast, DPA* does not make h more informed;
instead, it uses the estimated ‘distance’ to the dynamic event
to find out if vertices can be skipped. Hence, it prunes
the A* search without changing any costs or heuristics.
Our algorithm does not terminate until the goal vertex is
expanded, which might be seen as a disadvantage compared
to adaptive A*. However, in exchange, DPA* uses even
less memory: agents only need to remember their paths.
Furthermore, DPA* uses a distinction between four scenarios
to optimize the search based on the situation at hand.

In short, DPA* investigates how some parts of the A*
search can be skipped after a dynamic event, without requir-
ing any extra data structures between and during queries.
Conceptually, the method lies between regular A* and adap-
tive re-planning algorithms. DPA* is highly effective for real-
time crowd simulation in dynamic environments.

III. PROBLEM DESCRIPTION

A. Navigation Mesh and Graph

In this work, we assume that the agents use a graph for
global planning. A 2D environment should have a planar
graph describing the walkable space. A multi-layered en-
vironment should have multiple planar graphs (one for each
layer) that are connected accordingly. For a navigation mesh,
we can easily obtain a dual graph by assigning a vertex to
each mesh region, and connecting the vertices of adjacent
regions. Any path through this graph can be converted to a
short and smooth path using the underlying mesh regions.

We also ensure that agents always plan paths between two
vertices of the graph. This can be achieved by connecting
the start and goal positions to nearby vertices. To allow this,
the mesh should have a point location data structure that
computes the region in which a query point is located.

B. Dynamic Events

In a dynamic environment, obstacles can be inserted,
deleted, or moved during the simulation. We focus on in-
sertions and deletions. Moving obstacles can be represented
by sequential deletions and insertions; also, they are often
treated as locally avoidable entities until they become sta-
tionary. Such a dynamic event leads to an update of the
navigation mesh: regions can be added, removed, split, or
merged. Consequently, the structure of the dual graph also
changes. As mentioned, this means that we cannot easily use
re-planning algorithms designed for graphs in which only the
costs are dynamic and the topology is static.

Intuitively, when an obstacle is inserted, the area around it
becomes more costly (or even impossible) to traverse; when
an obstacle is removed, its neighborhood becomes easier
to traverse. Let the affected region R be the part of the
graph that has changed, i.e. the set of vertices and edges



that have appeared or disappeared. DPA* will treat R as an
area in which the costs have increased (due to an insertion)
or decreased (due to a deletion), regardless of what this area
looked like before the event. We do not refer to individual
edge costs in R, but to the overall cost of passing through
this area. Note that R is computed during the mesh update;
we do not need to find it afterwards. Also, R can have any
shape; it may even consist of multiple disconnected regions.

C. Re-planning Scenarios

A dynamic event can change the optimal path for an agent
in a number of ways. This section describes which scenarios
can occur; DPA* will use different rules for each scenario.

Let S and G be the start and goal vertex of an agent.
Initially, the agent uses A* to find an optimal path in the
graph, which we call [SG]−. The superscript − refers to old
paths, computed before a dynamic event. Assume that an
event occurs later in the simulation, and the agent decides
to re-plan when it has traversed the path up to a vertex T ,
e.g. because it can now see the event. The agent should re-
evaluate its path from T to G, i.e. [TG]−. We assume that the
affected region R (the set of vertices and edges with updated
costs) was already computed during the mesh update.

There are now two options: [TG]− either does or does not
run throughR. If [TG]− does not run throughR (Figure 1a),
then the path is still valid, but it may not be optimal anymore.
If [TG]− does run through R (Figure 1b), then it can enter
and exit R multiple times, because R and the old path can
be arbitrarily shaped. In the latter case, let A and B be the
first and last vertex in R that occur in [TG]−. We split the
path into three sections: two valid subsections [TA]− and
[BG]−, and one invalid subsection [AB]−. Note that A and
T can be the same vertex, as well as B and G; hence, the
valid subsections can be empty.

Furthermore, the event can be either an insertion or a
deletion of an obstacle. This leads to four possible scenarios.
We will now define DPA* for each scenario.
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[TG]−

(a) Unaffected path
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[TA]− [BG]−

T

R

(b) Affected path

Fig. 1: Re-planning scenarios after a dynamic event. An
agent is following a path from S to G, and decides to re-plan
at a vertex T . The inserted or deleted obstacle is shown as a
gray rectangle, surrounded by the affected graph region R.
(a) If the old path [TG]− does not run through R, then it is
still valid, but possibly not optimal. (b) Otherwise, we define
A and B as the first and last path vertex intersecting R. The
information in [TA]− and [BG]− is reused by DPA*.

IV. DYNAMICALLY PRUNED A*
In all scenarios, a straightforward way to compute a new

optimal path [TG]+ is to perform A* from scratch. The
superscript + refers to new paths, i.e. paths computed after
the dynamic event. We now present Dynamically Pruned
A* (DPA*), which adds pruning rules to the standard A*
algorithm, by reusing information from the old path.

DPA* has different details in each re-planning scenario.
It can be applied to all graphs with non-negative edge costs,
including the dual graphs of navigation meshes. In contrast to
many other re-planning algorithms, we do not require extra
memory of the search space throughout the simulation; all
information can be computed on the fly.

Scenario 1: Insertion, old path unaffected. If an obstacle
has been inserted and [TG]− does not run through R, then
[TG]− is still optimal. Because the graph costs have not
changed outside of R, the old path [TG]− is still optimal
among all possible paths that do not involve R. Within R,
the costs have only increased, so any new path through R
will be at least as expensive as [TG]−. Hence, the agent does
not need to re-plan, and DPA* simply returns [TG]−.

Scenario 2: Insertion, old path affected. If an obstacle has
been inserted and [TG]− does run through R, then the agent
may need to take a long detour around R. In many cases,
though, parts of [TG]− can be reused.

In Figure 1b, we observe that for any vertex C ∈ [BG]−

(ignoring G itself), the optimal path from C to G will still
be [CG]−; it cannot have changed due to the increased costs
in R. We do not know in advance when the search will
explore such a vertex C, but when it does, we know what
the rest of the path via C should look like. In particular, we
know that G is optimally reached from C via the successor
of C in [BG]−. When DPA* expands C, it adds only
this successor to the open list, and not the other adjacent
vertices. This prevents the algorithm from re-exploring some
unnecessary branches. We emphasize that the search does
not yet terminate at C, unlike in variants of Adaptive A*
[2]. At this point, we have found an optimal path via C, but
there may be an even better path that meets [BG]− at a later
vertex. Thus, the search continues, but we ignore all paths
via C that will definitely not be better.

Likewise, for each vertex D ∈ [TA]−, we know that
[TD]− will remain the optimal path from T to D. Specifi-
cally, D can optimally be reached from T via the predecessor
of D in [TA]−. Thus, when DPA* expands a vertex V with
an adjacent vertex D ∈ [TA]−, it only adds D to the open
list if V is the predecessor of D. This prevents unnecessary
updates of the open list. When using inconsistent heuristics,
it also prevents D from being expanded when we know it
will have a better parent vertex later on.

Algorithm 1 gives the pseudocode of DPA* for Scenarios
1 and 2 combined. For simplicity, the pseudocode does not
include a ‘closed list’ of expanded vertices. When using
admissible heuristics, a closed list can be added in the same
way as in standard A* to further speed up the algorithm.



Algorithm 1 DPA*-INSERTION(T,G, [SG]−,R)

1: if [TG]− does not pass through R
2: return [TG]−

3: Determine [TA]− and [BG]−

4: g(T )← 0, T.parent← NULL
5: OPEN← {T}
6: while OPEN 6= ∅
7: V ← argminV ′∈OPEN{g(V

′) + h(V ′)}
8: Remove V from OPEN
9: if V = G

10: return the path from T to G via parent pointers
11: for each outgoing edge (V, V ′)
12: if V ∈ [BG]− and V ′ 6= succ(V, [BG]−)
13: continue
14: if V ′ ∈ [TA]− and V 6= pred(V ′, [TA]−)
15: continue
16: if g(V ) + c(V, V ′) < g(V ′)
17: g(V ′)← g(V ) + c(V, V ′)
18: V ′.parent← V
19: Insert or update V ′ in OPEN
20: return NULL

Scenario 3: Deletion, old path unaffected. If an obstacle
has been deleted and [TG]− does not run through R, then
[TG]− may contain a detour around an area that has now
become more attractive. In general, a new optimal path may
enter and exit R multiple times; we cannot know in advance
when this will happen. However, R is the only region in
which the costs have decreased. Thus, if there is a better
path than [TG]−, it must pass through R at least once.

For this scenario, DPA* recognizes vertices for which a
better path via R cannot exist. Let c∗(V,R) be the (currently
unknown) optimal path cost from a vertex V to any vertex in
R. Let h(V,R) be a heuristic that does not overestimate this
cost. For example, when using distance-based costs, h(V,R)
could be the Euclidean distance from V to a bounding
polygon of R. Note that h(V,R) = 0 if V ∈ R.

When expanding a vertex V , the costs for reaching the
goal from V via R will be at least h′(V ) = h(V,R) +
h(G,R). The cost of an optimal path that (re-)visits R after
V will be at least g(V )+h′(V ). If this value is greater than or
equal to the cost of [TG]−, then there is no point in visiting
R from V , and we say that V is R-worse. (Intuitively, if
distance-based costs are used, we could say that ‘R is too
far away’.) Note that all vertices explored from an R-worse
vertex will also be R-worse themselves.

When DPA* arrives at a vertex V that is R-worse, there
are two cases in which the search can be pruned:

• If V ∈ [TG]−, then the old subpath [V G]− is still
optimal, because all paths via R are too costly. The
best option is to follow the old path, so DPA* adds only
the successor of V to the open list. It does not matter
whether [TV ]+ has already visited R. (See Figure 2a.)
Again, as in Scenario 2, note that the search does not
terminate yet, because there could still be better paths
that meet [TG]− at a later vertex.

• If V /∈ [TG]− and [TV ]+ has not passed through R
yet, then there is no better path via V at all. After all,
R must be visited at least once, and it is impossible to

reach R from V and still obtain an optimal path. Hence,
DPA* does not expand V any further. (See Figure 2b.)

This way, the open list contains only the vertices of [TG]−,
plus the vertices for which a better path through R might
exist. As such, DPA* is still guaranteed to find an optimal
path to G, either via the old path or via R.

T

R h(R, G) G

−

V

h(R, V )

[TV ]+

(a) Vertex on the old path

R h(R, G) G

−
h(R, V )

[TV ]+ VT

(b) Vertex not on the old path

Fig. 2: Re-planning due to a deletion. DPA* has arrived at a
vertex V for which a better path via R cannot exist, using
an estimate of the distance to R (dotted segments). (a) If
V ∈ [TG]−, then the best path to the goal is still [V G]−.
DPA* adds only V ’s successor (black circle) to the open list.
(b) If V /∈ [TG]− and the new path [TV ]+ has not visited
R yet, then there is no need to expand V .

Scenario 4: Deletion, old path affected. If an obstacle is
deleted and [TG]− does run through R, then [TG]− passes
through affected navigation mesh regions. The geometric
path is still obstacle-free, but it can possibly be improved.
DPA* solves this similarly to Scenario 3: the new path should
pass through R at least once and it cannot have a higher cost
than [TG]−. The difference is that only the subpath [BG]−

still exists and may be re-used. Hence, instead of checking
whether V ∈ [TG]−, we now check whether V ∈ [BG]−.

Algorithm 2 gives the pseudocode of DPA* for Scenarios
3 and 4 combined. To improve efficiency, we have added case
distinction when checking which edges of V to explore (i.e.
all neighbours, only its successor, or none). This postpones
the check for R-worseness until it can actually lead to
pruning. Again, we omit the closed list for convenience.

V. EXPERIMENTS AND RESULTS

We have implemented DPA* for the dynamic Explicit
Corridor Map (ECM) navigation mesh [7], [10]. The ECM
is the medial axis [34] of the free space annotated with
nearest-obstacle information. Path planning is performed on
this medial axis, which is a sparse graph with O(n) vertices
and edges, where n is the number of obstacle vertices. It
supports on-line insertions and deletions of convex polygonal
obstacles [22], which affect the ECM only locally.

We use Euclidean distance-based costs and heuristics. For
deletions, we estimate the cost to R by the distance to
the axis-aligned bounding box of all affected vertices. We
include a closed list in both DPA* and regular A*, which is
safe because the heuristics are admissible.

The software was written in C++ in Visual Studio 2013,
and run on a Windows 7 PC with a 3.20 GHz Intel i7-3930K



Algorithm 2 DPA*-DELETION(T,G, [SG]−,R)

1: if [SG]− passes through R
2: Determine [TA]− and [BG]−

3: else
4: [BG]− ← [TG]−

5: g(T )← 0, T.parent← NULL
6: T.visitedR← false, T.rworse← false
7: OPEN← {T}
8: while OPEN 6= ∅
9: V ← argminV ′∈OPEN{g(V

′) + h(V ′)}
10: Remove V from OPEN
11: if V = G
12: return the path from T to G via parent pointers

{Determine how to expand V }
13: V.visitedR← V.parent.visitedR or V ∈ R
14: V.rworse← V.parent.rworse
15: if V /∈ [BG]− and V.visitedR
16: checkAll← true
17: else
18: V.rworse← V.rworse or g(V )+h(V,R)+h(G,R) >

cost([TG]−)
19: if not V.rworse
20: checkAll← true
21: else if V ∈ [BG]−

22: checkAll← false
23: else
24: continue
25: for each outgoing edge (V, V ′)
26: if not checkAll and V ′ 6= succ(V, [BG]−)
27: continue
28: if g(V ) + c(V, V ′) < g(V ′)
29: g(V ′)← g(V ) + c(V, V ′)
30: π(V ′)← V
31: Insert or update V ′ in OPEN
32: return NULL

CPU, an NVIDIA GeForce GTX 680 GPU, and 16 GB of
RAM. Only one CPU core was used in Section V-A.

A. DPA* versus A*

We compared the running times of DPA* and A* in the
environments shown in Figure 3. Details of the environments
and their ECM navigation meshes can be found in Table I.
In particular, note that the environments are not grid maps.

In each environment, we defined a number of dynamic
obstacles (squares of 2 × 2 m). For each such obstacle O,
we performed the following steps:

1) Create 500 pairs of random positions (s, g) that do not
intersect the environment or O.

2) For each position pair (s, g), compute a shortest path
from s to g in the ECM, using an agent radius of 0.7
m (a size that fits through all passages).

3) Insert O into the ECM dynamically. For each position
pair, recompute the path using both DPA* and A*.

4) Delete O dynamically. For each position pair, recom-
pute the path using DPA*. (We can skip regular A*: it
would give the same result as in Step 2.)

We always performed all steps for one obstacle before
moving on to the next obstacle; hence, the environments
contained at most one dynamic obstacle at a time. The
average running time of all dynamic insertions in the ECM

was 0.34 ms (σ=0.16); the average time for deletions was
1.79 ms (σ=0.89). Table I summarizes the performance of
DPA* compared to A* for each re-planning scenario, except
‘insertion + path unaffected’ for which DPA* immediately
terminates. We computed the improvement as (A −D)/A ·
100%, where A is the sum of all A* times and D is the sum
of all DPA* times, over all trials that fit in one scenario. This
is a good indication of the time that can be gained by using
DPA* instead of A* on a crowd with random characters.

DPA* performs fewer operations on the A* open list in
exchange for overhead, e.g. for finding the affected part of
a path, and for estimating the distance to R. In the Military
environment, the ECM graph was too small for this to be
benificial, and regular A* was typically slightly faster. In
other environments, the improvement remains small except
in the ‘deletion + path unaffected’ scenario, which yielded
a 62% improvement in Zelda4x4. Hence, DPA* is good at
checking whether an unaffected path is still optimal after a
deletion. We also observed that the algorithm is particularly
fast when the deletion is farther away from the path.

We repeated this experiment with the extra constraint that
all start positions lie in the visibility polygon [35] of the
dynamic obstacle’s center of mass. This simulates the effect
that agents re-plan when they see the event. This greatly
improved the results for affected paths, with improvements
of 46% (insertions) and 23% (deletions) in Zelda4x4. Figure
4 compares the running times of A* and DPA* for each path
length in Zelda4x4. Naturally, longer paths take more time to
compute, but they often allow for more pruning. The paper’s
supplementary video shows visual examples of visibility-
based re-planning compared to instantaneous re-planning.

We conclude that DPA* is particularly useful for handling
dynamic deletions that did not affect the initial path, and
for handling dynamic insertions when the agent can see
them. The improvement upon A* is generally better in larger
graphs, in which memory-based algorithms are more likely
to be unfeasible when simulating a large crowd.

B. Crowd Simulation

Finally, we have integrated DPA* in an ECM-based crowd
simulation with smooth path following [36] and collision
avoidance between agents [18]. In line with common prac-
tice, our simulation uses Euler integration at fixed intervals
of 0.1s. Note that the visualization framerate can be higher.
The software can simulate over 10,000 agents in real-time
using 6 CPU cores in parallel. Obstacles can be added and
removed interactively; the crowd responds by re-planning
using DPA*. When using visibility as a trigger, re-planning
actions are automatically divided over time, allowing real-
time performance. For visual examples, we invite the reader
to watch this paper’s supplementary video.

VI. CONCLUSIONS AND FUTURE WORK

In simulations and games, a dynamic navigation mesh
represents an environment in which obstacles are inserted
or deleted at runtime. After a dynamic event, agents in a
virtual crowd should re-plan their paths. Many re-planning



(a) Military (b) City (c) Zelda (d) Zelda2x2 (e) Zelda4x4

Fig. 3: The environments used in our experiment. Static geometry is shown in gray; dynamic obstacles are shown in black.

Environment / ECM Improvement of DPA* over A*
Standard Source in visibility polygon

Name Size (m) Vertices Edges Dynamic
obstacles

Insertion,
affected

Deletion,
unaffected

Deletion,
affected

Insertion,
affected

Deletion,
unaffected

Deletion,
affected

Military 200x200 56 70 17 -13.35% -17.79% -17.49% -4.64% -18.45% -19.15%
City 500x500 1451 1631 70 -10.17% 40.52% 0.82% 16.87% 34.92% 7.27%
Zelda 100x100 288 343 24 -6.86% 17.67% -7.57% 11.19% 10.79% -5.06%
Zelda2x2 200x200 1144 1368 106 -2.39% 41.25% 2.56% 25.46% 22.39% 8.67%
Zelda4x4 400x400 4560 5464 235 2.62% 62.55% 14.84% 46.35% 46.90% 23.41%

TABLE I: Details of the experimental environments. The third and fourth columns show the complexity of the ECM graph
without dynamic obstacles. The fifth column shows the number of dynamic obstacles (the black squares in Figure 3). The
remaining columns denote the improvement of DPA* over A*, computed as described in Section V-A. A negative percentage
(gray) means that A* was faster combined over all trials; a positive percentage (black) means that DPA* was faster.
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(a) Deletion, unaffected paths, no visibility
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(b) Insertion, affected paths, visibility
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(c) Deletion, unaffected paths, visibility
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Fig. 4: Results of the re-planning experiment in Zelda4x4. The horizontal axis denotes the length (the number of vertices) of
the re-planned path. The left vertical axis denotes the average running time of A* or DPA* for each path length. The gray
histogram and right vertical axis show how often each path length occurred. These figures correspond to the improvements
of 62.55%, 46.35%, 46.90%, and 23.41% in Table I.



algorithms are efficient in other applications, but they are
not designed for large crowds or structural changes in the
search space. In this paper, we have presented Dynamically
Pruned A* (DPA*), which re-plans a path by adding pruning
rules to A*, using only the old path and its relation to the
dynamic event. This relation is modelled by four possible
re-planning scenarios; DPA* uses different rules in each
scenario. The algorithm is defined for arbitrary graphs and
costs, and it yields optimal paths when using admissible
heuristics. Its focus is different to that of other re-planning
algorithms: DPA* is primarily meant as an improvement of
A* for applications that have limited memory per agent.

Experiments show that A* is faster in small graphs, but
that DPA* can greatly decrease the re-planning time in
complex environments. Our algorithm is particularly efficient
for checking whether a path is still optimal after a dynamic
deletion, and for responding to a dynamic insertion when it
is within the agent’s visibility range. In conclusion, DPA*
is an intuitive extension of A* that can improve real-time
crowd simulation in large dynamic environments.

In the future, we would like to extend DPA* to handle
multiple dynamic events without having to re-plan for each
event. We also want to simulate incomplete knowledge in
the crowd by giving each agent its own set of known and
unknown events. Currently, agents know about all events
when re-planning because they always use the most recent
version of the mesh. Furthermore, we want to explore how
this knowledge propagates through the crowd, e.g. how
agents can recognize events via the behavior of others.
Finally, we are interested in other dynamic geometry, e.g.
moving platforms that connect to different areas at different
points in time. This asks for new types of navigation meshes
and planning algorithms.
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