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Figure 1: Left: A dense crowd of agents collaboratively moves through a narrow doorway. Right: A 2D representation of the doorway
shows that each agent interpolates between individual behavior (green) and coordinated behavior (red).

Abstract
We present a crowd simulation model that combines
the advantages of agent-based and flow-based
paradigms while only relying on local infor-
mation. Our model can handle arbitrary and
dynamically changing crowd densities, and it
enables agents to gradually interpolate between
individual and coordinated behavior. Our model
can be used with any existing global path plan-
ning and local collision-avoidance method. We
show that our model reduces the occurrence of
deadlocks and yields visually convincing crowd
behavior for high-density scenarios while main-
taining individual agent behavior at lower densities.

Keywords: crowd simulation, multi-agent sys-
tem, autonomous virtual agents

1 Introduction
Crowd simulation models can be divided into
agent-based simulations and flow-based simula-
tions. Agent-based simulations focus on the behav-
iors of each individual in the crowd. While these
methods usually work well at low to medium densi-
ties, they struggle when handling high crowd densi-
ties due to a lack of coordination between the agents.

By contrast, flow-based simulations aim at simu-
lating collective emergent phenomena by treating a
crowd as one large entity. These techniques typi-
cally perform well with high-density scenarios be-
cause they facilitate a high level of coordination
among the agents. However, they struggle to han-
dle low- to medium-density scenarios because they
omit the individuality of the crowd members.
Contributions. We propose a new model that com-
bines the advantages of agent-based and flow-based
paradigms while only relying on local information.
It enables the simulation of large numbers of virtual
agents at arbitrary and dynamically changing crowd
densities. Our technique preserves the individual-
ity of each agent in any virtual 2D or multi-layered
3D environment. The model performs as well as
existing agent-based models that focus on low- to
medium-density scenarios, while also enabling the
simulation of large crowds in highly dense situa-
tions without any additional requirements or user in-
terference. Compared to existing agent-based mod-
els, our model significantly reduces the occurrence
of deadlocks in extremely dense scenarios. Our
model is flexible and supports existing methods for
computing global paths, simulating an agent’s indi-
vidual behavior, and avoiding collisions with other



agents. Furthermore, it yields energy-efficient and
more realistic crowd movement that displays emer-
gent crowd phenomena such as lane formation and
the edge effect [1].

2 Overview of our model
We represent each agent as a disk with a variable ra-
dius. The center of the disk is the current position
of the agent. Each agent has a field of view (FOV),
which is a cone stretching out from the agent’s cur-
rent position, centered on the agent’s current veloc-
ity vector and bounded by both a maximum look-
ahead distance dmax = 8 meters and a maximum
viewing angle φ = 180◦.
Let A be an arbitrary agent. We perform the follow-
ing five steps in each simulation cycle:
1. We compute an individual velocity for agent A.

It represents the velocity A would choose if no
other agents were in sight. Our model is indepen-
dent of the exact method that is used.

2. We compute the local crowd density that agent A
can perceive; see Section 3.1.

3. We compute the locally perceived stream velocity
of agents near A; see Section 3.2.

4. We compute A’s incentive λ. This incentive is
used to interpolate between the individual veloc-
ity from step 1 and the perceived stream velocity
from step 3; see Section 3.3.

5. The interpolated velocity is passed to a collision-
avoidance algorithm. Our model is independent
of the exact method that is used.

3 Streams
We define streams as flows of people that coordi-
nate their movement by either aligning their paths or
following each other. This leads to fewer collisions
and abrupt changes in the direction of movement. A
dominant factor is the local density ρ.

3.1 Computing local density information
We use the agent’s FOV to compute ρ. We deter-
mine the setN of neighboring agents that have their
current position insideA’s FOV. We sum up the area
∆(N) occupied for each agent N ∈ N and divide
it by the total area ∆(FOV ) of A’s FOV. A FOV
occupied to one third can already be considered a
highly crowded situation. Thus, we multiply our re-
sult by 3 and cap it at a maximum of 1. Formally,
we define the crowd density ρ as follows:

ρ := min

(
3

∆(FOV )

∑
N∈N

∆(N), 1

)
. (1)

3.2 The perceived stream velocity
Let B be a single agent in A’s FOV, and let xA and
xB be their current positions, respectively. We de-
fine the perceived velocity vper(A,B) as an interpola-
tion between B’s velocity vB and a vector vdir(A,B)

of the same length that points along the line of sight
betweenA andB; see Figure 2. Let ρ ∈ [0, 1] be the
local density in A’s FOV, and let dA,B = ‖xB−xA‖

dmax

be the relative distance between A and B. A fac-
tor fA,B = ρ · dA,B is used to angularly interpolate
between vB and vdir(A,B). The larger ρ is the more
A is inclined to pick a follow strategy rather than an
alignment strategy.
Let N5 be a set of up to 5 nearest neighbors of A.
To avoid perceived stream velocities canceling each
other out, we restrict the angle between the veloci-
ties of A and each neighbor to strictly less than π

2 .
We define the average perceived stream speed s as
follows:

s :=
1

|N5|
·
∑
N∈N5

||vper(A,N)||. (2)

The locally perceived stream velocity vstream per-
ceived by agent A is then defined as follows:

vstream := s ·

∑
N∈N5

vper(A,N)

||
∑

N∈N5

vper(A,N)||
, (3)

3.3 Incentive
The incentive λ is defined by four different factors:
internal motivation γ, deviation Φ, local density ρ,
and time spent τ . We simulate the behavior of an
agent A in a way such that – aside from the internal
motivation factor – the most dominant factor among
Φ, ρ and τ has the highest impact on A′s behavior.
We define the incentive λ as follows:

λ := γ + (1− γ) ·max
(
Φ, (1− ρ)3, τ

)
. (4)

Internal motivation γ ∈ [0, 1] determines a mini-
mum incentive that an agent has at all times. For
the local density ρ, a non-linear relation with the in-
centive is desired, and we use (1− ρ)3.
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Figure 2: An example of the perceived velocity vper(A,B) based
on an interpolation between vB and vdir(A,B).



The deviation factor Φ makes agentA leave a stream
when vstream deviates too much from vindiv. We
use a threshold angle φmin. Whenever the angle be-
tween vstream and vindiv is smaller than φmin, the
factor Φ will be 0. This yields stream behavior un-
less the other factors determine a different strategy.
If the angle is greater than φmin, we gradually in-
crease Φ up to a maximum deviation of 2φmin. An-
gles greater than this threshold correspond to a de-
viation factor of 1, thus yielding individual steering
behavior. Let φdev be the smallest angle between
vindiv and vstream. We define the deviation factor Φ
as follows:

Φ := min

(
max

(
φdev − φmin

φmin
, 0

)
, 1

)
. (5)

The time spent factor τ is used to make stream be-
havior less attractive the longer it takes the agent to
reach its goal. We initially calculate the expected
time τexp agent A will need to get to its destination.
How this is done depends on how A’s individual ve-
locity is calculated, i.e. what method is used as a
black box. We keep track of the actual simulation
time τspent that has passed since A has started mov-
ing. We define the time spent factor τ as follows:

τ := min

(
max

(
τspent − τexp

τexp
, 0

)
, 1

)
. (6)

Finally, let β = φdevλ be the deviation angle
angle scaled by the incentive. We rotate vstream
towards vindiv by β. In general, the lengths of
vindiv and vstream are not equal. Therefore, we also
linearly interpolate the lengths of these vectors. The
resulting velocity is the new velocity for agent A in
the next simulation cycle.

4 Experiments
Our model has been implemented in a framework
based on the Explicit Corridor Map [2]. We use one
CPU core of a PC running Windows 7 with a 3.1
GHz AMD FXTM 8120 8-Core CPU, 4 GB RAM
and a Sapphire HD 7850 graphics card with 2 GB
of onboard GDDR5 memory. To compute vindiv,
we combined our model with the Indicative Route
Method (IRM) [3]. To benchmark and validate our
model, we use the Steerbench framework [4]. Our
benchmarking score is defined as follows:

score = 50c+ e+ t. (7)

It is comprised of the average number of collisions
c per agent, the average kinetic energy e, and the

Figure 3: The different scenarios in our experiments are (from
top to bottom): merging-streams, crossing-streams, hallway1,
hallway2, narrow-50 and military.

average time t spent by an agent. A lower score is
considered to be a better result.
We used six different scenarios; see Figure 3. Pre-
ferred speeds were randomly chosen between 0.85
and 2.05 meters per second. We have tested our
model with three popular collision-avoidance meth-
ods [5, 6, 7]; see Figure 4. We have also com-
pared our model to the same scenarios when only
individual behavior is being displayed. Here, we
use the IRM together with the collision-avoidance
method by Moussaı̈d et al. [7] because this yielded
the best results. Figure 5 shows the corresponding
mean Steerbench scores per agent over 50 runs per
scenario. Figure 6 shows the average percentage of
agents that did not reach their goal in a total time of
200 seconds with stream behavior turned on and off.
Figure 7 shows the average running times needed to
compute one step of the simulation for an increasing
number of agents in the military and hallway-stress
scenarios. Our model runs at interactive rates in typ-
ical gaming or simulation scenarios, even when co-
ordination among the agents is high.

5 Conclusion and Future Work
We have introduced a crowd simulation model that
interpolates an agent’s steering strategy between in-
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Figure 4: Mean Steerbench scores of the three different colli-
sion avoidance methods for our test scenarios. The scores are
averaged over 50 runs per agent. In all our experiments, lower
scores are better.
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Figure 5: Mean Steerbench scores for the scenarios with our
streams model turned on and off. The scores are averaged per
agent over 50 runs.

dividual behavior and coordination with the crowd.
Local streams determine an agent’s trajectory when
local crowd density is high. This allows the simula-
tion of large numbers of autonomous agents at inter-
active rates.
We have validated our model with the Steerbench
framework [4] by measuring the average numbers of
collisions, expended kinetic energy, and time spent.
Experiments show that our model works as well as
existing agent-based methods in low- to medium-
density scenarios, while showing a clear improve-
ment when handling large crowds in densely packed
environments. These conclusions are also validated
in the accompanying video.
The flexibility to use any global planning method
and any local collision-avoidance method as a black
box makes our model applicable to a wide range
of research fields that require the simulation of au-
tonomous virtual agents. We believe that our model
can form a basis for improving crowd movement in
future gaming and simulation applications, in CGI-
enhanced movies, in urban city planning software,
and in safety training applications. For further de-
tails on our model, we refer the interested reader to
the full-length version of this paper [8].
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Figure 6: Percentage of agents that did not reach their goal in
high-density scenarios with our streams model turned on and
off, averaged over 50 runs each.
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Figure 7: Average running times to compute one step of the
simulation (in ms) for an increasing number of agents in the
military and hallway-stress scenarios. Each measurement is the
average of 10 runs for the same number of agents. Deadlocks
frequently occur for more than 1000 agents in military. In the
hallway-stress scenario, we could simulate up to 2000 agents
simultaneously without any deadlocks.
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