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Abstract

The Weighted Region Problem is defined as the problem of find-
ing a cost-optimal path in a weighted planar polygonal subdivision.
Searching for paths on a grid representation of the scene is fast and
easy to implement. However, grid representations do not capture
the exact geometry of the scene. Hence, grid paths can be inaccu-
rate or might not even exist at all. Methods that work on an exact
representation of the scene can approximate an optimal path up to
an arbitrarily small ε-error. However, these methods are computa-
tionally inefficient and thus not well-suited for real-time applica-
tions. In this paper, we analyze the quality of optimal paths on a
8-neighbor-grid. We prove that the costs of such a path in a scene
with weighted regions can be arbitrarily high in the general case. If
all regions are aligned with the grid, we prove that the costs are at
most

(
4 +

√
4− 2

√
2
)

times the costs of an optimal path. In ad-
dition, we present a new hybrid method called Vertex-based Prun-
ing (VBP). VBP computes paths that are ε-optimal inside a pruned
subset of the scene. Experiments show that VBP paths can be com-
puted at interactive rates, and are thus well-suited as an input for
advanced path-following strategies in robotics, crowd simulation or
gaming applications.
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sentation

1 Introduction

The Weighted Region Problem (WRP) has been introduced by
Mitchell and Papadimitriou [1991] as a generalization of the classi-
cal path planning problem. Instead of a polygonal scene with static
obstacles and traversable space, the input for the WRP is a polyg-
onal planar subdivision with positive weights for each polygonal
region. Each polygonal region is traversable, but yields different
traversal costs depending on its weight. The goal is to compute
a path between two query points which is optimal with respect to
the traversal costs. Optimal paths in weighted regions are proven
to consist of straight-line segments, and each straight-line segment
runs through only one type of region. The bending points of an op-
timal path lie on the region boundaries, where the path obeys Snell’s
law of refraction. The costs for a path are defined as the sum of the
weighted Euclidean lengths of each straight-line segment.

The WRP has applications in many fields such as video games
[van der Sterren 2002; Kamphuis et al. 2005], simulations [Reece
et al. 2000], or robotics [Chestnutt et al. 2007]. Moving entities



such as virtual humans or robots need to steer through a scene with
various region types. However, the WRP is proven to be unsolvable
in the Algebraic Computation Model over the Rational Numbers
(ACMQ) [Carufel et al. 2012]. In other words, a solution to an
instance of the WRP cannot be expressed as a closed formula in
ACMQ. This justifies the search for approximation algorithms to
compute paths that are near-optimal within a certain costs-bound.
A widely-used approach is to approximate the exact geometry of
the scene with a rectilinear grid. An efficient graph-search algo-
rithm such as the popular A∗-algorithm [Hart et al. 1968] can then
be used on this grid. This approach is fast and easy to implement,
but a grid does not capture the exact geometry of the scene. On the
other hand, existing approximation algorithms [Aleksandrov et al.
1998; Aleksandrov et al. 2005; Sun and Reif 2001] to solve the
WRP are computationally expensive and not suited for real-time
applications with many virtual agents.

Contributions. We analyze the quality of 8-neighbor-grid paths
compared to optimal paths in weighted regions. We show that
optimal grid paths can be arbitrarily expensive for fixed grid res-
olutions. We then show that in scenes where all regions are
aligned with the grid, the costs of an optimal grid path are at most(

4 +
√

4− 2
√

2
)

times the costs of an optimal path. We gener-
alize the topological property of two paths being homotopic in the
context of the WRP by defining region-homotopic paths. In addi-
tion, we present a new hybrid method called Vertex-Based Pruning
(VBP), which combines an efficient A∗ search on a grid with exist-
ing approximation algorithms on the exact geometry of the scene.
The paths computed with VBP are ε-optimal inside a pruned subset
of the scene. This means that for any given ε > 0, the paths are
at most (1 + ε) times as expensive as an optimal path inside the
pruned scene. Furthermore, the paths follow the exact geometry
of the scene and thus overcome problems inherent to approximate
grid paths. In a comparative study, we show that VBP improves
upon the running times of the Steiner point approximation algo-
rithm by Aleksandrov et al. [1998] and thus allows the computation
of high-quality paths at interactive rates. We also show empirically
that a path computed with VBP and an overall optimal path are
region-homotopic in 97.3% of the tested cases. This means that we
can guarantee the same ε-error bound as the original Steiner point
method in most cases.

The rest of this paper is organized as follows: In Section 2, we give
an overview of related work on the WRP, existing approximation
algorithms, and its application areas. In Section 3, we give pre-
liminary definitions used in our subsequent analysis. In Section 4,
we analyze the quality of A∗ grid paths and prove the claimed up-
per bound on the path costs when all regions are aligned with the
grid. In Section 5, we present our new VBP method. A comparative
study between VBP and the Steiner point method by Aleksandrov
et al. [1998] is conducted in Section 6. We conclude and summarize
our contributions and discuss future extensions in Section 7.

2 Related Work

Mitchell and Papadimitriou [1991] were the first to study the WRP
as a generalization of the classical path planning problem. They
presented the first approximation algorithm, which has a running
time of O(n8 log nNW

wε
), where n is the number of vertices, N is

the maximum integer coordinate of any vertex of the triangulation,
and w and W are the lowest and highest weight of the regions,
respectively. Due to the high computational complexity, the algo-
rithm is mainly of theoretical interest. The authors discuss several
fundamental properties of the WRP that do not hold in the classical
Path Planning Problem. One interesting property is that an optimal
path in weighted regions obeys Snell’s law of refraction at its bend-

ing points. In other words, such a path crosses the borders of two
adjacent regions in the same way as a ray of light crosses the border
of two different materials.

Several approximation algorithms for the WRP were presented in
the following years. Mata and Mitchell [1997] created a graph
called Pathnet to approximate optimal solutions to the WRP. The
method makes use of cones around all vertices, which limit the
paths that can extend from a vertex. The Pathnet can be constructed
in O(kn3), where k is the number of such cones. Once the Pathnet
is constructed, in can find ε-approximate paths in O(n logn) time,
where ε = O( W/w

kθmin
). W/w is the ratio of the maximum and min-

imum weight, respectively, and θmin is the minimum internal face
angle of the subdivision.

Aleksandrov et al. [1998] presented an ε-approximation scheme to
solve the WRP up to an arbitrary ε > 0. The method uses Steiner
points that are added to the edges of all triangles in the scene with
a logarithmic distribution. Because this distribution leads to in-
finitesimally small distances between Steiner points near the ver-
tices, the authors define a vertex vicinity, which is a circle around
each vertex that is void of Steiner points. Within each triangle, all
Steiner points and vertices are connected by additional edges. Path
planning queries can then be answered using Dijkstra’s algorithm
[1959] (improved by using Fibonacci heaps). The running time is
O(mn log(mn) + nm2), where m is the total number of Steiner
points. Aleksandrov et al. [2005] also presented a variant of the
Steiner point method, in which the Steiner points are placed on the
bisectors of the triangles. This variant has a better running time, but
the paper lacks the description of some critical cases required for a
thorough practical implementation. In our new hybrid method, we
therefore use this original Steiner point method [Aleksandrov et al.
1998] on a pruned graph; see Section 5.

Sun and Reif [2001] presented an ε-approximation algorithm called
BUSHWHACK. Similar to Aleksandrov et al. [1998], they use
Steiner points on the edges of the triangulation. Instead of search-
ing the graph with Dijkstra’s algorithm [1959], they introduced a
new graph-search method that exploits the underlying geometri-
cal properties of the scene. Using an interval data structure, the
BUSHWHACK algorithm can find ε-optimal paths inO(n

ε
(log 1

ε
+

logn) log 1
ε
) time.

Carufel et al. [2012] presented a fundamental theoretical result on
the WRP. The authors proved that the WRP is unsolvable in the Al-
gebraic Computation Model over the Rational Numbers (ACMQ).
This means that a solution to an instance of the WRP cannot be ex-
pressed as a closed formula in ACMQ. This result further justifies
the search for ε-approximate solutions to the problem.

Ferguson and Stentz [2006] presented Field D∗, an interpolation-
based planning and replanning method well-suited for scenarios
with weighted regions. Field D∗ computes paths that may follow
any direction and are thus not restricted to angles of π

2
at its bend-

ing points. The input for Field D∗ is a grid representation of the
weighted scene, in which all regions are aligned with the grid. By
contrast, our new VBP method can handle an arbitrary scene given
as a planar polygonal subdivision with weighted regions.

Research has also been conducted on grid path analysis for the clas-
sical path planning problem without weights on both 2D and 3D
grids. Nash [2012] presented in his PhD thesis a unified proof struc-
ture to derive upper bounds on the length of grid paths. In addition
to square grids, the author considers triangular and hexagonal grids
for non-weighted scenarios in 2D and cubic grids in 3D. Nash et
al. [2010] also presented an upper bound on the length of paths in
a 26-neighbor 3D grid without weights.

Approximation algorithms for variants of the WRP have also been



discussed. Aleksandrov et al. [2010] introduced a data structure
called All Points Query (APQ), which can be used to efficiently
find ε-optimal paths for all-pairs queries on an instance of the WRP.
APQ has a high construction time, and it is therefore mainly useful
for answering many queries on the same scene. Cheng et al. [2010]
presented a method to compute homotopic paths that are ε-optimal
in an instance of the WRP. Gheibi et al. [2013] recently considered
a variant of the WRP with weighted arrangements of lines instead
of bounded triangulated subdivisions. Jaklin et al. [2013] presented
a path following method called MIRAN. The input for the MIRAN
method is a path through weighted regions, which is then smoothed
and traversed by a virtual agent based on its region preferences.
This justifies the search for solutions to the WRP that can be per-
formed at interactive rates, which we address in this paper.

3 Preliminaries

In this section, we give definitions and general assumptions we will
be using throughout this work. We start by introducing region-
homotopic paths. Afterwards, we discuss grids and grid-optimal
paths.

One important topological property in classical path planning with-
out weighted regions are homotopic paths. Two paths with the same
fixed start and goal positions are homotopic, if there exists a ho-
motopic function that continuously maps one path into the other
without having to cut open the path or intersect obstacle polygons
in the scene. The question whether two paths are homotopic can
be important when analyzing error bounds for approximations on
optimal paths. To use this property in our analysis in Section 4, we
therefore generalize it to weighted regions in the following way:

Given the scene as a polygonal subdivision of the plane, let R =
{(r1, w1), (r2, w2), ..., (rn, wn)} be the set of its n region poly-
gons ri together with a weight wi > 0. Without loss of general-
ity, we assume that any two adjacent region polygons have differ-
ent weights. In other words, if two adjacent regions had the same
weight in the given representation of the scene, we assume them
to be merged into one region polygon. Let π1, π2 be two paths
connecting the same start and goal positions s and g in R, respec-
tively. In order to generalize the definition of homotopic paths, we
map the given weighted scenario to an instance of the classical Path
Planning Problem by declaring all regions that either of the two
paths intersect as free space. All remaining regions are declared
as hard obstacles with an infinite weight. More formally, we let
R(π1, π2) = {(r, w) ∈ R |π1 or π2 intersects the interior of r}.
We then defineR′(π1, π2) = {(r1, w

′
1), (r2, w

′
2), ..., (rn, w

′
n)} as

the same set of region polygons ri as in R, but with the following
weights:

w′i =

{
1 if (ri, wi) ∈ R(π1, π2)
∞ else .

Definition 1. We say that π1 and π2 are region-homotopic inR, if
and only if they are homotopic inR′(π1, π2).

We consider a grid with square grid cells to approximate the scene.
Each cell in the grid is weighted with the highest weight of all re-
gions that intersect the cell. From a graph-search point of view,
we use the center points of each grid cell to represent the cell as a
vertex in the graph.

We focus on 8-neighbor grids that allow movement on the grid in up
to 8 directions. Thus, any grid path consists of horizontal, vertical
and diagonal straight-line segments. If such a segment runs along
the edge shared by two grid cells, the smaller weight of the two cells
counts for this segment. This choice reflects paths that are tangent
to a high-cost region without intersecting the interior of that region.

Furthermore, we only consider grid cell center points as input for
path planning queries.

By C(·), we denote the function to measure the costs of a path π. If
π consists of k straight-line segments πi, and each πi runs through
one region with weight wi (1 ≤ i ≤ k), we let

C(π) =

k∑
i=1

wi||πi||,

with || · || being the Euclidean norm. Since an optimal (non-grid)
path in weighted regions is proven to consist of straight-line seg-
ments [Mitchell and Papadimitriou 1991], we can use this cost func-
tion for both grid paths and optimal paths.

Let γ ∈ R+ be the size of each grid cell. Let C1 and C2 be two
adjacent grid cells with weights w1 and w2, respectively. Given the
above cost function, we can conclude the following. If C1 and C2

are horizontally or vertically connected by a straight-line segment l,
the costs for moving from one cell to the other are C(l) = 1

2
γw1 +

1
2
γw2 = 1

2
γ(w1 + w2). If C1 and C2 are diagonally connected,

the costs are C(l) = 1
2
γ
√

2(w1 + w2).

In addition to the above, we use the following definition to distin-
guish between optimal paths on the grid and optimal paths on the
exact geometry of the scene.

Definition 2. We call a grid path grid-optimal, if it is optimal
among all other possible grid-paths with respect to the cost function
C(·).

4 Quality of Grid-Optimal Paths

In this section, we analyze the quality of grid-optimal paths with
respect to optimal paths in weighted regions. First, we show that
a grid-optimal path can be arbitrarily expensive, if a fixed cell size
is given. Afterwards, we focus on scenarios in which all regions
are aligned with a fixed grid. We show that even in this simplified
scenario, a grid-optimal path and an optimal path are not necessarily
region-homotopic. We can, however, prove an upper bound on the
costs of grid-optimal paths when all regions are aligned with the
grid, which is the main result in this section.

Let us assume a grid with a fixed resolution. If an optimal path and
a grid path are not region-homotopic, the grid path can be arbitrarily
expensive. This already holds in the classical path planning situa-
tion in which no weighted regions are given, whenever the paths are
not homotopic. Figure 1 shows an example in which a grid-optimal
path Γ and an optimal path π∗ that connect points s and g are not
(region-)homotopic. This is due to using an overly coarse grid res-
olution. By increasing the height of the obstacle polygon P , we can
make Γ become arbitrarily expensive. This also shows that a grid
path does not necessarily need to exist at all in the general case.

The situation is different when all regions are aligned with the
grid. Given a particular scene with weighted regions, we can al-
ways adjust the grid resolution to achieve this. We might require
a very small grid resolution if the scene features complex shapes
with many vertices, and this yields high running times for search
algorithms on the grid. By contrast, in applications with simple
rectangular shapes or when the exact geometric shape of a region is
less important (e.g. in grid-based games, or when a region resem-
bles an abstract feature such as dangerous or attractive), aligning
all regions with the grid is a feasible way to reduce the complexity
of the scene. We now discuss important properties and analyze the



s g

P

Γ

π∗
1 2 3 4

Figure 1: Example of a two paths connecting points s and g. The
grid-optimal path Γ can become arbitrarily expensive compared to
the costs of an optimal path π∗, if the grid resolution is too coarse.
Grid cells 1, 2, 3 and 4 are not traversable for Γ because obstacle
polygon P intersects them.

s g

Figure 2: An example in which the grid-optimal path Γ (solid
black) is not region-homotopic to the optimal path π∗ (solid red).
The grid path Γ′ that is region-homotopic to π∗ (dashed black) has
slightly higher costs than Γ. The grid cell size is γ = 1. The white
region has a low weight of 1, the gray region has a weight of 1.3,
and the black region has a very high (infinite) weight. The path
costs are: C(π∗) ≈ 26.63, C(Γ) ≈ 27.3, C(Γ′) ≈ 27.45.

quality of grid-optimal paths in this special case of the Weighted
Region Problem.

The example in Figure 1 might give rise to the assumption that a
grid-optimal path and an optimal path are always region-homotopic
if we ensure that all regions are aligned with the grid. However, this
is not the case. Aligning all regions with the grid does ensure that
there exists a grid path in the same homotopy class in which an
optimal path is contained, but it does not need to be grid-optimal.
Figure 2 shows an example in which the grid-optimal path Γ (solid
black) and the optimal path π∗ (solid red) are not region-homotopic,
even when all regions are aligned with the grid. The grid path fol-
lowing the same regions as π∗ is denoted as Γ′ (dashed black), and
its costs are approximately 27.45. The costs for Γ, in comparison,
are approximately 27.3.

In the remainder of this section, we prove an upper bound on the
costs of grid-optimal paths with respect to the costs of an optimal
path when all regions are aligned with the grid. To this end, we first
discuss a simpler scenario in the following Lemma 1. We will then
use the result of this lemma in the subsequent proof of Theorem
1. Note that the result of Lemma 1 was independently proven for
obstacle-free scenarios [Ferguson and Stentz 2006], and also for
different types of grids and the general case in which grid cells can
be blocked [Nash 2012]. We give an alternative proof in which
we consider arbitrary weights and grid cell sizes, and we use the
notation and definitions that better fit our discussion in Theorem 1.

Y

x

γ

Γ(x)

∆(x)

Figure 3: The situation discussed in Lemma 1.

Lemma 1. Let R be an axis-aligned rectangle, rasterized with a
grid of cell size γ ∈ R+. Let each grid cell be weighted with the
same weight w > 0, and let Γ be a grid-optimal path within R that
runs from one corner of R to the diagonally opposite corner of R.
Let ∆ be the diagonal ofR. Then it holds that C(Γ) ≤ (1+ε) C(∆),
with ε =

√
4− 2

√
2− 1 ≈ 0.08, independent of γ and w.

Proof. Let X,Y be the number of grid cells of R in x- and y-
dimension, respectively. To prove the claimed ε-bound for R,
we do the following: Instead of R we consider the square with
max(X,Y ) cells in both dimensions. We then keep one dimen-
sion, say y, fixed and consider x as a variable to find the x-value
between 0 and max(X,Y ) that maximizes the ε-error between the
path costs. The grid path from (0, 0) to (x, Y ) is denoted as Γ(x),
and the line segment between (0, 0) and (x, Y ) is denoted as ∆(x).
The situation is shown in Figure 3 for max(X,Y ) = Y .

We can now consider ε as a function in x:

ε(x) =
C(Γ(x))− C(∆(x))

C(∆(x))
.

The costs for the line segment ∆(x) arew(
√

(γx)2 + (γY )2), and
the costs for Γ(x) are the costs for the diagonal stepsw(

√
2γx) plus

the costs for the vertical steps w(γ(Y − x)). Thus,

ε(x) =
wγ
(√

2x+ (Y − x)−
√
x2 + Y 2

)
wγ
√
x2 + Y 2

.

It is easy to see that γ and w can be canceled from the fraction.
We can now find the maximum ε-error by computing the root x0 of
the first derivative ε′(x) and evaluating ε(x0). The first derivative is
ε′(x) = Y (

√
2Y −Y −x)(Y 2 +x2)−

3
2 . It holds that ε′(x) = 0⇔

x =
√

2Y − Y , and ε(
√

2Y − Y ) =
√

4− 2
√

2− 1 ≈ 0.08.

Theorem 1. Let all regions be aligned with the grid. Let Γ be
a grid-optimal path, and let π∗ be an optimal path. It holds that
C(Γ) ≤

(
4 +

√
4− 2

√
2
)
C(π∗).

Proof. We first give a brief outline of the proof. The main idea
is to exploit the fact that an optimal path π∗ consists of straight-
line segments, with each segment running through only one type of
region. We split up π∗ at its bending points, inducing a sequence
of rectangles of grid cells. Each rectangle in this sequence contains



s

g

R1
R2

R3

R4

R5

π∗1
π∗2

π∗3

π∗4
π∗5

Figure 4: An example scene with three different types of regions:
white (low weight), gray (medium weight) and black (high weight).
The shown optimal path between s and g consists of 5 straight-line
segments π∗i . Each segment induces a rectangular set of grid cells
Ri.

one of the segments of π∗. We then construct grid-optimal paths
inside each rectangle. For each grid-optimal path, we show that its
costs are at most

(√
4− 2

√
2
)

+2γ times the costs of the segment
of the optimal path in the same rectangle. By exploiting the fact that
the costs for any two consecutive line segments of π∗ are at least γ,
we can deduce the claimed upper bound on the overall path costs.

One property we are going to use in the proof requires the costs of
a path being at least as high as its Euclidean length. This property
only holds if all weights are not smaller than 1. The Weighted Re-
gion Problem is defined for arbitrary positive weights and thus al-
lows weights smaller than 1. However, we can assume all weights
being greater or equal to 1 without loss of generality in the follow-
ing way: Let wmin be the smallest weight. If wmin ≥ 1, we do not
have to do anything. If 0 < wmin < 1, we multiply all weights by

1
wmin

. This ensures that all weights are not smaller than 1. In ad-
dition, the relation between any two weights stays the same under
this scaling operation. This ensures that an optimal path in the scene
with scaled weights consists of the the same straight-line segments
as the corresponding optimal path in the non-scaled scene. We can
therefore assumew ≥ 1 for all weightsw throughout the remainder
of this proof.

We start the proof by splitting up π∗ into k segments π∗i , 1 ≤ i ≤ k.
The locations at which we split up π∗ are its bending points. Thus,
each segment π∗i is a straight-line segment running through only
one type of region [Mitchell and Papadimitriou 1991]. For each
segment π∗i , we consider the rectangular part Ri of the grid in
which the segment is contained. To be precise, we let Ai and Bi be
the grid cells in which the endpoints of π∗i lie. Except for possibly
π∗1 and π∗k , these endpoints lie on cell edges or cell corners of the
grid. Thus, they lie on more than one grid cell, which makes the
choice ambiguous. Among the candidate grid cells that contain the
endpoints, we pick the two cells Ai and Bi that span the smallest
rectangle of grid cells. We then define Ri as the rectangular set of
grid cells that is spanned byAi andBi. Figure 4 shows an example
scene with an optimal path between s and g, and the corresponding
segments π∗i and rectangles Ri. The grid cells in Ri do not need to
be all of the same region type (see e.g. R3 in Figure 4). However,
each π∗i passes through a (horizontally, vertically or diagonally con-
nected) sequence of grid cells in Ri that are all of the same region
type. The corner grid cellsAi andBi are the first and last grid cells
of this sequence in Ri.

We would now like to assess the path costs by comparing the parts
of Γ that run through each rectangle Ri with each segment π∗i .
However, we cannot guarantee that Γ intersects each rectangle Ri
in which the segment π∗i is contained. This only holds trivially for

Ri

Ai

Bi

π∗i

Γ(Ri)

Figure 5: RectangleRi with corner grid cellsAi andBi. The path
Γ(Ri) is grid-optimal, and it connects the opposite corners of Ri
that belong to Ai and Bi. Since π∗i induces a connected sequence
of cells of the same weight (shown in white), we can always define
Γ(Ri) to follow the same region type.

R1 and Rk because both Γ and π∗ connect the same points s and
g. All other rectangles might not contain parts of Γ because Γ and
π∗ need not to be region-homotopic, as shown before in Figure 2.

Since we have no guarantee that a grid-optimal path and an optimal
path are region-homotopic, we have to compare each segment π∗i
with a different grid path. To this end, we define k grid paths Γ(Ri),
each of which is fully contained in Ri. We define Γ(Ri) so that
it connects the two opposite corners of Ri that belong to the grid
cells Ai and Bi. Since π∗i induces a connected sequence of grid
cells with weight wi, we can always define Γ(Ri) such that it runs
through the same type of region as π∗i does. This step is similar to
the approximation of a straight-line segment in a pixel raster using
Bresenham’s line algorithm [Bresenham 1965]; see Figure 5.

Each Γ(Ri) connects the corner points of rectangle Ri, and the
sequence of all rectangles Ri connects the cells that contain s and
g. We can conclude that the sum of the costs of all Γ(Ri) covers

the costs of the grid-optimal path Γ, i.e. C(Γ) ≤
k∑
i=1

C(Γ(Ri)).

We now prove that the upper bound we are aiming for holds for
the union of all grid paths Γ(Ri). In other words, we show that
k∑
i=1

C(Γ(Ri)) ≤
(

4 +
√

4− 2
√

2
)
C(π∗i ) to conclude the proof.

To this end, we discuss two different cases, depending on whether
k is an odd or an even number.

Case 1: k is even. We define for each 1 ≤ j ≤ k
2

: cj :=
C(π∗2j−1) + C(π∗2j). The term cj describes the combined costs of
every two consecutive segments of π∗. It holds that these combined
costs are each at least as large as the grid cell size, i.e. cj ≥ γ. To
see this, note that every two consecutive straight-line segments of
π∗ are at least as long as the side of one grid cell; see Figure 6.
Since we assume that all weights are not smaller than 1, we can
conclude that cj = C(π∗2j−1) + C(π∗2j) ≥ ||π∗2j−1||+ ||π∗2j || ≥ γ.
Given that, we can deduce the following useful property:

k
2∑
j=1

cj ≥

k
2∑
j=1

γ =
k

2
γ ⇔ 2

k
2∑
j=1

cj ≥ kγ (1)

We can now use Lemma 1 to prove an upper bound on the path costs
for each grid-optimal path Γ(Ri) in the following way: We have



to compare the potentially cheapest segment π∗i with the grid-path
Γ(Ri). Figure 7 (top) shows an example of this situation. Since π∗i
starts on one side of a corner cell of the rectangle Ri and ends on
one side of the opposite corner cell, the cheapest possible connec-
tion inside Ri is between the points p and q as shown in the figure.
Note that the situation is symmetrically flipped if the height of Ri
is larger than its width, or if π∗i starts in a different corner of Ri.
In Figure 7 (bottom), we show how π∗i can be shifted to start in the
bottom left corner of Ri, and that we can construct Γ(Ri) in a way
that it connects p and q, and then runs from q to the top right corner.
This allows us to use Lemma 1 for the part of Γ(Ri) that connects
p and q, and we can conclude the following:

k∑
i=1

C(Γ(Ri)) ≤
k∑
i=1

((√
4− 2

√
2

)
π∗i + 2γ

)
(2)

The summand 2γ in Equation 2 refers to the fact that Γ(Ri) is by 2γ
longer than the connection between p and q; see Figure 7 (bottom).
Note that the shifted paths might intersect region cells with different
weights. This is not a problem because we only use the shifting as
an illustration to compare the costs for the initial paths with the
initially underlying weight.

We can now use Equations 1 and 2 to conclude the proof for case 1:

k∑
i=1

C(Γ(Ri))
(2)

≤
k∑
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((√
4− 2

√
2

)
π∗i + 2γ

)

= k2γ +
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√
2

) k∑
i=1

π∗i

(1)

≤ 2 · 2

k
2∑
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cj +

(√
4− 2

√
2

) k
2∑
i=1

cj

=

(
4 +

√
4− 2

√
2

) k
2∑
i=1

cj

=

(
4 +

√
4− 2

√
2

)
C(π∗).

Case 2: k is odd. In this case, we can deduce the same upper bound
as in case 1 for the first k−1 segments of π∗. For the last remaining
segment π∗k , we use the fact that this segment ends in the cell center
point g. It therefore holds that C(π∗k) ≥ 0.5γ, whereas the grid
path Γ(Rk) ≤ 0.5

√
2γ. We can further conclude that C(Γ(Rk))

C(π∗
k

)
≤

0.5
√

2γ
0.5γ

=
√

2. Since
√

2 <
(

4 +
√

4− 2
√

2
)

, we can deduce the

π∗
i

π∗
i+1

Figure 6: The sum of any two consecutive segments of the optimal
path are at most as long as the side of one grid cell. If the opposite
was true, the segment π∗i+1 would have to run below the dotted line,
which is impossible due to Snell’s law of refraction.

p

q

Γ(Ri)
π∗i

p

q

Γ(Ri)

π∗i

2γ

Figure 7: An example of the cheapest possible path segment π∗i
in rectangle Ri. Top: The possible start and endpoints of π∗i are
shown in blue in the bottom left and upper right corner cells. The
cheapest connection in this case is the straight-line between p and
q. Bottom: An illustration of how to compare the path costs. π∗i
can be shifted to the bottom left corner, and a corresponding grid-
optimal path Γ(Ri) can be used to compare the costs using Lemma
1.

Algorithm 1 VERTEX-BASED PRUNING (VBP)
Input. weighted polygonal environment with edges E, vertices V ,
weights W ; start position s and goal position g; error bound ε > 0.
Output. a path π between s and g that is ε-optimal in the same
homotopy class as a grid-optimal path between s and g.

1: Γ ← run A∗ on a grid with weights W and an admissible
heuristic.

2: E′ ← PRUNEGRAPH(Γ, E, V )
3: π ← run the Steiner Point method on E′ with error bound ε.
4: return π

same upper bound as in case 1 for the last segment, and thus for the
whole path. This concludes the proof of the theorem.

5 A Hybrid Method: Vertex-based Pruning

In this section, we present a novel hybrid method called Vertex-
based Pruning (VBP) to efficiently compute a path that respects
the exact geometry of a scene with weighted regions. The idea is to
combine an efficient A∗-search [Hart et al. 1968] on a coarse grid
representation of the scene with the ε-optimal Steiner point method
by Aleksandrov et al. [1998].

The VBP method is described as pseudocode in Algorithm 1. To
guarantee grid-optimality for the grid path Γ in the first step of the
algorithm, we need to use an admissible heuristic. A heuristic is
admissible, if it never overestimates the actual costs from a node to
the goal. If all weights are greater than 1, we can use the Euclidean
distance to the goal as an admissible heuristic. If the given instance



Algorithm 2 PRUNEGRAPH

Input. grid path Γ; environment with edges E and vertices V .
Output. pruned environment as a set of edges E′.

1: initialize E′ as an empty set
2: for all bending points b of π do
3: Find the set closestV of closest vertices from b in V
4: for all vertices v in closestV do
5: for all edges e incident to v do
6: Add e to E′

7: for all segments s of π do
8: for all edges e in E do
9: if s intersects e then

10: Add e to E′

11: return E′

of the WRP features weights smaller than 1, we can multiply the
Euclidean distance to the goal with the minimum weight wmin.

The actual pruning step is described in Algorithm 2. Given a grid
path π as the result of an initial A∗ search, we iterate over all bend-
ing points of π. For each bending point b, we compute the triangle
vertices of the environment that are closest to b. We then take all
triangle edges incident to these vertices. Note that this set of edges
does not yet need to form a connected graph. To address this, we
also add all edges that π intersects, if they have not already been
added during the first step of the algorithm. This ensures that the
resulting subgraph is connected.

After the pruning step, we run the Steiner point method on the
pruned graph. The Steiner point method is proven to compute ε-
optimal paths for any given ε > 0 [Aleksandrov et al. 1998]. Thus,
the VBP method will always compute a path π that is guaranteed to
be ε-optimal in the homotopy class of the grid-path Γ. As discussed
in Section 4, an overall optimal path and a grid-optimal path do not
always need to be region-homotopic. However, in the experiments
conducted in Section 6, we empirically determined that the number
of cases is small in which the two paths are not region-homotopic.

6 Experiments

In this section, we discuss the experiments we have conducted to
measure the performance of the new VBP method as described in
the previous section. First, we introduce the scenarios we have
tested in Section 6.1. Afterwards, we compare the performance of
the VBP method against the original Steiner point method [Alek-
sandrov et al. 1998] in Section 6.2. In addition, we measure em-
pirically how often the VBP method succeeds to compute the same
ε-optimal path as the original Steiner point method.

6.1 The Tested Scenarios

We have tested the VBP method on five different scenes. All scenes
are displayed in Figure 8. The size of the first four scenes is 100×
50 units. The size of the fifth scene is 410× 290 units.

The first scene is called Puddle. It resembles a puddle in the cen-
ter with weight 20, surrounded by a forest with weight 5. Below
the puddle runs a road with weight 1, and below the road is a grass
lawn with weight 3. This scene is small and simple, which makes
it easy to visually check the computed paths. In addition, it resem-
bles a typical scenario that could occur in a gaming or simulation
application.

The second scene is called Bars. It features several vertical bars
with alternating weights of 1 and 5. The triangles span the whole

height of the scene, which makes it an interesting test case for the
VBP method: We expect the VBP method to result in a graph that
is close to the Steiner graph of the whole scene.

The third scene is called High-low. It features a high-cost region
with weight 20 at the bottom, a medium-weight region in the center
with weight 3, and a low-cost region at the top with weight 1. The
scene is well-suited to display a property of the Weighted Region
Problem that does not occur in the classical Path Planning Problem:
An optimal path can cross the same triangle multiple times. If s and
g both lie in the high-cost region, an optimal path might use parts
of the low-cost region at the top.

The fourth scene is called Zigzag. It resembles a sandy road with
weight 6, a grass field above it with weight 3, and alternating parts
of road with weight 1 and water with weight 20. This is an interest-
ing test case: An optimal path from left to right should follow the
sandy road, but alternate between the top and bottom border of this
region, resulting in a zig-zag path.

The fifth scene is called Forest. It resembles a path with weight 3
that runs through a deep forest with weight 99. There are several
puddles on the way with weight 20. At the left side of the scene,
there is an attractive spot such as a panoramic view over a valley
with weight 1. The two parallel rectangular regions on the top re-
semble fallen tree logs that block the path, but can be traversed (by
climbing or ducking) with weight 2. The scene is larger than the
other four, so that we can test the effects of our pruning method
compared to the original Steiner point method when the number of
triangles is high. Furthermore, it resembles a real-life scenario that
could occur in a gaming or simulation application.

6.2 Performance of the VBP method

We have tested the Steiner point method by Aleksandrov et al.
[1998] against the VPB method in all five scenes. All experiments
have been conducted on an AMD Phenom IITMx4 3.4Ghz proces-
sor with 4 GB RAM. All measurements are averaged over 50 deter-
ministic runs each.

Table 1 shows the results of the comparison of the two methods.
For each scene, we have used 5 different ε-error bounds ranging
between 0.1 and 0.5, and we have measured the construction times
of the graphs, the times needed to answer path planning queries on
the graph, the number of nodes explored during the search, and the
overall costs of the resulting paths. The particular query points and
the resulting paths for each scene are displayed in Figure 8.

The following conclusions can be drawn from the experiments.
Compared to the original Steiner point method, the VBP method
needs additional time to perform the initial A∗ search on the whole
scene. Depending on how much of the scene can be pruned, the
VBP method may then save time in constructing the Steiner points
and additional edges. Once the pruned graph is constructed, VBP
improves on the query times in all tested scenes for all ε-error
bounds. This property is key to achieve real-time performance, and
it is reflected in the results of our experiments.

As expected, VBP does not outperform the Steiner point method
in the Bar scene. The scene contains triangles that span the whole
height of the scene, and paths are planned from the left side to the
right side. The pruned graph is therefore almost as big as the graph
of the whole scene. In this case, the additional time to perform the
A∗ search dominates the time that can be saved due to the pruning
step of the algorithm. The larger the ε-error bound the fewer overall
Steiner points are required. With fewer required Steiner points, the
difference in the number of Steiner points on the whole graph and
the pruned graph is small. This yields higher construction times



Figure 8: The five scenes tested in our experiments. From top to
bottom and left to right: Puddle, Bars, High-low, Zigzag, and For-
est. The higher the weight for a region the darker its shade of blue.
We also show the paths computed with the Steiner point method
by Aleksandrov et al. [1998] and the VBP method for different ε-
error bounds: ε = 0.1 (green), ε = 0.2 (lightgreen), ε = 0.3
(darkgreen), ε = 0.4 (red), and ε = 0.5 (orange). Note that both
methods computed the same paths in all shown cases.

for VBP and ε ranging from 0.3 to 0.5. Thus, the corresponding
improvement in query times is also comparably small.

VBP performs slightly better in the High-low scene. It improves
the query times and number of explored nodes more than in the Bar
scene. However, due to the geometry of the scene, the construction
time is still slightly higher compared to the original Steiner point
method for ε = 0.5.

In the Zigzag, Puddle and particularly the Forest scene, the strength
of VBP becomes apparent. These scenes are more complex and
feature scenes that are more likely to occur in gaming or simulation
applications. Here, the difference between the pruned graph and
the initial graph is big. The time that can be saved to explore parts
of the graph that are not relevant strongly dominates the additional
time required for the initial A∗ search. This yields an overall im-
provement in both construction times, query times, and the number
of nodes explored during the search.

Furthermore, all paths computed with VBP are equal to the paths
computed with the Steiner point method. This is, however, not nec-
essarily the case in general because the initial grid-path and an opti-
mal path might not be region-homotopic as discussed in Section 4.
We therefore conducted a second type of experiment, in which we
ran both methods again for a large number of path queries on each
scene. We measured the overall number of paths that yielded dif-
ferent costs for the VBP and Steiner point methods. The goal was

Table 2: Empirical results of how often the VBP method computes
the same path as the original Steiner point method by Aleksandrov et
al. [1998].

Scene Number of Number of path Success rate
paths differences

Puddle 6561 23 99.6%
Bars 6561 0 100%

High-low 6561 132 97.9%
Zigzag 6561 201 96.9%
Forest 9000 587 93.4%

All averaged 35244 943 97.3%

to empirically determine in how many cases the paths computed by
both methods are not region-homotopic.

We uniformly sampled each scene to generate different start and
goal positions for each query. For the first four scenes, we picked
9 different x- and y-coordinates, yielding 81 start and 81 goal po-
sitions. For each combination of start and goal positions, we com-
puted a path with both methods, yielding a total of 6561 different
paths for each of the four scenes. For the larger Forest scene, we
generated a total of 9000 different paths with both methods by uni-
formly sampling start and goal positions.

Table 2 shows the results of this experiment. On average, both
methods computed the same paths in 97.3% of all cases. This
matches our observations in Section 4 and gives further justifica-
tion to believe that grid-optimal paths and optimal paths are not
region-homotopic in only a limited number of scenarios, when the
weights and path costs are very close to each other. We can con-
clude that the same ε-error bound as for the Steiner point method
applies to VBP paths in most cases. In the few remaining cases,
VBP paths are still ε-optimal with respect to an optimal path in the
pruned scene.

7 Conclusion

In this paper, we have studied the quality of 8-neighbor grid paths
in the context of the Weighted Region Problem (WRP). We have
proven a first upper bound on the path costs of grid-optimal paths
when all regions are aligned with the grid. Furthermore, we have
presented a new hybrid path planning method called Vertex-based
Pruning (VBP). We have discussed the quality of VBP paths with
both theoretical and empirical analyses. VBP needs to construct a
new graph for every path planning query. However, the experiments
we have conducted show that comparably large ε-error bounds of
0.5 are already sufficient to compute high-quality paths that follow
the exact geometry of both simple and complex weighted scenes.
The significantly improved query times of VBP compared to the
Steiner point method [Aleksandrov et al. 1998] enables the compu-
tation of such paths at interactive rates.

For future work, it would be interesting to improve on the upper
bound of grid-optimal path costs in grid-aligned regions. The upper
bound of 4+

√
4− 2

√
2 is a first approach, but it is still coarse. By

further analyzing the underlying geometric properties of optimal
paths in such scenarios, we believe that the least upper bound is
closer to the upper bound of the unweighted variant of the problem,
which is

√
4− 2

√
2 ≈ 1.08; see Lemma 1 in Section 4. As for

the new VBP method, it would be interesting to combine it with an
region-based path following method such as MIRAN [Jaklin et al.
2013], and to conduct a comparative study with other existing ε-
approximation and grid-based algorithms. Combining the pruning



step of VBP with other advanced graph-search strategies might also
lead to interesting variants of VBP.

In conclusion, we believe that our work can help to further under-
stand the underlying mathematical principles of the WRP. Further-
more, we believe that the VBP method can be used to improve path
planning in weighted regions in a variety of fields such as gaming,
simulation and robotics applications.
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Scene ε Method Construction time (ms) Query time (ms) Nodes explored Path costs
Puddle 0.1 Steiner point method 49911.9 222.3 7441 231.5

VBP 18396.8 77.6 3561 231.5
0.2 Steiner point method 2943.4 29.0 2856 231.5

VBP 1084.5 10.7 1367 231.5
0.3 Steiner point method 617.7 8.7 1560 231.8

VBP 283.1 3.1 751 231.8
0.4 Steiner point method 255.3 3.6 986 232.2

VBP 164.2 1.4 479 232.2
0.5 Steiner point method 167.0 1.8 675 232.3

VBP 125.0 0.7 331 232.3

Bars 0.1 Steiner point method 6993.7 62.8 4908 273.6
VBP 5281.6 48.5 3957 273.6

0.2 Steiner point method 450.3 8.4 1774 273.8
VBP 394.6 6.7 1468 273.8

0.3 Steiner point method 166.1 2.4 909 273.8
VBP 171.9 1.9 776 273.8

0.4 Steiner point method 117.6 0.9 542 274.0
VBP 136.5 0.8 475 274.0

0.5 Steiner point method 120.7 0.5 370 274.2
VBP 131.5 0.4 329 274.2

High-low 0.1 Steiner point method 127198.0 471.1 7887 592.7
VBP 117328.3 448.8 7409 592.7

0.2 Steiner point method 7895.9 60.9 3016 592.8
VBP 7245.3 59.9 2721 592.8

0.3 Steiner point method 1409.0 17.7 1648 592.8
VBP 1335.7 16.6 1494 592.8

0.4 Steiner point method 487.5 7.3 1039 592.8
VBP 475.6 6.9 946 592.8

0.5 Steiner point method 251.8 3.5 723 592.9
VBP 252.2 3.4 662 592.9

Zigzag 0.1 Steiner point method 438767.4 2238.3 26245 343.6
VBP 303882.8 1789.0 21004 343.6

0.2 Steiner point method 28167.3 256.5 10334 343.6
VBP 19252.0 203.3 8333 343.6

0.3 Steiner point method 5089.8 72.8 5796 343.7
VBP 3547.5 57.8 4717 343.7

0.4 Steiner point method 1591.8 30.0 3765 343.8
VBP 1192.1 24.2 3096 343.8

0.5 Steiner point method 683.3 15.3 2645 343.8
VBP 565.3 12.4 2199 343.8

Forest 0.1 Steiner point method 163325.0 1141.1 47969 2461.2
VBP 16857.2 224.6 15413 2461.2

0.2 Steiner point method 9638.0 127.8 17710 2461.4
VBP 1049.6 26.8 5700 2461.4

0.3 Steiner point method 1794.7 34.3 9370 2461.9
VBP 351.9 7.8 3031 2461.9

0.4 Steiner point method 600.6 13.4 5744 2462.5
VBP 245.0 3.1 1863 2462.5

0.5 Steiner point method 300.4 6.4 3826 2464.2
VBP 225.4 1.4 1243 2464.2

Table 1: Comparison of the Steiner point method by Aleksandrov et al. [1998] and the VBP method on all five scenes with ε-error bounds
ranging from 0.1 to 0.5.


