
OnWeighted Regions and Social Crowds:

Autonomous-agent Navigation

in Virtual Worlds

Norman Jaklin

© 2016 Norman Jaklin
Cover design by Norman Jaklin
ISBN: 978-90-393-6521-2

OnWeighted Regions and Social Crowds:

Autonomous-agent Navigation

in Virtual Worlds

Gewogen Gebieden en Sociale Menigtes:
Navigatie voor Autonome Karakters in Virtuele Werelden

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van
de rector magni�cus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het
college voor promoties in het openbaar te verdedigen op maandag 18 april 2016

des middags te 12.45 uur

door

Norman Simon Jaklin

geboren op 9 januari 1982
te Keulen, Duitsland

Promotor: Prof. dr. M.J. van Kreveld
Copromotor: Dr. R.J. Geraerts

The work described in this thesis has been supported by the Dutch national program
COMMIT/.

Contents

1 Introduction 3

1.1 Virtual worlds . 3
1.2 A �ve-level agent-navigation

planning hierarchy . 4
1.2.1 Related frameworks . 6
1.2.2 High-level planning . 7
1.2.3 Global-route planning . 8
1.2.4 Route following . 8
1.2.5 Local movement . 9
1.2.6 Animation . 9

1.3 Main contributions of this thesis . 10
1.3.1 Contributions Part I . 11
1.3.2 Contributions Part II . 11
1.3.3 Contributions Part III . 12

2 Motivation and preliminaries 13

2.1 Representing traversable space
in virtual worlds . 14
2.1.1 Grids . 16
2.1.2 Waypoint graphs and road maps 18
2.1.3 Navigation meshes . 21

2.2 A∗ and its variants . 24
2.3 The weighted region problem . 28

2.3.1 De�nition and �rst approximation algorithm
(Mitchell and Papadimitriou, 1991) 28

2.3.2 Unsolvability in ACMQ (De Carufel et al. 2012) 29
2.3.3 Existing approximation algorithms 29

2.4 Crowd simulation . 31

I Path Planning in Weighted Regions 33

3 Grid-paths in weighted regions 35

3.1 Related work . 36

iv Contents

3.2 Region-homotopic paths . 37
3.3 Path-length analysis of 8-neighbor grid paths in grid-aligned regions 39

4 Vertex-based pruning (VBP): A Hybrid Method 45

4.1 The Steiner-point method (SPM)
by Aleksandrov et al. 1998 . 46

4.2 The VBP method . 48
4.2.1 Triangle-based pruning . 49
4.2.2 Edge-based pruning . 50
4.2.3 Vertex-based pruning . 51

4.3 Experiments . 52
4.3.1 The tested scenes . 53
4.3.2 VBP vs. SPM in small scenes 55
4.3.3 Empirical analysis of path di�erences 59
4.3.4 VBP vs. SPM in a large scene 60

5 Conclusion Part I 65

II Path Following in Weighted Regions 69

6 The MIRAN method 71

6.1 Related work . 72
6.2 Preliminaries . 74
6.3 Method details . 75

6.3.1 Computing a reference point 77
6.3.2 Computing the candidate attraction points 78
6.3.3 Choosing the attraction point 80
6.3.4 Moving the agent . 81
6.3.5 Proof of correctness . 82

6.4 Experiments . 85
6.4.1 The tested scenes . 86
6.4.2 MIRAN paths vs. IRM paths 86
6.4.3 The impact of σ and d on path-following behavior 87
6.4.4 Performance . 93

6.5 Limitations . 97

7 MIRAN for disc-based agents 101

7.1 Candidate attraction points
for disc-based agents . 102

7.2 Weight function for disc-based agents 105
7.2.1 General concept . 106
7.2.2 Computation of interval points 106

Contents v

7.3 Results and future extensions . 109

8 Conclusion Part II 113

III Crowd Simulation 117

9 The Stream model: coordinating dense crowds 119

9.1 Related work . 120
9.2 Preliminaries . 123

9.2.1 Agent representation . 123
9.2.2 Overview of the Stream model 123

9.3 Stream behavior . 124
9.3.1 Computing local density information 125
9.3.2 The perceived stream velocity 127

9.3.2.1 Perceiving a single agent 127
9.3.2.2 Perceiving the local stream 128

9.3.3 Incentive . 130
9.3.3.1 Computing the incentive 130
9.3.3.2 Using the incentive 131

9.4 Experiments . 132
9.4.1 Scenarios . 132
9.4.2 Modeling various agent pro�les 133
9.4.3 Comparing di�erent collision-avoidance methods 135
9.4.4 Testing the e�ect of streams 137
9.4.5 Performance . 138

9.5 Limitations . 140

10 Social Group Behavior 143

10.1 Related work . 144
10.2 Preliminaries . 146

10.2.1 Basic settings . 146
10.2.2 Overview of the SGN method 147

10.2.2.1 SGN initialization 147
10.2.2.2 The SGN simulation loop 148

10.2.3 Integration of SGN into a crowd simulation framework . . . 149
10.3 The Social Groups and Navigation method 150

10.3.1 Leader and last member . 150
10.3.2 Coherence and sociality . 150
10.3.3 Coordination mode . 151
10.3.4 Group-walking mode . 152
10.3.5 Collision avoidance . 153

vi Contents

10.3.6 Social-force model . 154
10.3.6.1 Physical-contact force with another agent 154
10.3.6.2 Physical-contact force with obstacles 155
10.3.6.3 Group force . 155
10.3.6.4 Di�erences to the original model 156

10.4 Experiments . 157
10.4.1 Experimental setup . 157
10.4.2 E�ects of SGN on coherence and sociality 161
10.4.3 Evacuation times . 161
10.4.4 Performance . 163

10.5 Limitations . 165

11 Combining it all: the ECM crowd-simulation framework 167

11.1 The Explicit Corridor Map . 168
11.2 Implementation details . 171

11.2.1 Input and output . 171
11.2.2 Computing navigation meshes 172
11.2.3 Algorithms of the planning hierarchy 174
11.2.4 Architecture . 174
11.2.5 Visibility checks . 175

11.3 Experiments . 177
11.3.1 Computing visibility polygons 179
11.3.2 Computing indicative routes 180
11.3.3 Crowd simulation . 180

11.4 Conclusion and future work . 182

12 Conclusion Part III 185

13 Overall conclusion and future research 189

Bibliography 191

Samenvatting 203

Acknowledgements 205

Curriculum Vitae 207

“If the path before you is clear, you’re probably on someone else’s.”

- Joseph Campbell

Chapter 1

Introduction

1.1 | Virtual worlds

Virtual environments have gained in importance in many aspects of the world we
live in today. With the rise of the internet, the possibility to connect people and
to transfer data on a global scale within milliseconds, the virtualization of the real
world as well as imaginative �ctional worlds have become an important aspect of
modern life.

When most people hear terms such as virtual world or virtual environment, they
tend to think of immersive worlds for entertainment purposes such as movies, di-
gital games, or online communities. Such entertainment applications are most pop-
ular and ubiquitous in today’s society. However, they are by far not the only areas in
which virtual worlds have become increasingly important. Virtual worlds are also
important in non-entertainment applications such as training and education soft-
ware, simulations of mass events, evacuation scenarios, human factor analysis, and
urban city planning. Training and education software itself comprises various ap-
plication areas, ranging from teaching children with the help of virtual characters,
to training policemen and �re�ghters, or training soldiers in virtual environments
for military operations. Other applications such as online mapping services (e.g.
Open Street Map, Google Street View, or Mapillary) are also examples of virtualizing
the real world. Adding virtual humans and crowds to such applications can increase
their believability, usability and overall impact on society, potentially leading to the
creation of complete virtual copies of real-world locations.

Virtual worlds are usually not environments of vast empty space, but rather highly
dynamic and lively. They do not only contain huge numbers of user-controlled
characters or avatars, but also autonomous virtual humans or similar entities that
navigate through the virtual environment. Thus, a key aspect of creating an im-
mersive virtual world is the development of algorithms that handle the navigation
of such entities. This involves the creation of believable paths that are smooth,
do not contain unnecessary detours, keep clearance from obstacles, respect terrain
and region information, and avoid collisions with other moving entities. Further-
more, it involves the coordination of large virtual crowds in both sparse and dense
situations, and the generation of social behavior among virtual groups.

4 Chapter 1: Introduction

Over the past few decades, advances in computer hardware and algorithms have
radically changed and shaped the overall appearance of virtual worlds. Aspects
such as graphics, modeling or physics simulation have received much attention,
especially in the movie and game industries. This led to a wide range of novel tech-
niques to generate believable pictures, 3D models and animations. By contrast,
the paths traversed by virtual characters are often not visually convincing in the
aforementioned application areas. This problem is less apparent in movies, games,
or simulations that do not allow characters to deviate from their predetermined
or scripted paths. For these applications, a designer can manually create believable
paths that are of high quality. By contrast, applications that are more �exible and al-
low unpredictable interactions among characters rely on algorithms to handle path
planning. In serious simulations that try to mimic real-life behavior of humans, �ex-
ibility and a potentially in�nite number of interactions between characters is even
more important. However, even state-of-the-art algorithms and crowd-simulation
models struggle with particular computational tasks, and the range of possible char-
acter behaviors is still limited up to the present day.

In this thesis, we will focus on three computational tasks, with which state-of-the-
art algorithms still struggle: Region-based path planning, region-based path fol-
lowing, and coordinating dense virtual crowds and social groups. We will show
why these tasks are di�cult to solve with existing algorithms when using grids or
graph-based representations of the traversable space in a virtual environment. Fur-
thermore, we will show that these tasks can be solved e�ciently on a surface-based
representation when using novel methods. These novel methods on region-based
planning and coordinating crowds and social groups will be presented in detail, and
they form the main contributions of this thesis.

Throughout this work, we mainly refer to an autonomously moving entity as an
agent because all novel algorithms we will discuss are agent-based methods as part
of a larger agent-based crowd simulation framework. We will sometimes use the
term character, when the context is entertainment games or educational games that
feature autonomous virtual humans.

1.2 | A five-level agent-navigation
planning hierarchy

All novel algorithms that we present in this thesis are embedded in a �ve-level plan-
ning hierarchy [56, 142]. This hierarchy enables the simulation and combination of
particular aspects of agent navigation to generate complex and thus more believ-
able agent behaviors. In the past, the term path planning has been widely used as a
variant of the more abstract �eld of motion planning when discussing autonomous-
agent navigation. From a modern perspective, however, path planning is only one
aspect of autonomous-agent navigation. In the context of modern simulations and

Chapter 1: Introduction 5

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

Figure 1.1: A �ve-level agent-navigation planning hierarchy.

gaming applications, planning a path is only the �rst step to simulate believable
navigation behavior for a virtual agent. An agent also has to follow the path and
react to dynamic changes and events it encounters on its way. For instance, such
an event can be the encounter with other autonomous agents, for which collisions
need to be avoided, and dynamic changes in crowd density and �ow need to be
handled appropriately. As such, an agent-navigation and crowd-simulation system
comprises more than just path planning, which highlights the need for multiple
levels of planning.

In this section, we describe the �ve levels of planning that we propose for modern
agent-navigation and crowd-simulation systems. An illustration of such a plan-
ning hierarchy is given in Figure 1.1. Note that planning in such a hierarchy is not
purely serial. For instance, when an agent has reached its goal position, it returns
to the global-planning level or the higher-planning level to determine its next ac-
tion. An agent might also be forced to re-plan its global path while traversing it,
e.g. when crowd density increases or parts of its path are unexpectedly blocked by
a dynamic obstacle. As such, the levels of the proposed hierarchy need to be able
to communicate with all other levels at any time.

Note that the proposed hierarchy does not depend on a particular navigation-mesh
data structure, but rather serves as a general paradigm for tackling problems related
to autonomous-agent navigation. The work in this thesis, while strongly based
on the proposed hierarchy, is described in an abstract way that is independent of
the particular data structures that are being used. Still, all algorithms presented in
this thesis have been developed within the Explicit Corridor Map (ECM) framework

6 Chapter 1: Introduction

that was presented by Geraerts [31]. We will give a brief overview of the ECM in
Chapter 2, where we discuss navigation meshes in general. For a more detailed
discussion of the ECM, together with more practical implementation details of all
novel algorithms that we present in this thesis, we refer the interested reader to
Chapter 11. We will now start with discussing related frameworks and the most
important related work for each level.

The remainder of this section is based on the following publication:

[56] N. Jaklin, W. van Toll, and R. Geraerts. Way to go – a framework for multi-
level planning in games. In Proceedings of the 3rd International Planning in Games

Workshop (ICAPS’13 | PG2013), pages 11–14, 2013.

[142] W. van Toll, N. Jaklin, and R. Geraerts. Towards believable crowds: A generic
multi-level framework for agent navigation. In ASCI.OPEN, 2015.

1.2.1 | Related frameworks

Several frameworks exist for autonomous-agent and crowd simulation. Some of
these are rooted in the agent-navigation research community, while others are com-
mercial products for the industry.

A wide range of frameworks and software packages exists for serious-gaming ap-
plications such as safety training and evacuation studies, e.g. Legion1, Massive2,
MassMotion3, Pedestrian Dynamics4, SimWalk5, Steps6, or VisWalk7 Most of these
require manual work from the user because they do not automatically compute a
navigation data structure.

In the entertainment industry, the Unity3D game engine8 has recently adopted the
Recast

9 and Detour systems for automatic navigation meshes and agent simulation.
Golaem Crowd10 has shifted its focus to high-quality plug-and-play crowds for en-
tertainment applications. Massive is another software package that has been used
for crowd generation in various movies and entertainment games.

1 Legion; http://www.legion.com/; accessed January 13, 2016.
2 Massive; http://www.massivesoftware.com/; accessed January 13, 2016.
3 Mass Motion; Oasys Software; http://www.oasys-software.com/; accessed January

13, 2016.
4 Pedestrian Dynamics; Incontrol Simulation Solutions; http://www.

pedestrian-dynamics.com/; accessed January 13, 2016.
5 Sim Walk; http://www.simwalk.com/; accessed January 13, 2016.
6 Steps; http://www.steps.mottmac.com/; accessed January 13, 2016.
7 VisWalk; PTV Group; http://vision-traffic.ptvgroup.com/; accessed January

13, 2016.
8 Unity3D; http://www.unity3d.com/; accessed January 13, 2016.
9 Recast navigation; M. Mononen; https://github.com/recastnavigation/

recastnavigation; accessed January 13, 2016.
10 Golaem Crowd; http://www.golaem.com/; accessed 13 January, 2016.

http://www.legion.com/
http://www.massivesoftware.com/
http://www.oasys-software.com/
http://www.pedestrian-dynamics.com/
http://www.pedestrian-dynamics.com/
http://www.simwalk.com/
http://www.steps.mottmac.com/
http://vision-traffic.ptvgroup.com/
http://www.unity3d.com/
https://github.com/recastnavigation/recastnavigation
https://github.com/recastnavigation/recastnavigation
http://www.golaem.com/

Chapter 1: Introduction 7

In the research community, SteerSuite [120] has been proposed for evaluating steer-
ing methods. ADAPT [119] is a platform for developing agent behavior with an em-
phasis on animation. SimPed and NOMAD are models for passenger �ows, based
on real-world observations [19, 49]. The Menge framework by Curtis et al. [17] uses
a similar subdivision into levels as the ECM framework, on which the work in this
thesis is based. Menge and the ECM framework were developed independently, and
both are loosely based on a subdivision of tasks that has been presented by Funge et
al. [29] and Ulicny and Thalmann [132] in the context of cognitive and behavioral
modeling. Curtis et al. describe the subtasks as mathematical functions from an
abstract point of view, and they focus on four main subtasks: goal selection, plan
computation, plan adaptation, and motion synthesis. In general, these subtasks cor-
respond to the same subtasks that are used in the ECM framework. However, the
ECM framework subdivides the plan adaptation task further into path following and
local movement, and it emphasizes the need of an indicative route as a rough guid-
ance path that is computed in the global-planning level. Furthermore, Menge is not
based on a particular representation of the environment. It treats the choice for a
particular environment representation as a black box, whereas the ECM framework
focuses on an ECM as its underlying data structure with its particular advantages
(such as the ease of computing arbitrary-clearance paths).

1.2.2 | High-level planning

At the top of the hierarchy, high-level planning (level 5) translates the desired se-

mantic behavior of an agent to a geometric path-planning problem. First, an agent’s
abstract task such as ‘take the train to work’ can be converted to a list of more con-
crete tasks, e.g. ‘go to the train station, buy a train ticket, go to the correct platform,
enter the train’, and so on. Based on this plan, an agent should compute a list of goal
positions. Such a list is usually ordered, and the goal positions are usually speci�c
points in the environment [118]. Interesting open research questions in this area
are how to simulate the behavior of agents that have no clear ordering of goals,
and goals that are more general than speci�c geometric positions in the environ-
ment. An example situation would be a strolling agent in a shopping mall with no
speci�c goal other than looking around and maybe spontaneously deciding to buy
something here and there.

High-level planning is a research topic of its own, involving techniques such as
STRIPS [25] andHierarchical Task Networks [68]. Cognitive decision-making models
have also been applied to crowd simulation [101, 118]. In the context of this thesis,
we focus on geometric planning, and we deliberately treat high-level planning as a
black box.

8 Chapter 1: Introduction

1.2.3 | Global-route planning

On level 4 of the hierarchy, global route planning uses an agent’s current goal po-
sition to compute a global path through the environment. Following Karamouzas
et al. [63], we refer to such a global path as an indicative route because it is a pre-
liminary indication of an agent’s �nal trajectory. Compared to using a path that
is followed exactly, using an indicative route that is only roughly followed yields
greater �exibility in the lower levels of the planning hierarchy. In theory, an indic-
ative route can be any curve through the walkable space. In practice, it is usually a
sequence of connected straight-line segments.

Commonly desired properties for an indicative route are an overall short curve
length, the avoidance of unnecessary detours, and clearance from obstacles in the
environment [31]. However, indicative routes can also be computed based on other
criteria. For instance, local crowd-density information can be used to make agents
prefer routes that are less congested, which consequently spreads a crowd over
multiple routes [141]. Visibility information can also be used to compute indicative
routes along which an agent is not seen by other agents [34]. For a more extensive
overview of data structures and algorithms for global-route planning, we refer the
interested reader to Chapter 2.

Another desired property that is particularly important for the contributions made
in this thesis is the avoidance of undesired regions or terrain in the environment.
For example, a pedestrian might prefer walking on a sidewalk while avoiding roads,
puddles or muddy terrain. Planning and following approximate cost-optimal global
routes, which are based on an agent’s individual region preferences, is one of the
major research challenges we tackle in this thesis. We refer the interested reader to
Chapters 3 through 5 for path planning in weighted regions.

1.2.4 | Route following

On level 3 of the hierarchy, an agent’s route-following behavior is being handled.
The purpose of this level is to compute a preferred velocity for an agent in each time
step of the simulation.

Many researchers and software systems do not treat route following as a separate
level. However, we believe that a clear separation between route planning and route
following is crucial for the real-time simulation of autonomous agents. The main
reasons for this are as follows: An indicative route is generally not smooth and
natural looking. Furthermore, modern collision-avoidance methods (see Section
1.2.5) require a preferred velocity as an input. Unless the agent can walk towards its
goal in a straight line, we need an algorithm that chooses a desired walking direction
at any point in time. Due to collision-avoidance maneuvers, an agent is usually not
located exactly on its indicative route. In addition, a route-following algorithm

Chapter 1: Introduction 9

can take region preferences into account, which is an aspect that is particularly
relevant in this thesis. We refer the interested reader to Chapters 6 through 8 for
path following in weighted regions.

Among the �rst authors to acknowledge route following as a separate step was
Reynolds [115], who introduced steering behaviors for autonomous agents as an
extension to his seminal work on simulating �ocks of birds and schools of �sh [114].
The Indicative Route Method (IRM) by Karamouzas and Overmars [63] uses an at-
traction point that moves along an indicative route, which is then combined with
a force-based model to make an agent approach its attraction point in each step of
the simulation. Our novel path-following method that we present in Chapter 6 is
based on the same idea, but extends and improves on the IRM by simulating region
preferences and giving the user control over how closely an indicative route should
be followed.

1.2.5 | Local movement

On level 2 of the hierarchy, local movement enables an agent to temporarily deviate
from its route to resolve local events such as collisions with other agents. An agent
may also coordinate its direction and speed with the agents in its vicinity, e.g. to
simulate social groups of agents [65, 115].

In early collision-avoidance methods, agents exerted attractive and repulsive forces,
and physical laws of motion yielded new velocities for each agent [45, 115]. A
disadvantage of these methods is that they are inherently reactive.

More recent algorithms are based on velocity selection [64, 88, 133]. These algorithms
let an agent pick the best speed and direction from a sampled range of options (i.e.
candidate velocities), based on a cost function. The cost of a candidate velocity
depends on the di�erence to an agent’s preferred velocity, and on the predicted
collisions with other agents when choosing the candidate velocity.

Most local collision avoidance models cannot solve scenarios that feature high crowd
densities. Furthermore, they handle agents as individuals with no social bond.
These are two important aspects in the context of this thesis: Improving the co-
ordination between agents in high-density situations and simulating social-group
behavior are open research challenges that we tackle in Chapters 9 and 10 of this
thesis, respectively.

1.2.6 | Animation

Finally, the animation level 1 produces visual output by animating and translating
an agent’s 3D model in the environment [7]. Generating smooth and physically

10 Chapter 1: Introduction

plausible animations without requiring a large database of motion clips is an active
research topic that is outside the scope of this thesis.

Note that an animation and the overall simulation usually have di�erent framerates.
Crowd simulations often use a �xed timestep of 0.1s (i.e. 10 frames per second) [63],
whereas smooth animation requires a much higher framerate. We therefore assume
that the animation level uses a separate loop. Whenever a simulation step ends and
all agent positions have been updated within the simulation model, the animation
level of the planning hierarchy is noti�ed and generates animations that take the
agents to their new positions over the next few animation frames.

This concludes the description of the underlying planning hierarchy that we as-
sume throughout the remainder of this thesis. At the beginning of each subsequent
chapter, we will highlight the level(s) in which the described work is embedded. We
now give an overview of the main contributions of this thesis.

1.3 | Main contributions of this thesis

The main contributions of this thesis comprise novel real-time algorithms for virtual-
agent navigation in simulations and gaming applications, as well as theoretical res-
ults related to path planning, path following and the navigation of autonomous
virtual crowds.

All novel algorithms are designed in a modular way. This means that they can be
independently plugged into a larger crowd-navigation framework that follows a
hierarchical structure as described in the previous section. Some of the proposed
algorithms are directly linked to each other in such a way that the output of one
algorithm can be used as an input for another. For instance, theVertex-based Pruning
method as described in Chapter 4 computes an indicative route from a given start
to a given goal position. The Modi�ed Indicative Routes and Navigation method as
described in Chapter 6 takes such an indicative route as an input and computes
a smooth trajectory for an agent based on the given indicative route as a rough
guidance path.

All algorithms were developed within the Explicit Corridor Map (ECM) framework
[31, 56], which follows the proposed hierarchical structure of �ve di�erent planning
levels. However, speci�c properties and features of the underlying ECM navigation
mesh are used only for ease of implementation, and they are not fundamental parts
of the described algorithms. As such, the algorithms can be used in any crowd-
navigation and simulation framework that handles path planning, path following,
and local avoidance-behavior as separate steps, e.g. the framework by Curtis et al.
[17].

Overall, the thesis is subdivided into three distinct parts, each of them focusing on
one of the center levels of the �ve-level crowd-navigation hierarchy. Part I focuses

Chapter 1: Introduction 11

on path planning in weighted regions for an individual agent, Part II focuses on
path following in weighted regions for an individual agent, and Part III focuses on
simulating the navigational aspects of multiple agents in small social groups and
large crowds.

1.3.1 | Contributions Part I

In the �rst part of this thesis (Chapters 3 through 5), we address the problem of
computing a path in a 2D virtual environment that features multiple weighted re-
gions. Such regions either resemble a particular terrain type such as road, grass, or
water, or they resemble a psychological in�uence on an agent’s navigation, such as
dangerous or attractive. The weight for each region encodes how di�cult it is for
a virtual agent to traverse it. Given an agent with a set of particular region pref-
erences, the task is to compute a path from a start position to a goal position that
minimizes the weighted Euclidean length among all possible paths. From a compu-
tational geometry perspective, this is known as the Weighted Region Problem, and
we discuss it in Section 2.3 in more detail.

In Chapter 3, we analyze 8-neighbor grid paths. To this end, we de�ne the term
region-homotopy and contribute to existing literature on path-cost analyses. We
prove an upper bound on the costs for grid paths under the assumption that all
regions are aligned with the grid. To the best of our knowledge, this is the �rst
path-cost analysis for grid paths in weighted regions. In Chapter 4, we present
a new path planning method called Vertex-based Pruning (VBP) that combines an
A∗-search on a grid with an existing ε-approximation method. We show that VBP
decreases the computation times of ε-approximate paths in weighted regions of ex-
isting methods when the environment is su�ciently large, while still guaranteeing
acceptable overall path costs. As such, VBP is a next step towards real-time path
planning in weighted regions for simulations and gaming applications. The paths
computed with VBP can be used as indicative routes that form a rough guideline of
an agent’s preferred path through the environment. In Chapter 5, we draw conclu-
sions on the path-planning part of this thesis.

1.3.2 | Contributions Part II

In the second part of this thesis (Chapters 6 through 8), we present a new path-
following method named Modi�ed Indicative Routes and Navigation (MIRAN). MI-
RAN takes as an input an indicative route in a scene with multiple weighted regions.
Such a path can be either computed with our new VBP method, or with a simpler
path planning approach, or it can be manually drawn by a user. The MIRAN method
samples the given route and makes an agent follow it based on its region prefer-
ences to create smooth curves. MIRAN is the �rst method to allow path-following

12 Chapter 1: Introduction

behavior that is based on region preferences for real-time simulations and gaming
applications.

In Chapter 6, the agent is assumed to be represented as a point. Two user-controlled
parameters can be set to determine how densely the indicative route should be
sampled and how far ahead along the indicative route the agent is allowed to see.
The latter determines how much of the route the agent is allowed to shortcut when
following it. In Chapter 7, we extend the MIRAN method to handle agents that are
represented as discs with an arbitrary radius. We adjust the computation of attrac-
tion points and the underlying weight-function to account for the agent’s radius.
In addition, we discuss how we can extend existing collision avoidance methods
to also account for an agent’s region-preferences as future work. In Chapter 8, we
draw conclusions on the path following part of this thesis.

1.3.3 | Contributions Part III

In the third part of this thesis (Chapters 9 through 12), we present a new crowd sim-
ulation model and a new method to simulate the walking behavior of small social
groups. Similar to the contributions made in Part I and Part II, these contributions
are agent-based, but they can be used to simulate large numbers of virtual agents
at interactive rates on modern hardware.

In Chapter 9, we introduce a novel crowd simulation model, the Stream model. It
combines the advantages of agent-based and �ow-based models using only local
rules. The Stream model is the �rst to signi�cantly improve the coordination and
crowd �ow in arbitrarily-changing density scenarios for real-time simulations and
gaming applications. In Chapter 10, we present a new method called Social Groups

and Navigation (SGN). It can be used to simulate social groups of virtual pedestrians
that display social formations and waiting behavior. SGN is the �rst social-group
method that adds sociality to real-time simulations on the global-planning level, the
route-following level, and the local-movement level of the underlying hierarchy as
proposed in Section 1.2. In Chapter 11, we discuss how to combine all our contri-
butions in a framework based on the Explicit Corridor Map [31] and discuss imple-
mentation details. Lastly, we draw overall conclusions and discuss future work in
Chapters 12 and 13, respectively.

Chapter 2

Motivation and preliminaries

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

This chapter provides motivation and preliminaries for the contributions we make
in the three parts of this thesis. We motivate why classical representations of tra-
versable space in a virtual environment are not well-suited for advanced methods to
generate complex behavior such as region-based path planning, region-based path
following, coordinating dense crowds, and adding social behavior to small agent
groups.

To this end, we start with discussing di�erent ways to represent traversable space
in a virtual environment; see Section 2.1. We discuss classical representations such
as grids or waypoint graphs, and more recent surface-based representations that
allow the extraction of relevant information such as closest-obstacle information
or local crowd density. We show why such surface-based representations are well-
suited for solving advanced path planning and crowd simulation problems and thus
form the basis for the contributions we make in this thesis. In Section 2.2, we give
an overview of the popular and widely-usedA∗ method. This method is well-suited
for classical path planning problems on a grid or graph structure. The A∗ method
is also used within the context of the novel Vertex-based Pruning method, which we
present in Chapter 4. In Section 2.3, we discuss the Weighted Region Problem (WRP)

14 Chapter 2: Motivation and Preliminaries

and its variants. Our novel region-based methods in Parts I and II can be seen as
solutions to particular variants of the WRP. In Section 2.4, we discuss existing crowd
simulation models. We show why these models are not well-suited for solving the
problems we tackle in Part III of this thesis.

This chapter is based on the following publication:

[53] N. Jaklin and R. Geraerts. Navigating through virtual worlds: From single char-
acters to large crowds. In D. Russel and J. M. La�ey, editors, Handbook of Research
on Gaming Trends in P-12 Education, chapter 25, pages 527–554. IGI Global, 2015.

2.1 | Representing traversable space
in virtual worlds

How should traversable space in a virtual world be represented? The choice for
a certain representation is strongly connected to the complexity and required e�-
ciency of the application at hand. In this section, we give an overview of several
representations and their pros and cons. We start with discussing how traversable
space is represented in one of the most popular application areas of virtual worlds:
entertainment games.

As an example for which representing traversable space is a trivial task, consider
the classic 2D arcade game Space Invaders1. Here, the enemies move in a predeter-
mined and scripted way, which does not involve any path planning. The player’s
traversable space is only a 1D straight-line segment at the bottom of the screen for
which no complex representation is necessary. Note that there is no automated path
planning for the directly-controlled player character either, but the player’s travers-
able space is still important for collision avoidance with the left and right screen
limits. A game that is more complex with respect to path planning is Pac-Man

2. The
enemies follow di�erent strategies to catch the player. Here, the 2D game world
consists of rectilinear tiles that are either traversable or blocked. Thus, a simple
tile-based grid approach is a su�cient way to represent all traversable space. By
contrast, many modern games tend to simulate an open world (e.g.Grand Theft Auto
V

3), or they provide a sandbox environment, which allows players to generate their
own content (e.g. Minecraft

4. Both types of games feature highly dynamic multi-
layered 3D environments with di�erent terrain types. Autonomous characters in
future iterations of such game genres should not only plan collision-free paths, but
also detect and use areas where climbing or jumping over gaps is possible to access

1 Space Invaders; Taito Corporation; 1978.
2 Pac-Man; Namco; 1980.
3 Grand Theft Auto V; Rockstar Games; 2013.
4 Minecraft; Mojang; 2009.

Chapter 2: Motivation and Preliminaries 15

di�cult-to-reach areas in the game world. Such features require a representation
of traversable space that is far from trivial and still open to future research.

The topology of the virtual world also in�uences the choice for a particular repres-
entation of traversable space. While the topology of the world in Space Invaders is
a 2D plane, there are games with more complex topologies. In Pac-Man, characters
are allowed to exit to the left and right screen edges to appear on the opposite side.
This behavior follows the topology of a cylinder. An example of a game with the
world topology of a torus is Asteroids5. The player’s ship as well as asteroids and
�ying saucers can exit the screen to all four edges and appear on the opposite side.
3D Games that allow a character to �y, such as Descent6, feature a 3D space topo-
logy. In Super Mario Galaxy

7, the player can fully circumnavigate small planets and,
hence, the world topology equals a sphere. In Super Paper Mario

8, the player has to
interactively switch between 2D and 3D perspectives to solve puzzles. In Portal

9,
the player can create traversable connections between arbitrary points in particular
areas of the game world. The game Monument Valley

10 features dynamic Escher-
like worlds that are physically impossible. Other exotic topological spaces such as
the Möbius Strip

11 or the Klein Bottle
12 require di�erent path planning strategies,

and they may enable novel gameplay elements.

Note that in this thesis, we only discuss virtual worlds that require two-dimensional
traversable space representations. Even when we discuss (multi-layered) 3D envir-
onments, a 2D representation is su�cient as long as virtual characters need to
traverse 2D surfaces only. For actual 3D path planning (e.g. for autonomous �ying
characters), the problems we discuss in this chapter require di�erent approaches
beyond the scope of this thesis.

For more information on world topologies and the concept of traversable space
in digital games, we refer to the discussion Theorizing Navigable Space in Video

Games [148]. Its main focus is on space that the player can traverse, viewed from
an abstract level. Traversable space in games and simulations that only feature
directly-controlled player characters usually require simpler representations. Such
representations only need to account for handling collisions with static obstacles
and providing connectivity information between particular parts of the world, e.g.
between di�erent game levels. In this thesis, by contrast, we are interested in rep-
resenting space for fully autonomous or user-controlled agents that are steered in
an indirect way (e.g. by assigning a goal position via a mouse click or a �nger press

5 Asteroids; Atari Inc.; 1979.
6 Descent; Parallax Software; 1994.
7 Super Mario Galaxy; Nintendo EAD Tokyo; 2007.
8 Super Paper Mario; Nintendo SPD; 2007.
9 Portal; Valve Corporation; 2007.
10 Monument Valley; Ustwo; 2014.
11 Möbius Strip; F. Möbius and J. B. Listing (independently); 1885; http://mathworld.

wolfram.com/MoebiusStrip.html; accessed January 13, 2016.
12 Klein Bottle; F Klein; 1882; http://mathworld.wolfram.com/KleinBottle.

html; accessed January 13, 2016.

http://mathworld.wolfram.com/MoebiusStrip.html
http://mathworld.wolfram.com/MoebiusStrip.html
http://mathworld.wolfram.com/KleinBottle.html
http://mathworld.wolfram.com/KleinBottle.html

16 Chapter 2: Motivation and Preliminaries

on a touchpad). The autonomy of an agent thus requires arti�cial decision making
that requires an agent to extract information from the virtual world that a directly-
controlled player character naturally has due to a human being in control. We will
now list several methods to represent traversable space that have been used in past,
and we discuss their advantages and drawbacks.

2.1.1 | Grids

Grids can be intuitively described as regular subdivisions of the plane into cells of
a particular shape and with a particular grid resolution. From an abstract point of
view, grids can be seen as a special case of lattice structures. This means that by
adding so-called generator vectors to a given cell point in the grid, any neighboring
cell point can be obtained. For a 2D grid, two generators representing the up and
right directions are su�cient to obtain all grid cell points [76].

Grids are intuitive and easy to implement, which makes them a popular repres-
entation of traversable space. The most common types are rectangular or square
grids. However, other types have been widely used in simulations and games, too.
Hexagonal grids are common, as well as grids with isometric diamond-shaped tiles;
see Figure 2.1. From a topological point of view, isometric grids and rectilinear grids
are equal. They are commonly used in 2D games to simulate an isometric view on
pseudo-three-dimensional game worlds in which correct clipping is easily achieved
by rendering objects on the grid from top to bottom along the screen. Rectangular
grids are also used in many traditional and modern board games, and have also been
widely used in pen and paper role-playing games to simulate combat scenarios.

When traversable space is represented using a grid, the actual path �nding is usually
performed on the dual graph of the grid. This is because a wide range of graph-
search algorithms exists that can compute shortest paths e�ciently (see Section
2.2). Furthermore, game objects are usually placed in the center of a grid cell. In the
dual graph, each grid cell is represented as a vertex, and it is connected via an edge
to each vertex that corresponds to an adjacent cell. While a rectangular, square or
isometric grid keeps its structure when considering its dual graph (except for an
o�set translation), hexagonal grids become triangular and vice versa, see Figure

Figure 2.1: Rectilinear, isometric and hexagonal grids.

Chapter 2: Motivation and Preliminaries 17

Figure 2.2: Hexagonal grids and triangular grids are dual graphs of each other. Each point is
a vertex in the triangular graph (red), and it corresponds to a hexagonal cell in its dual graph
representation.

Figure 2.3: Squared grid overlaid on a polygonal environment: Red (dark) squares count as
obstacles because they are partially covered by polygons. Some passages are not traversable
due to the too coarse grid resolution.

2.2. Thus, using the center points of hexagonal cells as possible character positions
is technically the same as performing path-�nding on a triangular graph. In the
case of square grids, typical variants are 4-neighbor and 8-neighbor square grids,
depending on whether diagonal movement from one cell to another is allowed or
not.

Path planning can also be done on the edges or vertices of the grid itself. The Settlers
II

13, for instance, uses a hexagonal grid. The player can build roads along the edges
and place �ags along the vertices of the grid. Goods are then distributed and moved
along the roads. The edges and vertices of the grid are also used in adaptations of
abstract board games such as Go or in many puzzle games.

While grids are easy to implement, a major problem is that grids may not cover all
of the traversable space that is visually displayed to the user. Some corners of the
virtual world and important passages between obstacles might not be traversable
due to a too coarse grid resolution; see Figure 2.3.

13 The Settlers II; Blue Byte Software (today: Ubisoft Blue Byte); 1996.

18 Chapter 2: Motivation and Preliminaries

Figure 2.4: A waypoint graph for an environment with four obstacles.

The question of how much a grid path deviates from a shortest path on the exact
geometry has been answered via path-length analysis proofs. Nash [98] presen-
ted a uni�ed proof structure for upper bounds on the length of square, triangular,
hexagonal and cubic 3D grid paths. One of the contributions of this thesis is a cor-
responding result for 8-neighbor grid paths in environments with weighted regions,
when all regions are aligned with the grid; see Chapter 3.

Grids or their dual graphs are also in�exible because character motions are hard to
coordinate when two or more characters follow the same edge bi-directionally. In
addition, the edges of a graph are only a discrete subset of all possible trajectories
in a continuous space. Resulting motions may not be visually convincing because
the underlying graph edges are not smooth and do not cover energy-optimal paths.
By energy-optimal paths, we refer to paths that minimize the expended energy of
an agent while traversing them. How the term energy is de�ned depends on the
application context and which real-world factors are being simulated. For instance,
the overall path length and roughness of the underlying terrain could be modeled
to determine the required energy an agent has to spend. Smoothing paths in a
graph can be expensive and requires a global approach. This is undesired because
entertainment games and simulations usually require real-time responses. Further-
more, the dual graph of a grid requires computationally expensive updates when
obstacles are inserted, deleted, or moved [140]. Note that these issues also occur
with other graph-based approaches such as waypoint graphs, which we discuss in
the following section.

2.1.2 | Waypoint graphs and road maps

Waypoint graphs and road maps are two interchangeable terms. The nodes (or
waypoints) resemble locations in the virtual world where an agent can be located.
An edge between two nodes in the graph corresponds to a straight-line path which
agents can traverse without hitting obstacles; see Figure 2.4.

Chapter 2: Motivation and Preliminaries 19

Waypoint graphs are a general concept that is used in various research �elds and
in a wide range of applications. A common way to build a waypoint graph is to
manually determine waypoints and edges for a given environment in the design
phase of a game level or simulation environment. Some games such as real-time
strategy games (e.g. Starcraft II14) even allow players to set waypoints themselves
and use this as a tactical gameplay element.

Probabilistic Road Maps (PRMs) [66] and Rapidly-Exploring Random Trees (RRTs)
[75] are commonly used in the robotics community. Besides generating waypo-
int graphs from manually determined points, they can also be de�ned based on a
decomposition of the traversable space, e.g. induced by the medial axis of the en-
vironment (see Section 2.1.3 and [8]). Another example of a waypoint graph is the
visibility graph of an environment and its generalized variant [74]. We now discuss
the three mentioned examples in more detail.

PRMs [66] can be used to solve classical path planning problems, but also higher-
dimensional motion planning problems. An example of such a problem is plan-
ning the motion of a robot arm with several joints through a 3D environment with
obstacles. The basic idea is to randomly sample the given con�guration space and
build a roadmap graph of nodes that resemble collision-free con�gurations. A local
planner is used to connect feasible nodes in the roadmap graph. After the start and
goal con�gurations have been inserted and the roadmap graph is constructed, a
graph-search method is used to �nd a collision-free path between the given con-
�gurations. PRMs are proven to be probabilistically complete. This means that the
probability of �nding a path (if one exists) converges to 1 when more and more
valid samples are added to the roadmap graph over time. This basic idea leaves
room for �lling in particular details such as how to sample the con�guration space
or what local planner to use. Thus, many variants of the PRM approach have been
presented, some of which can also handle non-holonomic constraints [122]. This
means that they can be used to compute paths for autonomous agents that are re-
stricted to particular movements in a given state, and are thus not able to move in
any direction at any time (e.g. a virtual car). For further details, we refer the reader
to the comparative study of di�erent PRM approaches by Geraerts and Overmars
[32].

RRTs [75] are similar to PRMs because they also randomly sample the (potentially
high-dimensional) con�guration space to build a graph of con�gurations, on which
a graph search can be performed. Contrary to PRMs, RRTs are tree-structures with
the root being the given start con�guration, which makes RRTs a single-query ap-
proach, whereas PRMs can be used to answer multiple queries. RRTs can handle
non-holonomic constraints, and they are designed to expand new nodes towards
the largest Voronoi regions of the yet unexplored con�guration space. We refer the
interested reader to the survey by LaValle and Ku�ner [77] and the book by LaValle
on planning algorithms [76].

14 Starcraft II; Blizzard Entertainment; 2010.

20 Chapter 2: Motivation and Preliminaries

Figure 2.5: Left: A visibility graph for a scene with three obstacles. Dashed edges are pruned
in the generalized visibility graph because their corresponding vertices in the generalized
graph are not mutually visible in the generalized de�nition of visibility. Right: A generalized
visibility graph for the same scene with in�ated obstacles and corresponding visibility edges.

In a visibility graph, each node corresponds to a vertex of a polygonal obstacle in
the environment. An edge between two nodes is added to the visibility graph, if the
straight-line segment between them does not intersect any obstacles, or, in other
words, if the two nodes are mutually visible; see Figure 2.5 (left). Note that the
complexity of the visibility graph can be quadratic in the number n of polygon
vertices. The graph can be computed inO(n2) worst-case optimal time [36, 146]. In
addition, there are output-sensitive algorithms that can construct a visibility graph
in O(n log n + E) time, where E is the total number of edges in the resulting
visibility graph [8, 37]. Note that E =

(
n
2

)
= O(n2) for the worst-case scenario of

a complete graph.

Laumond [74] introduced the concept of the generalized visibility graph, which has
been used for path planning by several authors [85, 145, 152]. For an agent that is
represented as a disc with a radius r, the obstacles in the generalized visibility graph
are �rst in�ated by r using Minkowski’s operations. There are two types of nodes
in the resulting graph. Vertices of the �rst type are concave corners of the in�ated
obstacles. Vertices of the second type are �ctitious vertices that correspond to con-
vex arcs of the in�ated obstacles. In general, a shortest path in a polygonal scene
consists of segments that are tangent to the borders of the obstacles. Therefore, it
can be shown that all vertices of type one need not be connected by additional edges
because they are never part of a shortest path. For the set of �ctitious vertices, a
generalized notion of visibility is used: Two �ctitious vertices see each other, if and
only if there is at least one pair of points on the corresponding two arc segments
such that their straight-line connection is tangent to both arc segments. See Figure
2.5 (right) for an example. The generalized visibility graph is not only smaller in
the number of edges, but it also makes an agent automatically keep clearance from
obstacles. Since the search for tangents can be performed in O(n2) time [74], the

Chapter 2: Motivation and Preliminaries 21

Figure 2.6: Left: A navigation mesh for the environment shown in Figure 2.3 and Figure 2.4.

overall time complexity to compute the generalized visibility graph is the same as
for the visibility graph.

As mentioned before, waypoint graphs are generally smaller in the number of nodes
and edges compared to the dual graph of a grid. This decreases the time to perform a
path-�nding algorithm on that structure (see Section 2.2). However, all graph-based
techniques su�er from a range of problems that are inherent to these techniques.
A graph does not provide information about the actual geometry of the scene, and
it does not allow agents to deviate from their paths induced by the graph edges.
This becomes an even bigger problem for a large crowd and collision-avoidance
among the crowd members. The resulting paths may neither be natural nor visually
convincing.

Given all these issues, it becomes apparent that graph-based representations are not
su�cient for advanced path planning and crowd simulation tasks. We now discuss
navigation meshes as a more recent representation to overcome the aforementioned
problems.

2.1.3 | Navigation meshes

Intuitively, a navigation mesh is a set of two-dimensional simple polygons with
connectivity information, which represents the traversable space in a virtual world.
The term has been coined mainly in the gaming community in the context of game
engines. There is no exact and formal de�nition, even though the term has been
used in scienti�c papers on path planning. With the above informal description,
the aforementioned grids can also be seen as special types of navigation meshes.
However, navigation meshes are usually associated with polygonal representations
that cover all traversable space exactly and that allow the extraction of additional
information about the polygonal regions such as terrain information or clearance
from obstacles for any given point. Figure 2.6 shows an example of a navigation
mesh.

22 Chapter 2: Motivation and Preliminaries

Entertainment games that come with level editors and support path planning with
navigation meshes either use an automatic navigation mesh generation algorithm,
or they let the user de�ne traversable space for the level geometry within the ed-
itor. For example, in Counter-Strike: Source15, automatic navigation mesh genera-
tion for user-generated maps is done by a �ood-�lling algorithm. The user de�nes
spawn-points for players on traversable parts of the game map. From those points,
the algorithm computes all traversable space that can be reached from the initial
positions. Additionally, the user can explicitly mark traversable areas in case the
algorithm fails to detect some parts due to steep stairs or ramps.

The project Recast navigation16 is an open source library to automatically construct
navigation meshes out of 3D level geometry. Recast generates a voxel mold from
the 3D level geometry and automatically detects and prunes non-traversable areas.
The resulting walkable space is then divided into simple overlaid 2D regions with
one single non-overlapping contour. By tracing the boundaries of the regions, the
algorithm produces a set of traversable convex polygons as a �nal output. The
resulting navigation mesh can then be used for path planning. For example, it can
be fed into Detour, which is a path-�nding toolkit that accompanies Recast.

Kallmann [59] introduced a navigation mesh called a Local Clearance Triangulation
(LCT). It can be used to answer path planning queries for agents of di�erent size.
Locally shortest paths can be computed in optimal time. If global optimality is re-
quired, an extended search is used to gradually improve the path. Furthermore,
Kallmann discussed several algorithms and operations that are based on generic
triangulation-based navigation meshes and on the LCT in particular [58]. Among
these are methods for automatic agent placement, tracking moving obstacles, and
ray-obstacle intersection queries. Kallmann’s navigation mesh yields an exact rep-
resentation of the environment and can handle dynamic updates e�ciently. How-
ever, (multi-layered) 3D environments are not discussed.

Pettré et al. [108] introduced a navigation mesh based on discs and cylindrical areas.
It supports multi-layered 3D environments and agents of variable size. However,
it does not support an exact representation of the navigable space and e�cient
dynamic updates of the environment.

A navigation mesh that combines the advantages of the aforementioned approaches
is the Explicit Corridor Map (ECM) [31]. It is an annotated data structure based on
the medial axis of the environment, which is the set of all points that are equidistant
from at least two distinct closest obstacle points; see Figure 2.7.

The medial axis can be seen as a special type of waypoint graph in which all edges
run through the center of the free space between pairs of obstacle polygons. For
each vertex of the medial axis graph, there are either at least three obstacle polygons

15 Counter Stike: Source; Valve Corporation; 2004.
16 Recast navigation; M. Mononen; https://github.com/recastnavigation/

recastnavigation; accessed January 13, 2016.

https://github.com/recastnavigation/recastnavigation
https://github.com/recastnavigation/recastnavigation

Chapter 2: Motivation and Preliminaries 23

Figure 2.7: Left: Obstacles (shown in red; the center U-shape and the four bounding line
segments), medial axis (blue), ECM vertices (large discs), event points (small discs), and con-
nections of ECM vertices and event points with closest obstacle points (black line segments),
subdividing the free space into ECM cells. Right: A multi-layered 3D environment and its
medial axis [140].

that have the same distance from that vertex, or the vertex is placed in a non-convex
corner of an obstacle. An edge between two vertices of the medial axis consists of
a sequences of straight-line segments and parabolic arcs, depending on the type of
corresponding obstacles to its left and right (with respect to a given orientation of
the edges); see Figure 2.7 (left). With each element in this sequence, its left and
right closest obstacle points are stored. This partitions a 2D environment into a set
of walkable areas in O(n log n) time and O(n) space, where n is the total number
of obstacle vertices. Each area corresponds to one particular obstacle polygon, as
all points in that area are closer to that obstacle than to all other obstacles.

In the �eld of Computational Geometry, a similar structure is known as the Gen-

eralized Voronoi Diagram (GVD), and it has been widely studied during the last
decades. Approximations of a GVD can be e�ciently computed using graphics
hardware [48]. First, for each two-dimensional site (i.e. the obstacle polygons, lines
or points) a three-dimensional distance mesh is computed and drawn by the graph-
ics hardware, each mesh in a di�erent color. By projecting the distance meshes
back onto the 2D plane and tracing the boundary lines of the di�erent regions in
the color bu�er, a feasible approximation of the GVD can be obtained. This ap-
proach requires the obstacle polygons to be convex, so concave polygons are �rst
subdivided into convex ones. The GVD depends on how the given Voronoi sites are
de�ned. For the exact same geometrical scene, di�erent variants of the GVD can
be obtained depending on whether obstacles polygons are treated as separate lines
or as whole (convex) polygonal sites. The medial axis, by contrast, is independent
of this choice because it is de�ned for any two distinct obstacle points, no matter
what the structure of the obstacles is. Technically, the medial axis can be seen as a
variant of the GVD, in which all edges are pruned that the GVD might contain due
to treating obstacles as sets of line segments.

24 Chapter 2: Motivation and Preliminaries

There are software libraries available for computing GVDs: Vroni [47] and Boost
17.

As a pre-processing step, undesired intersections and overlaps caused by impreci-
sion in the geometry data can be detected and removed using corresponding func-
tions of the Boost library. Vroni or Boost can then be used to robustly compute an
ECM.

The ECM has many advantages. All traversable space is represented with respect
to the correct topology of the environment. This resolves the issues that are inher-
ent to all approximated representations that we discussed before. Furthermore, the
ECM is space-e�cient and supports time-e�cient extraction of global paths with
any desired amount of clearance from obstacles. The ECM works both for 2D and
multi-layered 3D environments; see Figure 2.7. In addition, the ECM can be dynam-
ically updated in real-time by only applying local changes to the mesh whenever
an obstacle is inserted or deleted [140].

This concludes the discussion on representing traversable space. We have discussed
grids and waypoint graphs, and we have shown why such representations are not
well-suited for advanced path planning tasks. Examples of such tasks are the com-
putation of smooth and energy-optimal trajectories, or the simulation of higher-
level behaviors for autonomous agents that require the extraction of local informa-
tion about the virtual environment. What is needed instead is a surface-based rep-
resentation such as a navigation mesh, which allows to extract additional inform-
ation about the scene, the geometry, nearby agents, or terrain types. The novel al-
gorithms presented in the three main parts of this thesis are based on surface-based
representations, either on an annotated triangulation of the scene or on the Expli-
cit Corridor Map (ECM) [31]. These methods, however, are designed in a �exible
way independent of a particular representation. They can be used on similar data
structures, too, as long as the needed information can be extracted e�ciently. For
more algorithms on automatic navigation mesh generation and related path plan-
ning topics, we refer the interested reader to the AI Game Programming Wisdom

book series [112].

In conclusion, we believe that surface-based representations of the traversable space
are a promising next step into the future of simulating immersive virtual worlds. In
the following section, we discuss the popular A∗ graph-search algorithm, which
will be part of our novel Vertex-based Pruning method for computing ε-optimal
paths in weighted regions, which we present in Chapter 4.

2.2 | A∗ and its variants

The A∗ algorithm [42] is one of the best-known and probably the most-used path-
�nding algorithm. This is because it can e�ciently compute shortest paths in a

17 The Boost C++ Library; http://www.boost.org/ ; accessed January 13, 2016.

http://www.boost.org/

Chapter 2: Motivation and Preliminaries 25

graph and combines the advantages of Dijkstra’s algorithm [21] with a greedy Best-

First-Search strategy. With only small and easy-to-implement variations, a wide
range of variants (e.g. shorter computation time to �nd good paths rather than op-
timal ones) can be obtained. This makes the A∗ algorithm a �exible and powerful
tool for many path-�nding applications [131].

The main idea of A∗ is to combine actual traversal costs from a start node with
heuristic values that estimate the distance to a target node. Given an edge-weighted
graph with two designated nodes s and t, a function g assigns to each node n in the
graph the costs of the currently known shortest path from s to n. Furthermore, a
heuristic function h assigns to each node in the graph the estimated costs of a path
from n to t. A∗ then starts to search for a path from s to t by computing f = g+ h
for each node under consideration and expanding a node with minimum f -value
in each step. The g-value of a node n is updated whenever a shorter path than
the current one from s to n is detected. A* manages two lists of nodes, the open

list and the closed list. While the open list stores all nodes that are currently under
consideration, the closed list stores all nodes that have already been expanded and
do not need to be visited again.

It can be proven, if the heuristic function h does not overestimate the actual costs
for each node, that A∗ will always �nd an optimal (i.e. shortest) path. If h overes-
timates the costs for some or all nodes, the computation time of the search may be
decreased, but the path may not be optimal.

If h is an exact estimation of the actual costs, then A∗ has the nice property to �nd
a shortest path in optimal time. In this case only the nodes that are contained in a
shortest path as well as their neighbors are expanded; see Figure 2.8 (bottom). Even
if all paths in the graph are shortest,A∗ will expand only one of them depending on
the sorting strategy of the open list. A theoretical approach to exploit this property
could be to compute all costs of optimal paths for all pairs of nodes in the graph as
a preprocessing step (without storing the paths themselves to save space). These
costs could then be used as an exact heuristic to make A∗ compute optimal paths
in optimal time. However, this is only practicable for small graphs and is usually
not a feasible solution in gaming or simulation applications.

If we drop the heuristic function h and let f = g, we get Dijkstra’s algorithm [21].
If we only consider h and ignore all g-values in each node (i.e. f = h), we get a
greedy Best-First-Search strategy. Therefore, A∗ can be seen as generalization of
both strategies. Figure 2.8 illustrates the three di�erent strategies on a grid with
uniform costs. It shows that Dijkstra’s algorithm �nds an optimal path, but ex-
pands a large number of nodes. The greedy strategy expands only a few nodes,
but the resulting path is far from optimal. A∗ combines both strategies, �nding an
optimal path while expanding only a few nodes. Note that in the example, we as-
sume to have an exact heuristic h, which reduces the number of expanded nodes to
a minimum.

26 Chapter 2: Motivation and Preliminaries

s

t

s

t

s

t

Figure 2.8: Comparison of di�erent search strategies on a grid with uniform costs. Obstacles
are shown in grey, free space is shown in white. Expanded cells are shown in dark green.
Cells that are part of the �nal path are shown in bright green (with arrows pointing towards
the next node on the �nal path). Top-Left: Dijkstra’s algorithm expands many nodes, but
�nds an optimal path. Top-Right: Best-First-Search expands only a few nodes, but �nds a
non-optimal path. Bottom: A∗ combines both advantages (an exact heuristic is chosen to
illustrate the strength of A∗).

Finding a feasible heuristic can be di�cult because the quality of the heuristic de-
pends on the environment. The Euclidean distance is a popular choice. However, it
is not well-suited for maze-like environments in which the length of a path between
two points may di�er signi�cantly from the Euclidean distance between them.

There are many more variants and modi�cations of A∗. As the size of the open list
strongly in�uences the computation time for the �nal path, many variants aim at
keeping the number of nodes in the open list small. For example, the size of the
open list can be limited by a constant number of nodes, and nodes with the highest
f -values can be dropped whenever the open list becomes bigger than that number
(beam search [83]).

Instead of generating one large set of opened and closed nodes, performance can
also be improved by searching from s to t and from t to s simultaneously and stop
when the two paths meet in the same node. However, the result is not guaranteed
to be optimal.

Chapter 2: Motivation and Preliminaries 27

Another concept is to in�ate the h-values by some given weightw ≥ 1 and to com-
pute the f -values as f = g + wh. With this weighted A∗ variant [110], additional
emphasis is put on the heuristic. In this way, the expansion of nodes that appear
to be closer to the goal are preferred, thus yielding a trade-o� between computa-
tion time and quality of the path. This idea is further extended to anytime variants
of A∗, which start with a high weight for the heuristic values to compute a �rst
rough solution quickly. This �rst solution is then improved over time by adjusting
the weights. One of those anytime variants is ARA∗ [81], in which the weight w
is based on a linear trajectory and two additional user-controlled parameters. The
user has to set the initial value of w together with a �xed step size ∆w by which
the weight is decreased between the computation of solutions. Another anytime
variant of A∗ is called Anytime Non-parametric A∗ (ANA∗) [134]. It uses a novel
criterion for deciding which node to expand next in each step. Instead of expand-
ing the node with lowest weighted f -value, it expands the node that maximizes the
term e = (G − g)/h, with G being the costs of the currently best solution (which
is set to in�nity in the �rst iteration). The term e can be intuitively understood as
the ratio between the “budget” that is left to improve the current-best solution and
the estimated costs between the node and the goal. Maximizing e corresponds to
picking the largest weight w such that f ≤ G, and to expanding the node that is
most promising to improve the current-best solution. ANA∗ overcomes the user’s
problem in ARA∗ of �nding appropriate parameters, and has comparable and in
some cases better performance than ARA∗. Another range of related methods are
A∗ variants in which the costs can dynamically change over time, such as D∗ Lite
[71] or GAA∗ [126].

Despite the fact that A∗ and its variants are widely used for general graph-search
problems and path planning in simulations and games in particular, it is not the
�nal answer. Many problems – such as making agents use all the free space in
the environment for collision avoidance or dense-crowd coordination – cannot be
solved by using a search algorithm such asA∗ on a graph alone. While such a search
may still be part of �nding an overall solution, recent approaches – including the
novel methods we present in this thesis – use surface-based representations such
as the aforementioned navigation meshes and the possibility to store additional
information about the virtual environment.

This concludes the discussion on A∗. In the following section, we discuss the
Weighted Region Problem (WRP). The novel methods presented in Parts I and II
of this thesis can be seen as solutions to particular variants of the WRP.

28 Chapter 2: Motivation and Preliminaries

2.3 | The weighted region problem

2.3.1 | Definition and first approximation algorithm
(Mitchell and Papadimitriou, 1991)

The Weighted Region Problem (WRP) has been introduced by Mitchell and Papadi-
mitriou [87] as a generalization of the classical path planning problem. Instead of a
polygonal scene with static obstacles and traversable space, the input for the WRP
is a polygonal planar subdivision with positive weights for each polygonal region.
Each polygonal region is traversable, but yields di�erent traversal costs depend-
ing on its weight. The goal is to compute a path between two query points which
is optimal with respect to the traversal costs. Optimal paths in weighted regions
consist of straight-line segments with their bending points lying on the borders of
the region polygons. Thus, each straight-line segment runs through only one type
of region. The costs for a path are de�ned as the sum of the weighted Euclidean
lengths of each straight-line segment.

Mitchell and Papadimitriou presented the �rst ε-approximation algorithm for solv-
ing the WRP. An ε-approximation algorithm is an algorithm that does not compute
an exact solution to a given problem instance, but that rather computes an approx-
imate solution that is proven to be at most 1 + ε times as expensive as an optimal
solution with respect to a given cost function. Such algorithms are also referred to
as approximation schemes when ε > 0 can be chosen arbitrarily small by the user,
thus allowing the approximation of an exact solution as closely as needed, usually
at the cost of additional running time. The algorithm by Mitchell and Papadimitriou
has a running time of O(n8 log nNW

wε), where n is the number of vertices, N is the
maximum integer coordinate of any vertex of the triangulation, and w and W are
the lowest and highest weight of the regions, respectively. Due to the high com-
putational complexity, the algorithm is mainly of theoretical interest. The authors
discuss several fundamental properties of the WRP. For instance, at its bending
points, an optimal path in weighted regions obeys Snell’s law of refraction. In other
words, an optimal path crosses the borders of two adjacent regions in the same way
as a ray of light crosses the border of two di�erent materials.

The WRP has applications in many �elds such as robotics [14], simulations [113],
or entertainment games [61, 135]. Moving entities such as virtual humans or ro-
bots need to steer through a scene with various region types. However, the WRP is
proven to be unsolvable in the Algebraic Computation Model over the Rational Num-

bers (ACMQ) [11]. In other words, a solution to an instance of the WRP cannot be
expressed as a closed formula in ACMQ. We will now give a brief outline of the
proof.

Chapter 2: Motivation and Preliminaries 29

2.3.2 | Unsolvability in ACMQ (De Carufel et al. 2012)

The unsolvability of the WRP in ACMQ [11] is a fundamental theoretical result. It
justi�es further research on approximation algorithms rather than trying to solve
the problem in an exact way. The proof uses in-depth algebraic arguments from
Galois theory [23]. The authors show that the unsolvability can already be shown
on a small toy instance of the WRP with only three regions. The proof technique
they used is based on a general technique by Bajaj [5].

The main idea of the proof is as follows: Let p be an irreducible polynomial of
degree d ≥ 5 over Q. From Galois theory, it follows that p(x) = 0 is solvable by
radicals if and only if the Galois group Gal(p) is solvable. The authors now de�ne a
particular irreducible polynomial p and an instance of the WRP such that solving
this instance exactly in ACMQ is equivalent to solving p by radicals. Furthermore,
they show that the Galois group Gal(p) is isomorphic to S12, which is the symmetric
group over 12 elements. It is known [23] that the symmetric group Sn is solvable if
and only if n ≤ 4. Thus, S12 is not solvable, which implies that p is not solvable by
radicals, which again implies that the particular instance of the WRP is not solvable
in ACMQ.

The unsolvability result justi�es the search for approximation algorithms to com-
pute paths that are near-optimal within a certain costs-bound. A simple approach
is to approximate the exact geometry of the scene with a rectilinear grid in which
each grid cell is assigned the largest weight of all regions that intersect that cell.
An e�cient graph-search algorithm such as the A∗-algorithm (see Section 2.2) can
then be used on this grid. This approach is fast and easy to implement, but as dis-
cussed in Section 2.1.1, a grid does not capture the exact geometry of the scene. A
di�erent approach is using approximation algorithms that work on a triangulation
of the polygonal scene. We will now give an overview of such methods.

2.3.3 | Existing approximation algorithms

After the �rst ε-approximation had been described by Mitchell and Papadimitriou
[87], several approximation algorithms for the WRP were presented in the follow-
ing years. Mata and Mitchell [86] created a graph called Pathnet to approximate
optimal solutions to the WRP. The method makes use of cones around all vertices,
which limit the paths that can extend from a vertex. The Pathnet can be constructed
inO(kn3) time, where k is the number of such cones. Once the Pathnet is construc-
ted, it can �nd ε-approximate paths inO(n log n) time. Note that ε cannot be chosen
arbitrarily small for this method, but its value results from the given problem in-
stance with ε = O(W/wkθmin

). W/w is the ratio of the maximum and minimum weight,
respectively, and θmin is the minimum internal face angle of the subdivision.

30 Chapter 2: Motivation and Preliminaries

Aleksandrov et al. [2] presented an ε-approximation scheme to solve the WRP up
to an arbitrary constant ε > 0. The method uses Steiner points that are added to
the edges of all triangles in the scene with a logarithmic distribution. Because this
distribution leads to in�nitesimally small distances between Steiner points near the
vertices, the authors de�ne a vertex vicinity, which is a circle around each vertex
that is void of Steiner points. Within each triangle, all Steiner points and vertices
are connected by additional edges. Path planning queries can then be answered
using Dijkstra’s algorithm [21] (improved by using Fibonacci heaps). The running
time isO(mn log(mn)+nm2), wherem is the total number of Steiner point, which
increases for smaller values of ε. The placement of Steiner points is done in such
a way that the distance between any two subsequent Steiner points qi and qi+1 on
an edge eq is proven to be ε times the distance from qi to an opposite edge ep. For
further details on this method, we refer the reader to Section 4.1, where we use it as
part of our novel VBP method. Aleksandrov et al. [3] also presented a variant of the
Steiner point method, in which the Steiner points are placed on the bisectors of the
triangles. This variant has a better running time, but the paper lacks the description
of some critical cases required for a thorough practical implementation.

Sun and Reif [127] presented an ε-approximation algorithm called BUSHWHACK.
Similar to Aleksandrov et al. [2], they use Steiner points on the edges of the trian-
gulation. Instead of searching the graph with Dijkstra’s algorithm [21], they intro-
duced a new graph-search method that exploits the underlying geometrical prop-
erties of the scene. Using an interval data structure, the BUSHWHACK algorithm
can �nd ε-optimal paths in O(nε (log 1

ε + log n) log 1
ε) time.

Ferguson and Stentz [24] presented Field D∗, an interpolation-based planning and
replanning method well-suited for scenarios with weighted regions. The input for
Field D∗ is a grid representation of the weighted scene, in which all regions are
aligned with the grid. Field D∗ computes paths that may follow any direction and
are thus not restricted to angles of π2 at its bending points.

Research has also been conducted on variants of the WRP. Aleksandrov et al. [1]
introduced a data structure called All Points Query (APQ), which can be used to ef-
�ciently �nd ε-optimal paths for all-pairs queries on an instance of the WRP. APQ
has a high construction time, and it is therefore mainly useful for answering many
queries on the same scene. Cheng et al. [13] presented a method to compute homo-

topic paths that are ε-optimal in an instance of the WRP. Gheibi et al. [35] recently
considered a variant of the WRP with weighted arrangements of lines instead of
bounded triangulated subdivisions.

The described approximation algorithms are computationally expensive and not
suited for real-time applications with many virtual agents. One of the main contri-
butions of this thesis is a novel method called Vertex-based Pruning (VBP) to com-
pute approximated paths in weighted regions in real-time; see Chapter 4. VBP com-
bines an e�cient A∗ search on a grid with the original Steiner point method by
Aleksandrov et al. [2]. Furthermore, the method can handle arbitrary scenes given

Chapter 2: Motivation and Preliminaries 31

as planar polygonal subdivisions with weighted regions, and it therefore does not
require all regions to be aligned with a grid.

The WRP forms the basis for the novel methods we present in Parts I and II of this
thesis, which deal with region-based path planning and region-based path following
for individual agents. In Part III, by contrast, we present new models to coordinate
multiple agents in dense crowds and social groups. To this end, we will now brie�y
discuss crowd simulation models.

2.4 | Crowd simulation

The overall goal of crowd simulation models is to mimic particular behaviors that
can be observed in real-life crowds and display these in virtual environments. In
real crowds, the overall behavior is determined by complex factors from di�erent
research �elds. Not only physical factors such as the Principle of Least E�ort [153] to
minimize the expended energy play a role here, but also cultural factors and �ndings
from �elds such as sociology and psychology. The latter especially holds for small
social groups, in which factors such as social formations and social territories are
involved. A crowd simulation model that considers all relevant factors, if that were
possible, can be seen as the holy grail in this research �eld. Existing models are still
far away from that ideal state, and they usually focus on a few particular aspects.

The level of realism that is needed strongly depends on the application at hand. To
show two �ghting armies in the background of a blockbuster movie, more e�ort
needs to be spent on the animation and the lighting to match the overall action and
atmosphere of the scene, rather than on realistic navigation and coordination of
the individual crowd members. In a simulation to train safety personnel evacuate
a building, by contrast, the animation and visual appearance of the crowd is less
important than realistic navigation and coordination of the crowd.

Existing crowd simulation models can be subdivided into agent-based models and
�ow-based models. Agent-based models treat each character in a crowd as an indi-
vidual autonomous entity. Among these are models to simulate small social groups
[60, 65, 89, 91, 111]. Flow-based models, by contrast, treat the whole crowd as one
big entity, and the simulation of its members follows particle-based approaches
from �uid simulations or gas kinetics [69, 130].

Each of the two paradigms has its advantages and drawbacks. Agent-based models
are a good choice to simulate crowds in low-density and medium-density scenarios
in which the individual actions of crowd members determine the overall crowd be-
havior to a great extent. However, agent-based models are computationally expens-
ive and struggle in high-density scenarios when a large number of agents needs to
be simulated and coordinated. Flow-based models can be seen as the complement

32 Chapter 2: Motivation and Preliminaries

paradigm. They are designed to work well in high-density scenarios, and they re-
quire a large number of crowd members to display their advantages. They are not
well-suited to simulate only a few agents in low-density and medium-density scen-
arios.

What follows from the above observations is that it is di�cult to decide on a partic-
ular crowd simulation model when the application at hand features highly dynamic
crowd scenarios in which the crowd density may change arbitrarily and frequently.
To address this, a recent trend in crowd simulation research is to design hybrid
models that try to combine the advantages of agent-based and �ow-based models.
The new model we present in Chapter 9 can be seen as such a hybrid. It is technic-
ally an agent-based model, but uses simple local rules to improve the coordination
of dense crowds while still being real-time applicable for a large number of agents.

For an overview of existing crowd simulation models and social group methods
related to the contributions in this thesis, we refer the reader to Sections 9.1 and
10.1, respectively. For a more general overview of crowd simulation topics, we refer
the reader to the books by Pelechano et al. [107] and Thalmann and Musse [128].
The latter also includes topics such as virtual human animation, crowd rendering
and populating environments.

Part I

Path Planning in Weighted

Regions

33

Chapter 3

Grid-paths in weighted
regions

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

In this chapter, we analyze the Weighted Region Problem (WRP), which we have
discussed in Section 2.3. In short, the WPR is de�ned as the problem of �nding
a cost-optimal path in a weighted planar polygonal subdivision. A fast and easy-
to-implement solution to the WRP is searching for cost-optimal paths on a grid
representation of the scene, in which each grid cell is assigned with a weight. This
weight could, for instance, be the highest weight among all polygonal regions that
intersect a grid cell. However, grid representations are only a rough approxima-
tion of the actual scene and do not capture its exact geometry. Hence, grid paths
can be inaccurate or might not even exist at all. Methods exist that work on an
exact representation of the scene, and such methods can approximate an optimal
path up to an arbitrarily small ε-error [2, 86, 87, 127]. However, these methods are
computationally ine�cient and thus not well-suited for real-time applications.

The main contribution of this chapter is a path-cost analysis proof on the quality of
8-neighbor-grid paths in weighted regions. We prove that – in the general case – the

36 Chapter 3: Grid-paths in Weighted Regions

costs of such a grid path can be arbitrarily high compared to the costs of an optimal
path that is not restricted to lie on the grid. In the literature, such a non-restricted
path is sometimes called an any-angle path [92, 98]. If all regions are aligned with
the grid, we prove that the costs of an optimal grid path are at most 2

√
2 times the

costs of an optimal any-angle path. In the paper on which this chapter is based (see
below), we have claimed a higher upper bound. That proof turned out to contain
an error1, which we have now �xed. The �xed proof now yields an improved upper
bound of 2

√
2.

We start with giving an overview of existing work that is related to our proof in
Section 3.1. We then discuss preliminaries and de�nitions such as region-homotopic

paths, which we are going to use within our proof in Section 3.2. Subsequently, we
present the proof itself in Section 3.3.

This chapter is based on the following publication:

[55] N. Jaklin, M. Tibboel, and R. Geraerts. Computing high-quality paths in weighted
regions. In Proceedings of the 7th International ACM SIGGRAPH Conference on Mo-

tion in Games (MIG 2014), pages 77–86, 2014.

3.1 | Related work

Existing literature on the WRP lacks analytical path-cost analysis proofs for grid
paths in weighted regions. For the classical path planning problem without weights,
however, worst-case bounds for path costs on various grid types have been studied
over the past few decades.

Luczak and Rosenfeld [84] introduced an integer-based coordinate system for 6-
neighbor hexagonal grids. Based on that coordinate system, they presented a for-
mula to compute the distance between two points on such a grid. Nagy [93–95]
presented analytical discussions and algorithms for computing shortest paths on
triangular and hexagonal grids. Björnsson et al. [9] proved analytically that graph-
based search algorithms such as A* have smaller search complexities when run on
6-neighbor hexagonal grids than on 8-neighbor octile and 4-neighbor square grids.
García and Garrido [30] provided a corresponding practical result. They proved em-
pirically that searches on hexagonal grids can be faster than on square grids when
the grids are large. Nash [98] presented in his PhD thesis a uni�ed proof structure
to derive upper bounds on the length of grid paths. Nash considers square, triangu-
lar, and hexagonal grids for non-weighted scenarios in 2D and cubic grids in 3D.
While some of the derived bounds had been proven before [95], the uni�ed proof
structure was a novel contribution that also led to new upper bounds for grids that

1 Special thanks to Mark de Berg, who pointed out the �aw in the previous proof and helped with
�xing it.

Chapter 3: Grid-paths in Weighted Regions 37

had not been analyzed up to that point. In particular, Nash showed that the addi-
tional costs of a path on a 3-neighbor triangular grid cannot be higher than 100%
of the costs of an optimal path. For 4-neighbor square grids, the additional costs
are bounded by 41% of the costs of an optimal path. Corresponding results are
15% for 6-neighbor hexagonal grids, 15% for 6-neighbor triangular grids, 8% for
8-neighbor square grids, 4% for 12-neighbor hexagonal grids, 73% for 6-neighbor
3D cubic grids and 13% for 26-neighbor cubic grids.

Other work that is related to paths and distances on particular grid structures comes
from the digital imaging and pattern recognition community. In 1968, Rosenfeld
and Pfaltz [116] introduced digital distances on city-block and chessboard neighbor-
hood relations. These two terms correspond to 4-neighbor and 8-neighbor square
grids, respectively. Such digital distances were later generalized by introducing
weights for each direction of the underlying space, e.g. by Strand [125] and Nagy
[96]. This means that a step from one grid cell to an adjacent cell does not have a
uniformly distributed cost, but the cost depends on the direction of the step. Note
that �nding cost-optimal paths on a grid with such a weighted distance function is
not the same as �nding cost-optimal paths on a grid in the sense of the WRP, which
we analyze in this chapter. In our context, the costs for a step from one grid cell to
an adjacent cell depend on the underlying regions, and they can therefore change
arbitrarily when traversing a path in one direction. For distance functions with dir-
ectional weights, by contrast, the costs are the same for each step in a particular
direction, but di�erent directions can have di�erent costs per step.

3.2 | Region-homotopic paths

In this section, we give de�nitions and general assumptions we will be using within
our proof in Section 3.3. We start by introducing region-homotopic paths. After-
wards, we discuss grids and grid-optimal paths.

One important topological property in classical path planning without weighted
regions are homotopic paths. Two paths with the same �xed start and goal posi-
tions are homotopic, if there exists a homotopic function that continuously maps
one path into the other without having to cut open the path or intersect obstacle
polygons in the scene. The question whether two paths are homotopic can be im-
portant when analyzing error bounds for approximations of optimal paths. Thus,
it is useful to have a corresponding property for paths in the context of weighted
polygonal scenes, which we can use in our analysis in Section 3.3. We generalize
homotopy for paths in weighted regions in the following way:

Given the scene as a polygonal subdivision of the plane, letR = {(r1, w1), (r2, w2),
..., (rn, wn)} be the set of its n non-overlapping region polygons ri together with a
weightwi > 0. A region polygon in our context is a simple polygon with no further
constraints. In particular, a region polygon does not contain any holes, and it does

38 Chapter 3: Grid-paths in Weighted Regions

not need to be convex. For an edge that is shared by two adjacent region polygons,
we count that edge as part of the region polygon that has a lower weight between
the two. Thus, we de�ne the higher-cost region as topologically open near that
edge, whereas the lower-cost region is topologically closed near that edge. This
allows us to let a path make use of region-boundary edges to circumnavigate a
high-cost region. In case of a tie, that choice does not matter, and both options are
equally valid.

Let π1, π2 be two paths connecting the same start and goal positions s and g in
R, respectively. In order to generalize the de�nition of homotopic paths, we map
the given weighted scenario to an instance of the classical path planning problem
by declaring all regions that either of the two paths intersect as free space. All
remaining regions are declared as hard obstacles with an in�nite weight. More
formally, we let R(π1, π2) = {(r, w) ∈ R |π1 or π2 intersects r}. We then de�ne
R′(π1, π2) = {(r1, w

′
1), (r2, w

′
2), ..., (rn, w

′
n)} as the same set of region polygons

ri as inR, but with the following weights:

w′i =

{
1 if (ri, wi) ∈ R(π1, π2)
∞ else .

De�nition 1. We say that π1 and π2 are region-homotopic in R, if and only if they
are homotopic inR′(π1, π2).

We consider a grid with square grid cells to approximate the scene. Each cell in the
grid is weighted with the highest weight of all regions that intersect the cell. From
a graph-search point of view, we use the center points of each grid cell to represent
the cell as a vertex in the graph.

We focus on 8-neighbor grids that allow movement on the grid in up to 8 direc-
tions. Thus, any grid path consists of horizontal, vertical and diagonal straight-line
segments. Furthermore, we only consider grid cell center points as input for path
planning queries.

By C(·), we denote the function to measure the costs of a path π. If π consists of
k straight-line segments πi, and each πi runs through one region with weight wi
(1 ≤ i ≤ k), we let

C(π) =

k∑
i=1

wi||πi||,

with || · || being the Euclidean norm. Since an optimal (non-grid) path in weighted
regions is proven to consist of straight-line segments [87], we can use this cost
function for both grid paths and optimal paths. If a straight-line segment runs along
the edge shared by two grid cells, the smaller weight of the two cells counts for this

Chapter 3: Grid-paths in Weighted Regions 39

segment. This choice re�ects paths that are tangent to a high-cost region without
intersecting the interior of that region.

Let γ ∈ R+ be the side length of each grid cell. Let C1 and C2 be two adjacent
grid cells with weights w1 and w2, respectively. Given the above cost function, we
can conclude the following. If C1 and C2 are horizontally or vertically connected
by a straight-line segment l, the costs for moving from one cell to the other are
C(l) = 1

2γw1 + 1
2γw2 = 1

2γ(w1 +w2). If C1 and C2 are diagonally connected, the
costs are C(l) = 1

2γ
√

2(w1 + w2).

In addition to the above, we use the following de�nition to distinguish between
optimal paths on the grid and optimal paths on the exact geometry of the scene.

De�nition 2. We call a grid path grid-optimal, if it is optimal among all other possible
grid-paths with respect to the cost function C(·).

3.3 | Path-length analysis of 8-neighbor grid paths
in grid-aligned regions

In this section, we analyze the quality of grid-optimal paths with respect to optimal
paths in weighted regions. First, we show that a grid-optimal path can be arbitrarily
more expensive than an optimal path between the same points, if a �xed cell size
is given. Afterwards, we focus on scenarios in which all regions are aligned with a
�xed grid. We show that even in this simpli�ed scenario, a grid-optimal path and
an optimal path are not necessarily region-homotopic. We can, however, prove an
upper bound on the costs of grid-optimal paths compared to the costs of an optimal
path when all regions are aligned with the grid. The latter is the main result in this
section.

Let us assume a grid with a �xed resolution. If an optimal path and a grid path
are not region-homotopic, the grid path can be arbitrarily more expensive than the
optimal path. This already holds in the classical path planning situation in which
no weighted regions are given, whenever the paths are not homotopic. Figure 3.1
shows an example in which a grid-optimal path Γ and an optimal path π∗ that
connect points s and g are not (region-)homotopic. This is due to using an overly
coarse grid resolution. By increasing the height of the obstacle polygon P , we can
make Γ become arbitrarily expensive. This also shows that a grid path does not
necessarily need to exist at all in the general case.

The situation is di�erent when all regions are aligned with the grid, i.e. when a grid
cell contains exactly one region type. Remember that we count a cell edge that is
shared by two adjacent cells as part of the cell that has a lower weight (in case of a tie
it does not matter to which cell it belongs). A scene in which all regions are aligned

40 Chapter 3: Grid-paths in Weighted Regions

s g

P

Γ

π∗
1 2 3 4

Figure 3.1: Example of two paths connecting points s and g. The grid-optimal path Γ can
become arbitrarily expensive compared to the costs of an optimal path π∗, if the grid resolu-
tion is too coarse. Grid cells 1, 2, 3 and 4 are not traversable for Γ because obstacle polygon
P intersects them.

s g

Figure 3.2: An example in which the grid-optimal path Γ (solid black) is not region-
homotopic to the optimal path π∗ (solid red). The grid path Γ′ (dashed black) that is region-
homotopic toπ∗ has slightly higher costs than Γ. The grid cell size is γ = 1. The white region
has a low weight of 1, the gray region has a weight of 1.3, and the black region has a very
high (in�nite) weight. The path costs are: C(π∗) ≈ 26.63, C(Γ) = 27.3, C(Γ′) ≈ 27.45.

with the grid can occur in applications with simple rectangular shapes or when
the exact geometric shape of a region is less important (e.g. in grid-based games, or
when a region resembles an abstract feature such as dangerous or attractive), so that
it is feasible to approximate the region polygons and thus reduce the complexity of
the scene. We now discuss important properties and analyze the quality of grid-
optimal paths in this special case of the Weighted Region Problem.

The example in Figure 3.1 might give rise to the assumption that a grid-optimal path
and an optimal path are always region-homotopic if we ensure that all regions are
aligned with the grid. However, this is not the case. Aligning all regions with the
grid does ensure that there exists a grid path in the same homotopy class in which
an optimal path is contained, but it does not need to be grid-optimal. Figure 3.2
shows an example in which the grid-optimal path Γ (solid black) and the optimal
path π∗ (solid red) are not region-homotopic, even when all regions are aligned with

Chapter 3: Grid-paths in Weighted Regions 41

the grid. The grid path following the same regions as π∗ is denoted as Γ′ (dashed
black), and its costs are approximately 27.45. The costs for Γ, in comparison, are
approximately 27.3.

In the remainder of this section, we prove an upper bound on the costs of grid-
optimal paths with respect to the costs of an optimal path when all regions are
aligned with the grid.

Theorem 1. Let all regions be aligned with the grid. Let Γ be a grid-optimal path,
and let π∗ be an optimal path. It holds that C(Γ) ≤ 2

√
2 C(π∗).

Proof. The main idea is to exploit the fact that an optimal path π∗ consists of
straight-line segments [87]. We construct a grid path for which we can show the
claimed upper bound, as follows:

Since we de�ne a cell edge that is shared by two adjacent cells as part of the cell that
has a lower weight between the two cells, an optimal path π∗ induces an ordered se-
quence of intersected grid cells S = C1, ..., Ck . The cell C1 contains s, and the cell
Ck contains g. Note that contrary to the classical path planning problem without
weights, an optimal path can visit the same grid cell more than once. Consequently,
two grid cells Ci and Cj in S do not necessarily need to be distinct.

Given the sequence S, we construct a grid path Γ′ that uses a subset S′ ⊂ S of
the cells in S. We choose S′ such that connecting the center points of any two
successive cells in S′ yields a grid path. Furthermore, we show that the costs of Γ′

in each cell Ci ∈ S′ are at most
√

2wi, whereas the costs of π∗ in each cell Ci ∈ S′
are at least 1

2 wi, from which we can derive the claimed upper bound for the overall
path costs.

We de�ne S′ as all cells C ∈ S for which the segments of π∗ that intersect C are
longer than 1

2 . Since S is an ordered sequence, S′ is an ordered sequence, too. We
now show that the center points of any two successive cells C ′i , C ′i+1 in S′ can be
connected such that the resulting path Γ′ is a valid grid path.

It holds that C1 ∈ S′ because C1 contains s as the cell-center point, and π∗ leaves
C1 by crossing one of its cell edges. Consequently, the part of π∗ that is inside C1

has a length of at at least 1
2 . This shows that S′ 6= ∅.

Given a cell Ci ∈ S′, we let p be the last point through which π∗ leaves Ci and
enters Ci+1. Without loss of generality, we can assume that p lies on the right edge
of Ci and below the midpoint of that edge (all other situations are symmetric); see
Figure 3.3. Let q be the point through which the segment of π∗ starting in p leaves
Ci+1, and let l be that segment. If |l| ≥ 1

2 , then Ci+1 ∈ S′, and the connection
between the center points of Ci and Ci+1 is a valid grid-path connection. We can
then iterate the same arguments, withCi+1 taking the role ofCi. Let us assume that

42 Chapter 3: Grid-paths in Weighted Regions

Ci

p

Ci+1

Figure 3.3: Possible positions (red) of point q, if the distance from p to q is smaller than 1
2

.

|l| < 1
2 . Figure 3.3 shows possible positions (red) of q. Note that other grid-edge

positions within the dotted circle are not possible. Otherwise, this would mean that
π∗ leaves cellCi+1 and re-enters cellCi, yielding a contradiction to our assumption
that p is the last point through which π∗ leaves Ci.

Now there are two cases, depending on which cell π∗ enters after q. It can either
enter the cell below Ci or the cell below Ci+1.

Case 1: The optimal path enters the cell below Ci. The only way to do so is via the
grid vertex that is shared by all four grid cells. In this case, q equals that grid vertex.
Let r be the next bending point of π∗ after q, and let l be the segment between q and
r. If |l| ≥ 1

2 , then Ci+2 ∈ S′, and the connection between the center points of Ci
and Ci+2 is a valid grid-path connection. If |l| < 1

2 , then the only possible position
for r is below and co-linear with p and q; see Figure 3.4. Note that the bottom edge
of Ci is not an option for r because then the path would re-enter cell Ci, yielding
a contradiction to our assumption that p is the last point through which π∗ leaves
Ci. Assume r is indeed located below and co-linear with p and q; see Figure 3.5.
This means that π∗ leaves cell Ci+2 and switches to Ci+3 at r. Here we can use
the same argument as before: If the segment of π∗ between r and its next bending
point is longer than 1

2 , then we know that Ci+3 ∈ S′, and the diagonal connection
between the cell centers of Ci and Ci+3 is a valid grid connection. We can then
iterate the same arguments, with Ci+3 taking the role of Ci. If this is not the case,
then the only possible positions of the next bending point would be at the top edge
of Ci+3 (shown in red). These positions, however, would contradict the fact that
π∗ is optimal because the segment from q to that next bending point would yield a
cheaper path than �rst going down to r and then up again. This holds even when
the weight for Ci+2 is very low because the segment within Ci+3 is always longer
than the connection between q and the next bending point, which also counts as
being inside Ci+3 by construction.

Case 2: The optimal path enters the cell belowCi+1. Let r be the next bending point
of π∗ after q, and let l be the segment between q and r. First, r cannot lie to the left
of the dashed line in Figure 3.6 that connects q with the bottom edge of Ci+2. If r
was placed left of that line, we would get a contradiction to Snell’s law of refraction.

Chapter 3: Grid-paths in Weighted Regions 43

Ci

p

Ci+1

q

Ci+2 Ci+3

Figure 3.4: The situation in Case 1 with possible positions for r (red).

Ci

p

Ci+1

q

Ci+2 Ci+3

r

Figure 3.5: The situation in Case 1 with p, q, r being co-linear, and possible positions of the
next bending point (red)

We can conclude that r lies right of that line. If |l| ≥ 1
2 , then Ci+2 ∈ S′, and the

diagonal connection between the center points of Ci and Ci+2 is a valid grid-path
connection. We can then iterate the same arguments, with Ci+2 taking the role of
Ci. If |l| < 1

2 , then r must lie on the bottom edge of Ci+1, right of q. This means
that π∗ leaves Ci+2 and re-enters Ci+1. Its next bending point after r lies either
on the right or top edge of Ci+1. In any case, we know that the part of π∗ that lies
inside Ci+1 is longer than 1

2 . Thus, Ci+1 ∈ S′, and the connection between the
centers of Ci and Ci+1 is a valid grid connection.

From the above considerations, we can conclude that taking all cells from S that

44 Chapter 3: Grid-paths in Weighted Regions

Ci

p

Ci+1

q

Ci+2

Figure 3.6: The situation in Case 2.

contain segments of the optimal path that are longer than 1
2 yields a new sequence

S′ = C ′1, ..., C
′
k′ , for which we can connect all cell centers via valid grid-path con-

nections. This gives as a grid path Γ′, for which we know that its cost within a cell
Ci with weight wi are at most

√
2wi. The cost of the optimal path in such a cell is

at least 1
2 wi. Thus, we can conclude that the cost per cell of Γ′ is at most 2

√
2 times

the cost per cell of the optimal path, which concludes the proof of the thereom.

In the next chapter, we will continue with the topic of path planning in weighted
regions. We will make use of the theoretical results of this chapter and present a
novel real-time path planning algorithm named Vertex-based Pruning (VBP).

Chapter 4

Vertex-based pruning (VBP):
A Hybrid Method

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

As we discussed in Section 2.3, a range of methods exist to solve the Weighted Re-
gion Problem approximately up to an arbitrarily small ε-error [2, 86, 87, 127]. These
methods all work on the exact geometry of a scene, but they are computationally
expensive and thus not suited for real-time applications with large numbers of vir-
tual agents. By contrast, the A∗ method [42] on a grid approximation of the scene
is an e�cient and easy-to-implement way to compute paths, but these paths do not
account for the exact geometry of a weighted-region scene, and they are prone to
errors induced by the grid approximation.

In this chapter, we combine the best of both worlds by presenting a novel hybrid
method called Vertex-based Pruning (VBP). VBP e�ciently computes a path that
works on the exact geometry of a subset of a scene with weighted regions. The
idea is to combine an e�cientA∗-search [42] on a coarse grid representation of the
scene with the ε-optimal Steiner-point method by Aleksandrov et al. [2].

46 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

We �rst summarize the method by Aleksandrov et al. [2] in Section 4.1. Sub-
sequently, we present our new VBP method in Section 4.2, and we conduct ex-
periments by testing the VBP method in several virtual environments; see Section
4.3.

This chapter is based on the following publication:

[55] N. Jaklin, M. Tibboel, and R. Geraerts. Computing high-quality paths in weighted
regions. In Proceedings of the 7th International ACM SIGGRAPH Conference on Mo-

tion in Games (MIG 2014), pages 77–86, 2014.

4.1 | The Steiner-point method (SPM)
by Aleksandrov et al. 1998

In this section, we provide details on the Steiner-point method (SPM) by Aleksandrov
et al. [2], which we have brie�y discussed in Section 2.3.3. The method is part of
our new VBP method, in which we use it on a subset of the polygonal subdivision.

The method works as follows: Given an instance of the WRP, i.e. a weighted poly-
gonal subdivision, and an ε > 0, the method transforms the problem into a graph-
search problem by �rst triangulating the polygons and then adding Steiner points
on the boundary edges of all triangles. The Steiner points serve as additional ver-
tices for the graph, and additional edges are created between any two Steiner points
that lie on two di�erent edges of the same triangle. These new edges allow a path
to cross a triangle in the same way as a theoretically optimal path would cross a re-
gion in a straight-line manner [87]. The points are placed in such a way that a path
obtained from a graph-search method such as Dijkstra’s algorithm [21] is proven
to be an ε-approximation of an optimal path, which means that its costs are at most
(1 + ε) times the costs of an optimal path. Since ε > 0 can be chosen arbitrarily
small, the method serves as an approximation scheme, which means that a user can
control the error between the computed path and an optimal path. This has a price,
though, because the smaller the error the more Steiner points are placed along the
triangle edges. This yields an overall higher complexity of the graph and higher
running times for the subsequent graph searches.

The key to achieve ε-approximate paths is to place the Steiner points in a logar-
ithmic fashion along an edge. The points are placed in such a way that the dis-
tance between any two adjacent Steiner points along an edge is at most ε times
the shortest possible path segment that can cross a triangle and intersect the edge
between those two Steiner points. A theoretical problem that arises is that the
shortest possible path segment near a vertex of a triangle becomes in�nitesimally
short. This problem is tackled by de�ning a sphere Cv , a circular area around each
vertex v, in which no Steiner points are being added. The radius ofCv is denoted as

Chapter 4: Vertex-based Pruning (VBP): A hybrid method 47

rv , and it is de�ned as rv = εhv , where hv is the minimum distance from v to the
boundary of the union of its incident triangles; see Figure 4.1. IntroducingCv yields
a lower bound on the length of the shortest possible edge that passes between two
adjacent Steiner points, and it allows the placement of a �nite number of Steiner
points per edge.

v

hv

rv

Figure 4.1: Example of a vertex v, hv , and the resulting sphere around v with radius rv .

The placement of Steiner points is done as follows: If v is a vertex with incid-
ent edges eq and ep and angle Θv between the edges, we place Steiner points
q1, q2, ...qµq−1 along edge eq and Steiner points p1, p2, ...pµp−1 along edge ep, where
µq = logγ(|eq|/rv) and µp = logγ(|ep|/rv). Here, γ = (1 + ε sin Θv), if Θv <

π
2 ,

and γ = (1 + ε), otherwise. The Steiner points are placed such that the distance
from v to each qj is rvγj−1. Furthermore, the distance between any two subsequent
Steiner points qi and qi+1 on edge eq is proven to be ε times the distance from qi to
the opposite edge ep; see Figure 4.2 (left).

The same placement strategy is done for all triangle vertices. This yields undesired
overlaps of the intervals between Steiner points that are generated for opposite
vertices of the same triangle edge. To resolve these overlaps, we determine the
point on an edge where the interval sizes from each of the two sets are equal, and
we eliminate all larger intervals.

Figure 4.2 shows an example of how the Steiner points are placed along the edges
of a triangle. The placement of points for one edge are shown on the left, whereas
the situation for all three edges with resolved overlaps is shown on the right.

With the above placement of Steiner points, the �nal graph is constructed by con-
necting any two Steiner points that lie on edges that belong to the same triangle.
Aleksandrov et al. [2] show that ε-optimal paths can then be obtained by perform-
ing a classical graph search on the resulting Steiner-point graph.

48 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

x

qi

qi+1

q1
p1

v
rv

ε|x|

qµq−1

pµp−1

Cva

Cvb

Cvc

Figure 4.2: Left: The placement of Steiner points q1, q2, ...qµq−1 and p1, p2, ...pµp−1 for
edges eq and ep that are incident to vertex v. The distance between qi and qi+1 is ε times
the distance from qi to the opposite edge eq . Right: The placement of points for all incident
edges of all three vertices va, vb, vc, where overlaps of Steiner point intervals are resolved.
ByCva , Cvb , Cvc , we denote the spheres around the corresponding vertices that remain void
of Steiner points.

4.2 | The VBP method

In this section, we describe the idea behind our main contribution of this chapter:
the Vertex-based Pruning (VBP) method. Assume we are given an instance of the
Weighted Region Problem and an arbitrary error bound ε > 0. The goal is to com-
pute a path between a start and goal position for which the costs are at most (1+ε)
times the costs of an optimal path between the same points. In addition, the com-
putation of the path should be e�cient such that the path can be computed in real
time in a simulation or gaming application.

The intuitive idea behind the VBP method is as follows: We would like to exploit
the e�ciency of anA∗ grid search to quickly determine regions that are interesting
candidates for performing a more thorough search. By interesting, we mean that a
theoretically optimal path will likely also cross the same regions. To be precise, we
do the following. We �rst run an A∗ search on a grid approximation of the scene.
We then use the resulting grid path to determine a set of vertices and edges of the
given polygonal subdivision that are close to the grid path. We have tested three
di�erent variants of how we de�ne close in this context: triangle-based, edge-based,
and vertex-based. Next, we prune the overall scene by only keeping the vertices
and edges that we determined in the previous step. The Steiner-point method by
Aleksandrov et al. [2] does not depend on a polygonal subdivision but works on a
graph structure. As a consequence, we do not need to guarantee that the pruned
graph is still a polygonal subdivision. It su�ces to guarantee that we store the
information of what edges belong to the same polygon in the overall scene and
what weights each of these edges inherits from the polygonal subdivision.

Chapter 4: Vertex-based Pruning (VBP): A hybrid method 49

VBP is described as pseudocode in Algorithm 1. To guarantee grid optimality for
the grid path Γ in the �rst step of the algorithm, we need to use an admissible
heuristic for the A∗ search. A heuristic is admissible, if it never overestimates the
actual costs from a node to the goal; see Section 2.2. If all weights are greater than
1, we can use the Euclidean distance to the goal as an admissible heuristic. If the
given instance of the WRP features weights smaller than 1, we can multiply the
Euclidean distance from each grid cell to the goal with the minimum weight wmin
to obtain an admissible heuristic.

We will now describe three pruning heuristics. We start with discussing triangle-
based pruning in Section 4.2.1. We then discuss edge-based pruning in Section 4.2.2.
Finally, we discuss vertex-based pruning in Section 4.2.3, which yielded the best
results and gives the method its name.

4.2.1 | Triangle-based pruning

As a �rst pruning heuristic, we discuss triangle-based pruning. We trace the pre-
viously computed grid path Γ through the scene and collect all triangles of the
polygonal subdivision that are intersected by Γ. If Γ runs along an edge or a vertex
of the original scene, we collect both triangles that share this edge or all triangles
that share this vertex. This is a straight-forward approach, which creates a subset
of all triangles in the scene. Figure 4.3 shows an example of the resulting graph in
a scene called Puddle, which we used in our experiments; see Section 4.3.

The approach trivially guarantees that the resulting graph is connected, and for
each edge in the resulting graph, the other two edges of the same triangle are also
contained in the graph. Thus, when we place Steiner points on the triangle edges
according to the placement strategy by Aleksandrov et al. [2], we know that for
each triangle edge e there is a corresponding edge e′ of the same triangle in the
pruned graph, which allows us to connect the Steiner points on e with the Steiner
points on e′.

Algorithm 1 Vertex-based Pruning (VBP)

Input. weighted polygonal environment with edges E, vertices V , weights W ;
start position s and goal position g; error bound ε > 0.
Output. a path π between s and g that is ε-optimal in the same homotopy class as
a grid-optimal path between s and g.

1: Γ← run A∗ on a grid with weights W and an admissible heuristic.
2: E′ ← PruneGraph(Γ, E, V)
3: π ← run the Steiner-point method on E′ with error bound ε.
4: return π

50 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

e

Figure 4.3: Example of triangle-based pruning.

While this pruning strategy is correct in the sense that the Steiner-point method
can be performed on the resulting graph, it is not informed in the sense that the
resulting graph still contains edges and Steiner points that are most likely not used
by the �nal ε-approximate path. An example is edge e in Figure 4.3 because a path
starting in the corresponding triangle will not use any of the Steiner points on edge
e or on any other edge that forms the boundary of the pruned scene. If such an
edge was used in an optimal path, it would also be used by the grid-optimal path Γ
for a small enough grid resolution, and thus the pruned scene would be larger and
contain the edge as a non-boundary edge.

4.2.2 | Edge-based pruning

The second pruning heuristic we discuss is edge-based pruning. Instead of collect-
ing all triangles that are intersected by the grid-optimal path Γ, we collect all edges
that are closest to Γ. To be precise, for each grid vertex v that lies on Γ, we collect
all edges that are closest to v in the Euclidean sense. Thus, if v coincides with a
vertex of the triangulated scene, we collect all edges that are spawned from that
vertex. Figure 4.4 shows the resulting graph of edge-based pruning in the Puddle

scene.

Figure 4.4: Example of edge-based pruning.

The graph obtained from edge-based pruning is connected. To see this, note that
the grid-optimal path Γ induces a connected sequence of intersected triangles. For
each such triangle, Γ leaves the triangle by intersecting one of the triangle edges

Chapter 4: Vertex-based Pruning (VBP): A hybrid method 51

or vertices. This edge, or all edges spawning from that vertex, are contained in
the pruned graph. Since Γ can never leave a triangle via the same edge or vertex
through which it entered a triangle, Γ leaves a triangle via an edge that is adjacent
to the one through which it entered. As a result, the pruned graph is connected. In
particular, similar to the triangle-based pruning heuristic, for each triangle edge in
the pruned graph there is another edge from the same triangle in the graph. Thus,
the heuristic is correct in the sense that the Steiner-point method can be performed
on the pruned graph.

The graph obtained from edge-based pruning tends to contain less edges than the
one obtained from triangle-based pruning. Though there are still triangles for
which all three edges are contained in the pruned graph, there are also triangles for
which only two edges are contained in the pruned graph. This happens whenever
the third edge is never the closest to any grid vertex on Γ; see Figure 4.4. In this
sense, edge-based pruning is more informed than triangle-based pruning.

However, both triangle-based pruning and edge-based pruning have a common
disadvantage. Both heuristics might prune edges from the original scene that are
neither used by a theoretically optimal path nor a grid-optimal path, but that are
indeed used by an ε-approximate path when using the Steiner-point method. An ex-
ample of such a case is a theoretically optimal path that runs close to a graph vertex
v such that it intersects the sphere around v, which by de�nition does not contain
any Steiner points [2]. The third heuristic, vertex-based pruning, overcomes this
problem.

4.2.3 | Vertex-based pruning

The third pruning heuristic works as follows: We iterate over all bending points of
Γ. By bending point, we refer to any grid vertex on Γ at which the path changes its
direction. The start and goal vertex could be seen as degenerate cases of bending
points. However, de�ning them as such leads to computing unnecessary edges and
vertices that are not relevant for the �nal solution, similar to the triangle-based
pruning heuristic. Thus, we do not consider the start and goal vertices as bending
points. For each bending point b, we compute vertices of the environment that are
closest to b in the Euclidean sense. We then take all triangle edges incident to these
vertices. Note that this set of edges does not yet need to form a connected graph. To
address this, we also add all edges that Γ intersects, if they have not already been
added during the �rst step of the pruning. This ensures that the resulting graph
is connected. Figure 4.4 shows the resulting graph of vertex-based pruning in the
Puddle scene.

The actual pruning step is described in Algorithm 2. After the pruning step, we
run the Steiner-point method on the pruned graph. The Steiner-point method is
proven to compute ε-optimal paths for any given ε > 0 [2]. Thus, the VBP method

52 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

Figure 4.5: Example of vertex-based pruning.

Algorithm 2 PruneGraph

Input. grid path Γ; environment with edges E and vertices V .
Output. pruned environment as a set of edges E′.

1: initialize E′ as an empty set
2: for all bending points b of Γ do

3: Find the set closestV of closest vertices from b in V
4: for all vertices v in closestV do

5: for all edges e incident to v do
6: Add e to E′
7: for all segments s of Γ do

8: for all edges e in E do

9: if s intersects e then
10: Add e to E′
11: return E′

will always compute a path that is guaranteed to be ε-optimal in the pruned scene
induced by the grid-path Γ. As discussed in Section 3.3, an overall optimal path
and a grid-optimal path do not always need to be region-homotopic. However, in
our experiments in the next section, we empirically determined that the number of
cases is small in which the two paths are not region-homotopic.

4.3 | Experiments

In this section, we discuss the experiments we have conducted to validate our new
VBP method. We have compared the Steiner-point method (SPM) by Aleksandrov
et al. [2] with our new VBP method. To this end, we have compared the quality of
the computed paths based on their costs and based on visual inspection. In addition,
we have measured the performance of both methods. The experiments have been
conducted on an AMD Phenom II

TM x4 3.4 Ghz processor with 4 GB RAM and an
NVIDIA GeForce GTX 650 graphics card.

Chapter 4: Vertex-based Pruning (VBP): A hybrid method 53

In Section 4.3.1, we introduce the scenarios that we have tested. In Section 4.3.2, we
compare the graph-construction times and the graph-query times of the SPM and
VBP independently for a set of queries in four small and one medium-sized scene.
In Section 4.3.3, we measure empirically how often our VBP method computes the
same ε-optimal path as the SPM for a given query in the �rst �ve scenes. In Section
4.3.4, we use a large scene to compare the query times of the SPM with the combined
computation times of VBP for constructing the pruned graph and searching the
pruned graph.

4.3.1 | The tested scenes

We have tested the VBP method on six di�erent scenes. The �rst four scenes are
small with a size of 100 × 50 units. The �fth scene named forest is medium-sized
with 410 × 290 units. The sixth scene named abstractRegions16x16 is large with
800 × 800 units. It consists of a rectangular arrangement of 16 × 16 smaller tiles
that each span 50 × 50 units. All weights were chosen manually. For the �rst �ve
scenes, the weights were chosen to either simulate a real-world example scene or to
test speci�c properties of our VBP method. For the large scene, the abstract regions
and their weights were chosen arbitrarily.

1

20

5

3

Figure 4.6: The Puddle scene.

The �rst scene is called Puddle; see Figure 4.6. It resembles a puddle of water in the
center with weight 20, surrounded by a forest with weight 5. Below the puddle runs
a road with weight 1, and below the road is a grass lawn with weight 3. This scene
is small and simple, which makes it easy to visually check the computed paths. In
addition, it resembles a typical scenario that could occur in a gaming or simulation
application.

The second scene is called Bars; see Figure 4.7. It features several vertical bars with
alternating weights of 1 and 5. The triangles span the whole height of the scene,
which makes it an interesting test case for the VBP method: We expect the VBP
method to result in a graph that is close to the Steiner graph of the whole scene.

The third scene is called High-low; see Figure 4.8. It features a high-cost region with
weight 20 at the bottom, a medium-weight region in the center with weight 3, and

54 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

1 5 1 5 1 5 1

Figure 4.7: The Bars scene.

a low-cost region at the top with weight 1. The scene is well-suited to display a
property of the Weighted Region Problem that does not occur in the classical Path
Planning Problem: An optimal path can cross the same triangle multiple times. If
s and g both lie in the high-cost region, an optimal path might use parts of the
low-cost region at the top.

1

3

20

Figure 4.8: The High-low scene.

The fourth scene is called Zigzag; see Figure 4.9. It resembles a sandy road with
weight 6, a grass �eld above it with weight 3, and alternating parts of road with
weight 1 and water with weight 20. This is an interesting test case: An optimal
path from left to right should follow the sandy road, but alternate between the top
and bottom border of this region, resulting in a zig-zag path.

3

6
1 1 1

1
20 20

20

20

Figure 4.9: The Zigzag scene.

The �fth scene is called Forest; see Figure 4.10. It resembles a path with weight 3
that runs through a deep forest with weight 99. There are several puddles on the
way with weight 20. At the top of the scene, there is an attractive spot such as a

Chapter 4: Vertex-based Pruning (VBP): A hybrid method 55

panoramic view over a valley with weight 1. The two parallel rectangular regions
near the center resemble fallen tree logs that block the path, but can be traversed
(by climbing or ducking) with weight 2. The scene is slightly larger than the other
four, and it resembles a real-life scenario that could occur in a gaming or simulation
application.

99

1

3

2
220

20

20

20

99

99

Figure 4.10: The Forest scene.

The sixth scene is called abstractRegions16x16. It consists of 16× 16 tiles that each
span 50×50 units; see Figure 4.11. The regions and their weights in this scene were
chosen arbitrarily: gray 4, darkgreen 30, lightgreen 3, blue 30, yellow 6, and brown
2. The goal is to test whether we achieve an improved query-time performance of
VBP over the method by Aleksandrov et al. when a scene contains a large number
of triangles, which is usually the case in a gaming or simulation application.

4.3.2 | VBP vs. SPM in small scenes

We have compared the computation times of the SPM against our VPB method in
the �rst �ve scenes for one query per scene, which was run 50 times per query
point. For each of the �ve tested scenes, we have used 5 di�erent ε-error bounds
ranging between 0.1 and 0.5, and we have compared the construction times of the
graphs, the times needed to answer path planning queries on the graph, the number
of nodes explored during the search, and the overall costs of the resulting paths.
For the A∗-grid search of our VBP method, we used a grid-cell width and height

56 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

4

4 4

4

44

30

30
30

30

3030

30

30

30

30

30

3

33

6

2

2

2

2

2

2
2

2

Figure 4.11: The abstractRegions16x16 scene (left). It consists of 16 × 16 rectangular tiles
that each span 50× 50 units (right).

of 1 unit. The particular query points and the resulting paths for each scene are
displayed in Figure 4.12.

The goal of the �rst experiment is to test our pruning heuristic and whether VBP
shows the following expected behavior: For queries that a�ect a large portion of the
overall number of triangles in a given scene, we expect VBP to not show any signi-
�cant improvements – if at all – in both graph-construction times and graph-query
times. This is particularly probable in small scenes such as Bars or High-low. When,
by contrast, a query only a�ects a small portion of the total number of triangles in a
given scene, we expect VBP to improve on both the graph-construction and graph-
query times due to the overall smaller graph after the pruning step and the resulting
lower number of Steiner points. Among the �rst �ve scenes, we expected this to be
particularly the case in the Forest scene.

Table 4.1 shows the results of the �rst experiment. As expected, VBP does not out-
perform the Steiner-point method in the Bars scene. The scene contains triangles
that span the whole height of the scene, and paths are planned from the left side
to the right side. The pruned graph is therefore almost as big as the graph of the
whole scene. In this case, the additional time to perform an A∗ search for pruning
the scene dominates the time that can be saved for querying the pruned graph. The
larger the ε-error bound the fewer Steiner points are required. With fewer required
Steiner points, the di�erence in the number of Steiner points on the whole graph
and the pruned graph is small. This yields higher construction times for VBP and
ε ranging from 0.3 to 0.5. Thus, the corresponding improvement in query times is
comparably small.

VBP performs slightly better in theHigh-low scene. It shows a greater improvement
on query times and the number of explored nodes than in the Bar scene. However,
due to the geometry of the scene, the construction time is still slightly higher com-
pared to the original Steiner-point method for ε = 0.5.

Chapter 4: Vertex-based Pruning (VBP): A hybrid method 57

Figure 4.12: The paths computed with the SPM and the VBP method for di�erent ε-error
bounds: ε = 0.1 (green), ε = 0.2 (lightgreen), ε = 0.3 (darkgreen), ε = 0.4 (red), and
ε = 0.5 (orange). Note that both methods computed the same paths in all shown cases. In
this representation of the scenarios, the higher the weight for a region the darker its shade
of blue.

58 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

Scene ε Method Constr. Query Nodes Path

time (ms) time (ms) explored costs

Puddle 0.1 SPM 49911.9 222.3 7441 231.5
VBP 18396.8 77.6 3561 231.5

0.2 SPM 2943.4 29.0 2856 231.5
VBP 1084.5 10.7 1367 231.5

0.3 SPM 617.7 8.7 1560 231.8
VBP 283.1 3.1 751 231.8

0.4 SPM 255.3 3.6 986 232.2
VBP 164.2 1.4 479 232.2

0.5 SPM 167.0 1.8 675 232.3
VBP 125.0 0.7 331 232.3

Bars 0.1 SPM 6993.7 62.8 4908 273.6
VBP 5281.6 48.5 3957 273.6

0.2 SPM 450.3 8.4 1774 273.8
VBP 394.6 6.7 1468 273.8

0.3 SPM 166.1 2.4 909 273.8
VBP 171.9 1.9 776 273.8

0.4 SPM 117.6 0.9 542 274.0
VBP 136.5 0.8 475 274.0

0.5 SPM 120.7 0.5 370 274.2
VBP 131.5 0.4 329 274.2

High-low 0.1 SPM 127198.0 471.1 7887 592.7
VBP 117328.3 448.8 7409 592.7

0.2 SPM 7895.9 60.9 3016 592.8
VBP 7245.3 59.9 2721 592.8

0.3 SPM 1409.0 17.7 1648 592.8
VBP 1335.7 16.6 1494 592.8

0.4 SPM 487.5 7.3 1039 592.8
VBP 475.6 6.9 946 592.8

0.5 SPM 251.8 3.5 723 592.9
VBP 252.2 3.4 662 592.9

Zigzag 0.1 SPM 438767.4 2238.3 26245 343.6
VBP 303882.8 1789.0 21004 343.6

0.2 SPM 28167.3 256.5 10334 343.6
VBP 19252.0 203.3 8333 343.6

0.3 SPM 5089.8 72.8 5796 343.7
VBP 3547.5 57.8 4717 343.7

0.4 SPM 1591.8 30.0 3765 343.8
VBP 1192.1 24.2 3096 343.8

0.5 SPM 683.3 15.3 2645 343.8
VBP 565.3 12.4 2199 343.8

Forest 0.1 SPM 163325.0 1141.1 47969 2461.2
VBP 16857.2 224.6 15413 2461.2

0.2 SPM 9638.0 127.8 17710 2461.4
VBP 1049.6 26.8 5700 2461.4

0.3 SPM 1794.7 34.3 9370 2461.9
VBP 351.9 7.8 3031 2461.9

0.4 SPM 600.6 13.4 5744 2462.5
VBP 245.0 3.1 1863 2462.5

0.5 SPM 300.4 6.4 3826 2464.2
VBP 225.4 1.4 1243 2464.2

Table 4.1: Comparison of the Steiner-point method (SPM) by Aleksandrov et al. [2] and the
VBP method on all �ve scenes with ε-error bounds ranging from 0.1 to 0.5.

Chapter 4: Vertex-based Pruning (VBP): A hybrid method 59

In the Zigzag, Puddle, and particularly the Forest scene, the di�erence between the
pruned graph and the initial graph is big. The time that can be saved to explore parts
of the graph that are not relevant strongly dominates the additional time required
for the initial A∗ search. This yields an overall improvement in both construction
times, query times, and the number of nodes explored during the search.

The following conclusions can be drawn from this �rst experiment. Compared to
the original Steiner-point method, the VBP method needs additional time to per-
form the initial A∗ search on the whole scene. As expected, VBP needs less time to
construct a graph than the SPM when the number of pruned triangles of the ori-
ginal scene is large. Once the pruned graph is constructed for a particular query,
VBP improves on the path-computation times over the SPM in correspondence to
the number of triangles that have been pruned.

Furthermore, all paths computed with VBP in this �rst set of experiments are equal
to the paths computed with the SPM. This is, however, not necessarily the case
in general because the initial grid-path and an optimal path might not be region-
homotopic as discussed in Section 3.3. We have conducted a second experiment to
empirically determine how often this is the case.

4.3.3 | Empirical analysis of path differences

We executed the SPM and all three pruning methods for a large number of path
queries on each of the �rst �ve scenes. We measured the overall number of paths
that yielded di�erent costs for the pruning heuristics and the SPM. The goal was to
empirically determine in how many cases the paths computed on a pruned scene
and on the entire scene are not region-homotopic. We randomly sampled each scene
uniformly to generate di�erent start and goal positions for each query. For the �rst
four scenes, we picked 9 di�erent x- and y-coordinates, yielding 81 start and 81
goal positions. For each combination of start and goal positions, we computed a
path with both methods, yielding a total of 6561 di�erent paths for each of the four
scenes. For the larger Forest scene, we generated a total of 9000 di�erent paths with
both methods by uniformly sampling start and goal positions.

Table 4.2 shows the results of this experiment. On average, vertex-based pruning
yielded the best results. It computed the same paths as the SPM in 97.3% of all cases.
This further justi�es our theoretical analysis that vertex-based pruning performs
best when taking ε-approximate paths computed by the Steiner-point method on
the entire scene as a ground truth. We can conclude that the same ε-error bound
as for the Steiner-point method applies to VBP paths in most tested cases. In the
few remaining cases, VBP paths are still ε-optimal with respect to an optimal path
in the pruned scene.

60 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

Pruning Scene Number of Number of path Success

heuristic paths di�erences rate

Triangle- Puddle 6561 18 99.7%
based Bars 6561 0 100%

High-low 6561 128 98.0%
Zigzag 6561 501 92.4%
Forest 9000 1623 82.0%

All averaged 35244 2270 93.6%

Edge- Puddle 6561 26 99.6%
based Bars 6561 0 100%

High-low 6561 128 98.0%
Zigzag 6561 399 93.9%
Forest 9000 590 93.4%

All averaged 35244 1143 96.8%

Vertex- Puddle 6561 23 99.6%
based Bars 6561 0 100%

High-low 6561 132 97.9%
Zigzag 6561 201 96.9%
Forest 9000 587 93.4%

All averaged 35244 943 97.3%

Table 4.2: Empirical comparison of the three pruning heuristics in all �ve scenarios. The
success rate indicates how often a pruning heuristic yielded the same path as the original
Steiner-point method by Aleksandrov et al. [2].

Overall, the results of our �rst two experiments are an indication that VBP can an-
swer path-planning queries faster than the the original Steiner-point method when
the underlying graph has already been constructed, and that VBP computes the
same paths as the SPM in small scenes and for a comparably small grid resolu-
tion. However, VBP needs to construct a new pruned graph for each path-planning
query, whereas the original Steiner-point method computes a graph only once as
an o�ine step. Furthermore, the results do not indicate whether VBP also com-
putes the same paths as the SPM when we use a larger scene and a correspondingly
larger grid resolution. To address these two points and further validate our VBP
method, we have therefore conducted a third experiment on the sixth scene named
abstractRegions16x16.

4.3.4 | VBP vs. SPM in a large scene

In the third experiment, we tested whether the time needed to construct the pruned
graph plus the time needed for searching the graph is lower than the query times
of the original Steiner-point method alone. This property is expected to hold only
in large scenes, and it is thus not re�ected in our �rst experiment. At the same
time, this property is key to achieve real-time performance in future gaming and

Chapter 4: Vertex-based Pruning (VBP): A hybrid method 61

simulation applications. To this end, we have tested both methods with ε-values
of 0.3, 0.4, and 0.5 for 65 pairs of query points in the abstractRegions16x16 scene,
which yielded a total of 195 paths. Both methods were run 10 times for each query
point and each ε-value. The query points were determined by picking a set of 20
candidate points in a grid-like fashion such that possible paths between any two
candidate points would vary in length and overall running direction. From the set
of candidate points, we picked four diagonally-opposite pairs to test our expectation
that VBP outperforms the SPM for these queries. For the remaining 61 query points,
we randomly picked pairs from the set of candidate points. Since this large scene
is 16 times as big as the �rst four scenes, we scaled the grid-cell width and height
for the A∗ search up to 16 units to ensure a comparable performance of our VBP
method as in the �rst set of experiments.

Table 4.3 shows an excerpt of the averaged results. We show two queries for which
VBP did not outperform the SPM and two other queries in which VBP did out-
perform the SPM. Overall, we can draw the following conclusions from this third
experiment: First, the query times of the SPM for ε-values of 0.4 and 0.5 are still
slightly lower than the construction plus query times for our VBP method. Second,
the opposite is true when using an ε value of 0.3 and when the paths are su�ciently
long, e.g. when they span almost the entire diagonal of the scene. In these cases,
the sum of the construction and query times for VBP is smaller than the query time
for the SPM alone. This turned out to be the case for the four queries we purposely
picked, and for two more queries from the remaining set of query points, which
were close to diagonally-opposite pairs. In all these cases, the increased number of
Steiner points that are placed over the entire scene by the SPM yields query times
that cannot compete with the overall time needed for running VBP. For the remain-
ing query points, the SPM yielded lower query times than the overall time needed
to run VBP. The key factor turned out to be the number of triangles that the SPM
needs to traverse after the graph has been constructed.

Due to the design of both methods, we expect the shown improvement of VBP over
the SPM to be greater when using even larger scenes, smaller ε-values, and query
points that yield longer (not necessarily more expensive) paths. We leave further
validation of these expectations for future work.

Contrary to our experiment in the �rst �ve scenes, VBP turned out to compute
paths that all have higher costs than the ones computed with the SPM. While both
sets of paths are proven to be ε-approximations of their theoretical optima [2], the
optimal paths for the two methods are not the same due to the pruning step of VBP.
This relates to our analysis in the previous chapter, in which we have shown that
an optimal path and a grid-optimal path do not need to be region-homotopic. The
di�erences in path costs we observed were small for the majority of queries, with
some large outliers: On average, we observed an increase in path costs of 21.1%
with a large standard deviation of 37.9 due to the fact that �ve out of 195 queries
yielded an increase in path costs of more than 200%. A total of 159 out of all 195

62 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

queries yielded path di�erences below the mean of 21.1%, with a typical range
being an increase between 1% and 10%.

Figure 4.13 shows an example query from (10, 10) to (700, 700) and the correspond-
ing paths as computed by the SPM and by our VBP method. The SPM path has total
costs of 2148.86, whereas the VBP has total costs of 2216.25, which corresponds
to an increase of 3% in this particular example. Figure 4.14 shows the largest out-
lier that yielded costs of 6593.18 for VBP and costs of 1971.08 for the SPM, which
corresponds to an increase of 235%. However, when visually comparing both ex-
amples, the path di�erences do not seem as extreme as the cost numbers indicate.
These higher costs occurred in only �ve out of 195 queries, while the corresponding
paths are still visually convincing. This gives rise to the conjecture that the high
costs for the VBP path might result from numerical rounding errors. These errors
might be due to the edge-crawling path segments that touch the high-cost region
shown in blue and the fact that the shown example contains a comparably large
number of such edge-crawling segments.

Query ε Method Constr. time Query time Nodes Path

(ms) [StDev] (ms) [StDev] costs

(10, 10) 0.3 SPM 38004.1[91.7] 135.2[0.7] 34383 1016.6
(10, 400) VBP 1324.0[20.3] 5.7[0.1] 1997 1120.2

0.4 SPM 10406.5[40.2] 49.8[0.2] 20535 1016.9
VBP 1274.9[3.9] 3.8[0.1] 1193 1119.6

0.5 SPM 4174.14[11.7] 24.4[0.2] 13152 1032.4
VBP 1262.8[4.8] 3.1[0.0] 777 1133.9

(10, 10) 0.3 SPM 38087[374.2] 460.6[3.6] 95648 1482.5
(10, 700) VBP 1380.4[20.0] 15.9[0.1] 3455 1714.2

0.4 SPM 10352[12.5] 161.4[1.7] 57262 1482.9
VBP 1302.4[3.2] 13.5[0.1] 2069 1713.6

0.5 SPM 4166.0[6.2] 72.4[1.4] 36661 1498.6
VBP 1276.8[3.3] 11.2[0.1] 1353 1727.9

(20, 700) 0.3 SPM 38274[154.9] 1975.2[8.5] 298022 1560.1
(700, 20) VBP 1608.8 [16.9] 35.8 [1.1] 7299 1693.5

0.4 SPM 10442.5[16.6] 645.2[3.4] 177984 1561.7
VBP 1372.1[3.3] 25.5[0.1] 4306 1695.5

0.5 SPM 4201.0[6.4] 264.7[2.0] 113956 1569.4
VBP 1313.6[2.7] 21.8[0.1] 2708 1703.2

(10, 500) 0.3 SPM 38103[186.4] 1968.6[1.9] 288428 1476.5
(700, 10) VBP 1795.1 [12.5] 42.8 [0.6] 8603 1566.17

0.4 SPM 10411.4[22.1] 639.3[2.3] 172778 1478.5
VBP 1443.4[7.5] 30.8[1.3] 5182 1568.1

0.5 SPM 4183.1[3.2] 263.1[2.2] 110703 1479.6
VBP 1362.3[20.2] 24.2[0.3] 3347 1568.3

Table 4.3: Excerpt of the comparison between the SPM and VBP on the abstractRegions16x16
scene with ε-error bounds ranging from 0.3 to 0.5. Lines are bold in which the sum of the
construction time and the query time of VBP is smaller than the query time of the SPM alone.

Chapter 4: Vertex-based Pruning (VBP): A hybrid method 63

ε # Queries Path-cost

increase (%) [StdDev]

0.3 65 21.3[38.4]
0.4 65 21.2[38.3]
0.5 65 20.9[37.7]

all 195 21.1% [37.9]

Table 4.4: Overall results of the comparison between the SPM and VBP on the abstractRe-

gions16x16 scene.

Figure 4.13: Two di�erent paths that we computed in the abstractRegions16x16 scene. The
path computed with our VBP method (dark blue) has total costs of 2216.25, and the path
computed with the SPM (red) has total costs of 2148.86.

64 Chapter 4: Vertex-based Pruning (VBP): A hybrid method

Figure 4.14: A path-cost outlier in the abstractRegions16x16 scene. The path computed with
our VBP method (dark blue) has total costs of 6593.18, and the path computed with the SPM
(red) has total costs of 1971.08. We conjecture that the large increase in costs might be due
to numerical rounding errors caused by the large number of edge-crawling segments at the
boundary of the high-cost regions shown in darkgreen and blue.

Chapter 5

Conclusion Part I

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

This chapter concludes the �rst part of this thesis: path planning in weighted re-
gions. We have discussed the Weighted Region Problem (WPR) [87] under the as-
pect of virtual-agent navigation for advanced crowd behavior in future simulation
and gaming applications.

In Chapter 3, we analyzed paths that are obtained from a grid representation of a
weighted polygonal subdivison. We started with a simple observation for arbitrary
grid resolutions and arbitrary environments. This observation states that there is
no upper bound on the length of grid-optimal paths compared to the length of op-
timal any-angle paths between the same query points. The reason for this is that
narrow passages in the environment can be blocked whenever the grid resolution
is too coarse. This fact, which already holds in the classical path planning situation
without weighted regions, gives rise to the question whether we can prove an up-
per bound on the path lengths when the grid resolution is chosen in such a way
that all regions are aligned with the grid.

To tackle this question, we generalized the concept of homotopic paths in the context
of the WPR by de�ning region-homotopic paths. We showed that aligning all regions

66 Chapter 5: Conclusion Part I

with the grid does not guarantee a grid path and an optimal path to be region-
homotopic. We believe, however, that this is a rare case in the sense that it only
occurs when the weights are chosen carefully and are numerically close to each
other. The intuitive impression is that – when all regions are aligned with the grid
– there is only a small range in value di�erences in weights that allows a grid path
and an optimal path to be not region-homotopic.

The main contribution of Chapter 3 is a path-cost analysis of grid paths in the con-
text of the WRP when all regions are aligned with the grid. We have shown ana-
lytically that a grid path is never more expensive than 2

√
2 times the cost of an

optimal path.

In Chapter 4, we presented VBP to approximately solve the WRP for real-time sim-
ulation and gaming applications. VBP is a hybrid method that aims at combining
the advantages of an e�cient A∗ search [42] on a grid representation with the ε-
approximation property of the Steiner-point method (SPM) by Aleksandrov et al.
[2]. We derived three pruning heuristics that use a rough A∗ path as a guidance to
indicate regions that are likely to be used by an optimal path. This is where our ana-
lysis of Chapter 3 comes into play: As we have shown, grid paths and optimal paths
in weighted regions do not need to be region-homotopic, even when all regions are
aligned with the grid. We showed empirically that in a set of small scenes with a
high grid resolution, the number of paths that are not region-homotopic to paths
computed with the SPM is small. This means that in most of these cases, our VBP
method prunes the search space in such a way that it still contains all the regions
that are intersected by an ε-optimal path computed with the SPM on the entire
search space. For these cases, we can therefore guarantee the same ε-optimality as
for the original method by Aleksandrov et al. [2]. For the remaining cases, we can
still guarantee ε-optimality with respect to an optimal path in the pruned search
space.

We have shown experimentally that VBP improves on the graph-construction times
and the graph-query times when the initially computed grid path intersects only
a small portion of the total number of triangles in a scene. In such scenarios, the
additional time that is needed to prune the search space is small compared to the
time we can save for computing a path in the pruned search space. In addition, we
have shown that the time needed for constructing and querying a graph with VBP in
a large scene can be smaller than the query times of the SPM alone. Our experiments
give a �rst indication that this property holds when the number of pruned triangles
is large, when we use small ε-values, and when the computed paths are su�ciently
long. When these properties are met, the graph-search phase of the SPM has to
explore such a large number of graph nodes that its query times cannot compete
with the overall time needed to run VBP. In the context of real-time simulations and
gaming applications, typical virtual environments contain even greater numbers of
triangles than the large scene that we have tested. We believe that the improvement
in running times becomes even greater with even larger scenes, in which more
triangles can be pruned, and/or when using even smaller ε-values.

Chapter 5: Conclusion Part I 67

The improved performance comes at the price of higher path costs. The average
increase that we observed in our experiments was 21.1%. However, in 159 out of
all 195 cases that we have tested, we observed a smaller increase in path costs. A
typical range was between 1% and 10%, whereas only a few outliers in our data
caused the mean value to be higher. By visually inspecting these outliers, we con-
cluded that the computed paths were still reasonably short. This gave rise to the
conjecture that the increase in path costs was caused by numerical imprecision due
to edge-crawling path segments on the boundary of high-cost regions. We leave
further validation of this conjecture for future work.

VBP assumes a �xed set of weights for the regions that are given as an input. This,
however, does not impose a hard constraint when we want to simulate various
agent pro�les in the context of games and simulations. By not storing �xed weight
values but rather abstract region types in the environment, it is possible to have
varying region preferences for di�erent types of agents. To this end, we need to
translate the region-type information to the actual weight values for a given agent
pro�le before running the algorithm. As such, it is possible to model various ap-
plication scenarios, e.g. to compute paths for pedestrians in a city environment that
prefer to stay on a sidewalk, or paths for wild animals that prefer to stay hidden in
dense woods. Note, however, that VBP does not take an agent’s radius into account
when it is represented as a disc. Similar to the original formulation of the WRP, we
assume start and goal positions as points in the environment, and the computed
paths have no guaranteed clearance from high-cost regions. Taking an agent’s ra-
dius into account is handled by our novel path-following method as described in
Chapter 7. As such, an open question for future work is how we can handle an
agent’s radius and keep clearance from high-cost regions when computing global
paths as indicative routes.

Overall, the work presented in the �rst part of this thesis leaves room for inter-
esting future investigations on the WRP in the context of grid-path analyses and
real-time path-computation methods. One interesting challenge is to derive an ab-
stract property that a WRP instance may or may not have to yield region-homotopic
paths when using a grid approach. This seems a promising next step towards under-
standing the geometric principles behind grid approaches and the WRP in general,
which in turn might lead to novel real-time approximation algorithms. Another
challenge for future work is to further improve the upper bound on the path costs
of grid-optimal paths. Regarding future real-time path computation methods, the
VBP method should be seen as the �rst instance of a concept of hybrid methods.
We designed it in such a way that all parts of the method can be changed independ-
ently. How we compute a rough guidance path does not depend on how we prune
the search space, which again does not depend on how the �nal ε-approximate
path in the pruned search space is computed. Research in all three areas can lead
to improved variants of VBP. One interesting variant for future work could be to
make VBP keep clearance from region boundaries when an agent is represented as
a disk. In its current form, VBP does not take varying agent sizes into account and

68 Chapter 5: Conclusion Part I

can therefore yield edge-crawling path segments. Traversing such a path as an in-
dicative route when an agent has a spacial extent would make that agent partially
intersect regions that potentially have undesired high costs.

In conclusion, we believe that the work presented in Part I of this thesis can help to
further understand the underlying geometrical principles of the WRP. Furthermore,
we believe that the VBP method can be seen as a �rst concept for developing future
real-time approximation algorithms for the WRP and thus improve path planning
in weighted regions in a variety of �elds such as simulation, gaming and robotics
applications.

In the upcoming Part II of this thesis, we take this a step further. In the same way
as the VBP method computes a �rst rough guidance path, which it then re�nes
in a subsequent step, we will use the same principle one abstraction level higher:
The paths computed with our VBP will again serve as a rough guidance path for
autonomous virtual agents that traverse such paths in real time. The �nal traject-
ories traversed by such agents will be computed with novel methods that we will
present in Part II of this thesis. Such trajectories can be then seen as re�nements of
the initial rough guidance path in the same way as the paths computed with VBP
can be seen as re�nements of the initial A∗ grid paths to prune the search space.

Part II

Path Following in Weighted

Regions

69

Chapter 6

The MIRAN method

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

As we have discussed in Part I of this thesis, the Weighted Region Problem (WRP)
[87] is an interesting computational-geometry problem with high relevance in vir-
tual-agent navigation and crowd-simulation applications. With the VBP method as
described in Chapter 4, we can compute paths through weighted polygonal subdi-
visions in real-time that are proven to be ε-optimal in a pruned subset of a virtual
environment. In this chapter, we will consider such paths as guidance paths or in-
dicative routes as de�ned in the context of the Indicative Route Method (IRM) by
Karamouzas et al. [63].

The main contribution of this chapter is a new path-following method for virtual
agents, which is based on the IRM. This new method is called Modi�ed Indicative

Routes and Navigation (MIRAN). The goal is to use an indicative route to steer a
virtual agent through an environment in real-time when the environment features
weighted regions. Each agent has a set of individual region preferences, which
makes our method applicable for a great variety of settings. City environments with
traversable regions such as sidewalks, roads, and lawns can be modeled in the same
way as weather-in�uenced environments such as swamps, dirt paths, deserts, and

72 Chapter 6: The MIRAN Method

frozen lakes. Furthermore, psychological in�uences like unattractive environments
(narrow passages or trashy areas) or attractive areas (artsy neighborhoods or areas
with a panoramic view over a valley) can be modeled as well.

We start with discussing related work in Section 6.1. In Section 6.2, we present
preliminaries, and in Section 6.3, we present the details of the MIRAN method. We
validate and compare MIRAN with the IRM in Section 6.4.

This chapter is based on the following publication:

[52] N. Jaklin, A. Cook IV, and R. Geraerts. Real-time path planning in heterogen-
eous environments. Computer Animation and Virtual Worlds (CAVW), 24:285–295,
2013.

6.1 | Related work

To the best of our knowledge, MIRAN is the �rst path-following method (as we
de�ne it in the context of our �ve-level planning hierarchy; see Section 1.2) that
handles region preferences for autonomous-agent navigation. As such, work that
is related to our MIRAN method can be subdivided into two categories. The �rst
category contains path-following methods in homogeneous environments that do
not feature weighted regions. We now brie�y discuss a selection of related work
from this �rst category.

Harabor and Botea [41] introduced a path planner called Hierarchical Annotated

A∗ (HAA∗). It uses a grid to guide a set of uniquely sized agents, where each
agent occupies a c × c square in the grid. The value of c can be any non-negative
integer. HAA∗ keeps track of the nearest obstacle to each grid cell to guarantee
that the computed paths have su�cient clearance from obstacles. Multiple terrain
types are handled by associating each agent with a set of terrain types that this
agent can traverse. In other words, for a �xed agent the problem is reduced to the
classical path planning problem in homogeneous environments. Kang et al. [62] use
a di�erent approach to �nd paths for agents in homogeneous environments. They
present an adaptive agent-navigation approach, which collects data and learns new
paths from user-controlled agents. Lo et al. [82] show how agents can learn from
raw vision input to navigate autonomously in homogeneous environments. They
introduce a hierarchical state model and a novel regression algorithm to avoid the
’curse of dimensionality’.

The above-mentioned methods serve as complete agent-navigation models, and
they do not necessarily aim at real-time performance. As such, contrary to the
MIRAN method we introduce in this chapter, they are not designed in a modular
way to be integrated in a broader real-time navigation framework.

Chapter 6: The MIRAN Method 73

This is di�erent for the Indicative Route Method (IRM) by Karamouzas et al. [63],
which can be seen as a predecessor of our new MIRAN method. Contrary to the
above-mentioned methods, the IRM does aim at real-time performance, and it is
designed in a modular way and implemented in the Explicit Corridor Map crowd-
simulation framework [142]. The IRM is not designed to handle weighted regions.
Furthermore, the path-following behavior of an agent that uses the IRM is depend-
ent on the local geometry of the scene and the amount of free space that is locally
available. Our MIRAN method adopts some general principles of the IRM, but it
addresses and overcomes issues that are related to the latter two properties. We
give more details on the similarities and di�erences between the IRM and MIRAN
in the remainder of this chapter.

The second category of related work contains methods in heterogeneous environ-
ments with various regions, which often come from the robotics community. As
such, these methods aim at the navigation of autonomous robots or vehicles. We
now brie�y discuss a selection of related work from this second category.

Yahja et al. [151] combine framed quadtrees [12] with aD∗ search [123] for mobile-
robot path planning in environments that are only partially known. The system has
been tested in simulations and on an autonomous jeep. Guo et al. [38] present al-
gorithms for mobile-robot path planning and motion control in environments that
feature rough terrain. They introduce three modules, one for path searching, one
for trajectory generation, and one for trajectory tracking. In each module, perform-
ance issues are addressed in the context of robot-safety considerations. Guo et al.
[39] present a global path-planning method that is based on common sense and
evolution knowledge. The authors show that the method can e�ectively solve the
path-planning problem for robots in complex environments that feature various
terrain types. Drews et al. [22] present a path-planning method that takes di�er-
ent terrain into account. The focus is on autonomous non-holonomic vehicles, i.e.
agents that cannot instantly move into any arbitrary direction, but are constraint
in their movements.

The methods from the second category treat regions mostly as terrain types for real-
world applications. Our MIRAN method, by contrast, handles regions in a more
general way. Furthermore, we do not aim at handling real-world navigation but
virtual-world navigation, which has di�erent requirements and goals. We aim at
generating smooth and plausible trajectories rather than paths that are traversable
by an actual robot that needs to obey to physical real-world constraints such as
gravitation, balance, and stability. In the context of this work, the latter constraints
are assumed to be re�ected in the weight value for a given region, and they are
thus treated from a higher-level perspective. When an application requires more
detailed handling of such constraints, they should be addressed in the animation
layer of the planning hierarchy. The animation layer operates on the actual 3D
model of an agent, and methods from this layer are beyond the scope of this thesis.

74 Chapter 6: The MIRAN Method

6.2 | Preliminaries

In this section, we provide preliminary de�nitions related to our MIRAN method.
While the VBP method, which we have described in Chapter 4, tackles the WRP
in its original abstract formulation, the MIRAN method aims at computing smooth
trajectories that respect an agent’s region preferences in the context of real-time
virtual world navigation. The problem we tackle can be seen as a variant of the
WRP. In this variant, we do not look for a cost-optimal path to a goal destination
while taking weighted regions into account. Instead, we compute natural-looking
trajectories that are smooth and follow an arbitrary indicative route. Such an in-
dicative route, which could be computed with VBP, functions as a rough estimation
of an agent’s preferred path. MIRAN adopts the concept from the Indicative Route

Method (IRM) by Karamouzas et al. [63] of using attraction points to make an agent
proceed towards its goal position.

MIRAN is designed in a �exible and modular way that makes it independent of
the way in which the traversable space in the environment is represented. The
only requirement is that the underlying data structure allows e�cient visibility
checks between any two points in the environment, as well as obstacle-avoidance
behavior. Similar to the situation in the previous chapters, an environment is given
as a weighted polygonal subdivision. In the context of this chapter, the weight of
a traversable region resembles a region type, which could occur in a simulation or
gaming application. Examples of region types are terrain representations such as
roads, sidewalks, carpeted �oors, tile �oors, grasslands, snowlands, deserts, and
mud pits. A region type can also represent a psychological aspect like a dangerous
area or a pleasant spot with a panoramic view. Other examples of abstract data are
slope information and crowd-density information [141], which could also be used
to weight the attractiveness of a traversable region. The union of these regions
make up the free navigable space of the environment.

In addition to weighted regions, we assume obstacle polygons that are not travers-
able by any character at any time. Such static obstacles could be de�ned as special
region types with an in�nite weight. In practice, however, we prefer to treat these
as separate object types because such regions should not be considered as part of
the search space when looking for paths. We never want to allow an agent to pass
through such an obstacle, which could happen if an obstacle was modeled as a re-
gion with an in�nite weight: Whenever we send an agent to a goal position for
which all possible paths intersect an obstacle, we rather want an agent to not move
at all instead of walking through static obstacles due to a lack of lower-cost paths.

For our method, we assume that an agent is represented as a single point in the
environment. Each agent has a unique set of region preferences that are given as
positive numerical values. The less preferred a region is for an agent the higher its
numerical value. For example, consider a family that strolls through a park. A child
might walk through mud and puddles whereas the adults will avoid those spots;

Chapter 6: The MIRAN Method 75

see Figure 6.1. To model this, the adults have higher values for puddle regions than
the child. As another example, a person who is in a hurry might be willing to run
through muddy terrain to save time whereas a person in a nice suit is willing to
take large detours. Such higher-level considerations can be modeled with MIRAN
in the same way as geometrical terrain information by setting an agent’s region
preferences accordingly.

Following Karamouzas et al. [63], we adopt the concept of an indicative route that
serves as a rough guidance path for an agent. This means that an agent can locally
diverge from an indicative route to walk a smooth path or to avoid collisions with
other agents. In theory, an indicative route can be any curve πind : [0, 1] → R2

through the navigable space of an environment. This curve passes through a se-
quence of traversable regions. In practice (see Section 6.4), we use indicative routes
that consist of straight-line segments, which are either manually created by a user
or computed by a path planning method in weighted regions such as our VBP
method, which we presented in Chapter 4.

6.3 | Method details

In this section, we show how MIRAN works in detail. Given an indicative route
πind, we assume that the initial position x0 of an agent equals the starting point s
of πind. Otherwise, we �rst compute a connection from x0 to s to bridge the gap.
Algorithm 3 gives an overview of the method.

Figure 6.1: A path (gray) in a forest (green) with obstacle trees (black), puddles (blue), fallen
trees (brown) and a spot with a panoramic view (light gray). Two agents (adult and child)
follow automatically computed indicative routes (solid and dashed black). The smoothed
paths (solid red for the adult, dashed red for the child) are computed with our MIRAN method.
Both the indicative routes and the paths are based on the agents’ terrain preferences. The
adult avoids puddles and fallen trees, and is attracted to the spot with the panoramic view.
The child prefers to walk through puddles, climbs over the trees and is not interested in the
panoramic view.

76 Chapter 6: The MIRAN Method

Similar to the Indicative Route Method (IRM) by Karamouzas et al. [63], we de�ne
an attraction point in each simulation cycle that is located on πind. In the IRM,
the attraction point is de�ned as the last point on πind that intersects the largest-
clearance disk around the agent, and it is thus dependent on the local features of the
given environment. As a consequence, an agent using the IRM will stick closer to
its indicative route when the environment is cluttered and contains many narrow
passages, whereas it moves more freely when there are large areas of free space.
In particular, this property can make an agent skip arbitrarily large parts of an
indicative route; see Section 6.4. Since an indicative route should serve as a rough
indication of an agent’s preferred trajectory, this lack of control in the IRM is clearly
undesired.

For MIRAN, by contrast, we de�ne a set of candidate attraction points from which
the best candidate is picked in each simulation cycle. The best candidate is chosen
based on a cost function that incorporates the agent’s region preferences. It models
the attractiveness of the underlying regions that the agent has to traverse when
approaching a candidate attraction point, as well as the distance from an attraction
point to the goal position along πind. We introduce two user-controlled paramet-
ers, the shortcut parameter σ and the sampling distance d, which together with the
reference point determine the setAi of candidate attraction points. Our method en-
sures that each candidate attraction point in Ai is visible from the agent’s current
position.

In Figure 6.2, we show an example situation and the corresponding attraction points
as computed by the IRM (left) and MIRAN (right). Note that we assume only one
region type in this example, which makes the agent pick the last visible candidate
attraction point along the indicative route.

The rest of this chapter is organized as follows: In Section 6.3.2, we give details
on how the set Ai of candidate attraction points is computed. In Section 6.3.3,
we explain how to choose an attraction point from Ai using our cost-function. In

Algorithm 3 The MIRAN method

Input. Start s, goal g, indicative route πind from s to g
Output. Smooth region-dependent path from s to g

1: i← 0
2: x0 ← s
3: while xi 6= g do
4: ri ← ComputeReferencePoint(xi, πind)
5: Ai ← ComputeCandidateAttractionPoints(ri, xi, πind)
6: αi ← PickBestCandidate(Ai, xi)
7: xi+1 ←MoveAgentTowardsAttractionPoint(xi, αi)
8: i← i+ 1

Chapter 6: The MIRAN Method 77

s

g

xi

πind
αi

IRM

s

g

xi

πindri

αi

MIRAN

Figure 6.2: Comparison of attraction-point computation between the IRM [63] (left) and
MIRAN (right). For MIRAN, the visibility polygon for the agent’s position xi is shown in
light blue, and all candidate attraction points are inside the visibility polygon. The example
shows a scene with only one region type, which makes the MIRAN agent pick the last visible
candidate attraction pointαi along the indicative route. The attraction point does not depend
on the locally available amount of free space when using MIRAN.

Section 6.3.4, we discuss how we move the agent towards its attraction point in a
subsequent step. In Section 6.3.5, we prove the correctness of our MIRAN method,
and we conduct experiments in Section 6.4.

6.3.1 | Computing a reference point

We will now discuss how to compute a reference point ri in each step i of the
method. Let xi be the agent’s current position. We de�ne ri as the �rst closest point
from xi to the part of πind that lies between the previous reference point ri−1 and
the previous attraction point αi−1 for i ≥ 1; see Figure 6.3.

xi

xi−1

αi−1

πind

s
g

cri−1

ri

Figure 6.3: Only the subpath of πind between ri−1 and αi−1 (shown in red) is taken into
consideration for the computation of reference point ri. Choosing the closest point c as the
reference point would lead to an undesired shortcut.

78 Chapter 6: The MIRAN Method

For the initial step i = 0, we have r0 = x0 because we assumed x0 to be the starting
point s of πind. Whenever the agent is located on the indicative route, the reference
point ri equals the current position xi. We restrict the reference point to the given
sub-path of πind because otherwise we might refer to a point that lies too far ahead
along the route, leading to undesired shortcuts. In the example shown in Figure
6.3, picking the closest point c as the next reference point ri would lead to skipping
the whole part of the indicative route between αi−1 and c, which can be arbitrarily
large in general.

With the above de�nition of the reference point, we are now able to compute the
set Ai of candidate attraction points. We will show next how this is done in detail.

6.3.2 | Computing the candidate attraction points

As sketched before, we introduce two parameters that can be adjusted by the user
to compute the set Ai of candidate attraction points:

• The shortcut parameter σ de�nes the maximum allowed curve length distance
from the reference point to the farthest candidate attraction point.

• The sampling distance d de�nes the maximum curve length distance between
each candidate attraction point.

The shortcut parameter σ is used to control the degree of smoothing we want to
allow and to prevent the agent from taking undesired shortcuts. It de�nes the max-
imum curve length distance the agent is allowed to skip when following the route.
Since all candidate attraction points inAi are not farther away from ri than σ (with
respect to the curve length of πind), we ensure that we can pick any of them without
generating undesired shortcuts. By σi, we denote the point on πind that has curve
length distance σ from ri. Let πind(ri, σi) be the sub-path of πind from ri to σi.
Our candidate attraction points are always located on πind(ri, σi).

Now, the �rst step in the computation ofAi is to determine all parts of πind(ri, σi)
that are visible from the current position xi with respect to all static obstacle poly-
gons. In this context, we assume obstacle polygons to obstruct both passability and
visibility. Areas such as rivers in a virtual world, which should not be crossed but
still allow visibility of what lies beyond, are not treated as static obstacles but rather
as weighted regions with a correspondingly high cost. Formally, we compute the
visibility polygon Pi for xi in a polygon that is the union of all traversable space
(with the obstacles being holes in that polygon), or – equivalently – in a scene with
non-intersecting straight-line segments (the boundary edges of the obstacles). We
let the intersection Vi := Pi

⋂
πind(ri, σi) be the set of all points on πind(ri, σi)

that are currently visible; see Figure 6.4.

Chapter 6: The MIRAN Method 79

Computing Pi is a well-studied computational-geometry problem. It can be com-
puted in O(n log n) time with n being the number of obstacle vertices [36]. Since
MIRAN needs to compute this visibility information in each simulation cycle, com-
puting the actual visibility polygon yields a bottleneck for real-time crowd simula-
tion applications with a high number of agents in large environments. In practice,
however, it is su�cient to sample the indicative route and perform a simpler visib-
ility check for each sampled candidate attraction point. For further details on how
we perform these visibility checks within the Explicit Corridor Map framework [56],
see Chapter 11.

The set Vi yields a division of the indicative route into a set of real intervals Vj =
[aj , bj] ⊂ R, such that a point πind(t) is visible from xi for all t ∈ Vj . We let
the two end points πind(aj) and πind(bj) of each interval be candidate attraction
points. The only exception is that we do not want the reference point ri to be a
candidate attraction point. Since ri equals πind(a1) whenever the reference point
is visible, the agent could possibly be attracted to its current position. While this is
not a problem when there is at least one more candidate attraction point that yields
lower costs (see Section 6.3.3), in theory it can happen that the reference point is
the best choice whenever all other candidates are in high-cost regions. Picking
the reference point as the attraction point would make the agent come to a stop
without it having reached the goal. Thus, we ignore the reference point ri and start
assigning the candidate attraction points with the point πind(b1).

We continue to add more values to our set Ai by sampling each visible interval of
the indicative route, using the sampling distance d. The closer to 0 the sampling
distance the more candidate attraction points we generate and the more is our set
Ai an approximation of a continuous set. A smaller sampling distance therefore
generates higher accuracy while increasing computation time. If d is set too large,
the resulting inaccuracy may lead to undesired output paths. In practice, however,
feasible values of d can be easily set if the size of the environment and the curve
length of the indicative route are known (see Section 6.4 for examples). Once set to a
feasible value, smaller values a�ect the overall output paths only insigni�cantly. In
areas near static obstacles with no change of the underlying region, smaller values

s

g

πind

xi
ri

σi
πind(ri, σi)

Figure 6.4: Visible parts of the environment (light blue) and the indicative route (red) from
the current position xi.

80 Chapter 6: The MIRAN Method

xi

ri = πind(a1)

σi

αi1 αi2 = πind(b1)

αi3 = πind(a2)

αi4
αi5

αi6

αi7 = πind(b2)

s

g

Figure 6.5: Example of candidate attraction points computed by our method.

of d do not change the output paths at all because the last visible point along the
route will always be picked as an attraction point (see Section 6.3.3 for details).

Sampling each visible interval is done as follows. If for any real interval Vj the
curve length distance between πind(aj) and πind(bj) is greater than the sampling
distance d, we add a candidate attraction point between those two points with curve
length distance d from πind(aj). We iterate this process until the maximum distance
between any two subsequent candidate attraction points is d. Note that the curve
length distance between bj and the previous sampled candidate attraction point
can be smaller than d. We then let Ai = {αi1 , αi2 , ...} be the �nal set of candidate
attraction points, ordered by their positions along the indicative route. See Figure
6.5 for an example of the resulting set Ai.

6.3.3 | Choosing the attraction point

Now that we have computed the set Ai of candidate attraction points, we pick the
best candidate with respect to a weight function ω as our �nal attraction point αi
for the current step i of the algorithm.

Let k be the total number of candidate attraction points in the current step i. We
consider the straight line segments l(αij , xi) between αij and xi, with 1 ≤ j ≤ k.
We compute a weight ω(l(αij , xi)) for each such line segment and choose αi to
be the �nal attraction point for which the corresponding line segment has min-
imum weight. The Euclidean length of the line segments, the di�erent region types
that intersect the line, as well as the agent’s preference values in�uence the weight
function. Furthermore, we de�ne the weight function such that candidate attraction
points that are farther away from the current position reduce the weight of the line
segments. This ensures that the agent will be rewarded for picking an attraction
point that is farther away.

Chapter 6: The MIRAN Method 81

For each line segment l(αij , xi), letRij be the set of all region types that l(αij , xi)
intersects. Let dij be the curve length distance along the indicative route from
the reference point ri to the candidate attraction point αij . For each region type
R ∈ Rij , we let w(R) > 0 be the agent’s corresponding region preference value.
By lRij , we denote the amount of region R on l(αij , xi) by summing up the length
of all parts of l(αij , xi) that cross region type R.

We de�ne the weight ω(l(αij , xi)) :=
∑
R∈Rij

w(R) · lRij/dij . The fraction lRij/dij
describes the relation between the Euclidean length of the line segment with un-
derlying region typeR and the curve length distance dij . It ensures that we reward
picking an attraction point that is farther away along the route.

After computing the weights for each one of the k line segments, we pick the �nal
attraction point αi := αi,m with m = argmin

1≤j≤k
ω(l(αij , xi)). If there are several

candidate points with minimum weight for the corresponding line segments, we
pick the one with greatest curve length distance from the reference point along the
indicative route.

6.3.4 | Moving the agent

Once the �nal attraction pointαi is computed for the current step i of the algorithm,
the agent moves towards that point. How this is done depends on the overall frame-
work in which MIRAN is being used.

If MIRAN together with a path planning method such as VBP is used as a stand-
alone simulation method, one can simply apply the computed velocity as the agent’s
new velocity, or or one can use a local force-based steering method as described in
the IRM [63] to move the agent towards its attraction point. However, other force-
based approaches can be used, as well. Note that an agent might be pushed behind
an obstacle due to forces induced by other moving agents. This might lead to an
agent not being able to see any parts of its indicative route. In this case, our method
terminates and we continue with computing an indicative route from the agent’s
new position and using it as an input for MIRAN.

We use the Explicit Corridor Map (ECM) framework as described in Section 1.2 [31].
This framework provides a planning pipeline, in which MIRAN is embedded as a
path-following method. Collision-avoidance with other agents and obstacles with a
variable user-controlled amount of clearance are performed as separate subsequent
steps. As mentioned before, any other navigation mesh or grid structure that allows
e�cient visibility checks and obstacle avoidance can be used with MIRAN.

82 Chapter 6: The MIRAN Method

6.3.5 | Proof of correctness

Now we show that our method ensures that the agent will always �nd a path to the
goal position g – provided the goal can be reached and the agent is not pushed away
by other factors (e.g. other moving agents) such that the indicative route becomes
invisible.

To prove the correctness of MIRAN, we assume that we have a �nite number of
polygons that are not in�nitesimally small. Note that this does not imply any re-
strictions for practical applications. In addition, we assume that the agent is moving
towards each attraction point directly. While in practice we use Euler Integration as
an integration scheme to compute paths that are proven to be C1-continuous [33],
we do not consider this step as part of the MIRAN method itself, but as an optional
step in the planning sequence of the Explicit Corridor Map framework, in which we
have implemented the method. With such an integration scheme, the agent might
be pushed behind an obstacle due to a too large step size. In such a case, we can
compute a new indicative route from the agent’s new position and run MIRAN for
that new route. In practice, however, this is unlikely and can be easily avoided by
adjusting the step size accordingly.

First, we prove that there is at least one candidate attraction point we can choose
from in each step of the algorithm.

Lemma 1. Let i be the current step of the algorithm. It holds that Ai 6= ∅.

Proof. We prove this by induction on i. For i = 0, we have x0 = r0 = s. The agent’s
initial position is the starting point s of the indicative route. Due to the de�nition
of the visibility intervals Vj = [aj , bj] in Section 6.3.2, it immediately follows that
πind(a1) = x0. Since we assume obstacles as polygons, which by de�nition do not
have curved sides, the agent’s position x0 cannot be the only visible point on the
route up to πind(b1). We conclude that a1 6= b1 and also πind(a1) 6= πind(b1) (note
that the latter does not necessarily follow from a1 6= b1 in general, as the route can
have self-intersections). By de�nition of the set Ai, it follows that πind(b1) ∈ A0.

Let i > 0. By the induction assumption, we haveAi−1 6= ∅. Therefore, an attraction
point αi−1 has been chosen in step i− 1 and the agent moved from position xi−1

to position xi, with xi−1, xi and αi−1 being collinear. It immediately follows that
the point αi−1 is still visible in step i. So there must be an index j such that αi−1 ∈
Vj = [aj , bj]. By de�nition of Ai, the point πind(bj) is always a valid candidate
attraction point.

Next, we show that the sequence of reference points moves forward along the in-
dicative route.

Chapter 6: The MIRAN Method 83

αjrj = rj+1

xj

xj+1

s

Figure 6.6: The distance between xj and αj di�ers from the distance between xj+1 and αj
by the amount of the strength cs of the steering force.

Lemma 2. Let i be the current step of the algorithm. It holds that there is a future
step j > i in which the reference point rj is ahead of ri along the indicative route.

Proof. Assume by way of contradiction that the opposite holds. Since we de�ne the
reference point to be a point between the last reference point and the last attraction
point, the opposite assumption would mean that there is a reference point that does
not change for all future steps. So we assume that there is a step i in which the
reference point ri equals rj for all j > i. To simplify the notation, we skip the
index and denote the �xed reference point as r. It immediately follows that the
agent does not reach the goal position g. Otherwise there would be a step j > i
in which xj is closer to g than to r, thus making g the new reference point in step
j + 1.

Because the agent does not reach g but moves forward in each step due to Lemma
1, it follows that we have an in�nite sequence of agent positions xi, xi+1, xi+2,
The Euclidean distance between each xj and xj+1 in this sequence always equals
the move distance of an agent for one simulation step, which is determined by its
preferred speed s (see Figure 6.6 and Section 6.3.4). When the agent moves from xj
to xj+1, there is a corresponding attraction pointαj co-linear with xj and xj+1 that
has been picked as the best point among all candidate attraction points inAj . This
means that the weight ω(l(αj , xj)) =

∑
R∈Rj

w(R) · ljR/dj is minimal among all
candidate line segments in step j.

Now, in the following step j + 1, the next candidate attraction point is computed.
The former attraction point αj has the same curve length distance dj = dj+1 from
the reference point r along the indicative route as in step j because r stays the same
point due to our assumption. So the weightω(l(αj , xj+1)) di�ers fromω(l(αj , xj))
only in the Euclidean distance between the corresponding points and the regions
that are intersected by the line segment. Since the Euclidean distance is smaller
(it has been reduced by s > 0 ; see Figure 6.6), the weight for αj in step j + 1 is
smaller than the weight for αj in step j. It follows that the attraction point picked
in step j + 1 must have a smaller weight than the one picked in step j. Therefore,
following the sequence xi, xi+1, xi+2, ... of agent positions, the weight for picking

84 Chapter 6: The MIRAN Method

the corresponding attraction points becomes smaller in each step by an absolute
amount.

However, there is a lower bound for the weight. Let dmin := min
i≤j
||xj − r|| be

the minimal distance between the �xed reference point r and all agent positions
xi, xi+1, xi+2, Then it holds that ||l(αj , xj)|| ≥ dmin. Otherwise the corres-
ponding attraction point αj would be closer to xj than r, thus becoming the new
reference point in step j+1. This contradicts our assumption that r stays the same
point for all future steps. Furthermore, the curve length distance dj between the
reference point and the attraction point is never greater than the shortcut parameter
σ, i.e. dj ≤ σ. If we let wmin := min

R∈R
w(R) be the agent’s minimum preference

value for all region types, the following lower bound for the weight ω(l(αj , xj))
applies:

ω(l(αj , xj)) =
1

dj

∑
R∈Rj

w(T) · ljR

≥ wmin
σ

∑
R∈Rj

lj
R

=
wmin
σ
· ||l(αj , xj)|| ≥

wmin
σ
· dmin.

Now we know that the weights become smaller in each step, we have an in�nite
number of such steps, and there is a lower bound for the weight. It follows that
the weights must asymptotically approximate the lower bound. This corresponds,
however, to an in�nite number of asymptotically small portions of region polygons
that the agent crosses. Since we assume that there are a �nite number of polygons
that are not in�nitesimally small, we get a contradiction to our assumption, which
proves the lemma.

Lemmata 1 and 2 ensure that our method makes the agent move forward in each
step of the algorithm. Now we prove that the agent will always reach the goal
position g.

Theorem 2. There is an index i ∈ N such that xi = g.

Proof. By Lemma 2, it holds that the curve length distance along πind from the
reference point to g becomes smaller over time. Assume by way of contradiction
that the agent does not reach its goal, i.e. for all steps i the agent’s position xi does
not equal g. Since the reference point gets closer to g over time, it follows that the
sequence (ri)i∈N of reference points has a limit l ∈ πind. This limit l cannot be
reached. Otherwise, if there was a step j such that xj = l, by Lemma 1 there would

Chapter 6: The MIRAN Method 85

be at least one candidate attraction point we could choose from, thus making the
agent go beyond l, a contradiction.

Since l is a limit point on the indicative route and the agent moves forward in each
step, it follows that there is a step i in the algorithm where the curve length distance
along πind between ri and l is smaller than the sampling distance d. By Lemma 1,
we know that there is at least one candidate attraction point αi to choose from.
By the de�nition of the set Ai and because of the sampling distance d, this point
αi either lies beyond l or equals the reference point ri. If the latter case holds and
ri = αi, the agent is attracted to its reference point until it reaches that point or a
di�erent attraction point beyond l will be picked. In any case, an attraction point
αj beyond l will �nally be picked. The method makes the agent move towards αj
and beyond l, yielding a contradiction.

6.4 | Experiments

We have validated MIRAN and compared it against the Indicative Route Method
(IRM) [63], in a set of experiments. The goals of these experiments are threefold:
First, we show that – similarly to the IRM – MIRAN creates paths that are smooth
and visually convincing for simulations and gaming applications, with the novel
addition of handling an agent’s region preferences while following an indicative
route. This validation is done via visual inspection of a set of typical paths that were
computed using MIRAN and the corresponding paths that were computed using the
IRM. Second, we show that MIRAN allows control over how closely an indicative
route is being followed and what the impact of the two user parameters is in this
context. This is again done via visual inspection of a set of paths with varying
parameter settings. Third, we show that MIRAN is real-time applicable and that
the average computation time that is needed for one simulation step is small, even
when we use parameter settings that induce a large number of candidate attraction
points per simulation step. All the experiments were performed on a PC running
Windows 7, with a 3.2 GHz AMD PhenomTM II X2 CPU and 4 GB memory. We
used one CPU core for the computations.

In Section 6.4.1, we present the scenes that we have used for the experiments. In
Section 6.4.2, we show example paths as computed by MIRAN and by the IRM in
scenes with weighted regions. In Section 6.4.3, we show the impact of the two user
parameters on the path-following behavior of MIRAN. In Section 6.4.4, we measure
the time that is needed to compute one step of the simulation using MIRAN for
di�erent parameter settings.

86 Chapter 6: The MIRAN Method

Figure 6.7: The three scenes we have used in our experiments: abstractRegions (left), military

(center), and suburb (right).

6.4.1 | The tested scenes

We tested the method on three scenes with varying types of indicative routes and
parameter settings. The �rst scene we used is called abstractRegions, and it spans an
area of 50× 50 units; see Figure 6.7 (left). It contains no obstacle polygons (except
the four line segments that form its bounding box), but a set of weighted regions
with arbitrary weights. We used the same weights as in Chapter 4, where we have
used this scene to create a 16 × 16 tiled large environment: gray 4, darkgreen 30,
lightgreen 3, blue 30, yellow 6, and brown 2.

The second scene we used is called military, and it represents a 2D footprint of the
McKenna MOUT training site at Fort Benning, Georgia, USA; see Figure 6.7 (center).
This scene spans an area of 200 × 200 units. It contains no weighted regions – or
in other words, one region type (white) with a default weight of 1 – and a set of 23
convex obstacle polygons that represent a total of 15 buildings.

The third scene is called suburb, and it contains both obstacle polygons (shown in
gray) and weighted regions; see Figure 6.7 (right). It spans an area of 100×100 units.
We used the following weights for this scene: light gray (sidewalk) 1, dark gray
(road) 4, green (garden/lawn) 30, blue (water) 40, and brown (path to the house) 1.

6.4.2 | MIRAN paths vs. IRM paths

The main contribution of MIRAN is that it handles an agent’s individual region
preferences while computing paths that are as smooth and visually plausible as
paths computed with the IRM [63]. To illustrate this, we have computed a set of
example paths with MIRAN and with the IRM for the same query points. For all
path computations, we used a shortcut parameter σ of 5 and a sampling distance d
of 1.

Chapter 6: The MIRAN Method 87

We have computed paths in the suburb and abstractRegions scenes with varying
indicative routes. Figures 6.8 and 6.9 show a total of 24 typical example paths. In
each of the two scenes, we computed twelve paths, of which six were computed
using MIRAN and six were computed using the IRM. Each set of six paths consists
of three paths based on indicative routes that were computed using A∗ on a grid,
and three paths based on manually drawn indicative routes that respect clearance
from region boundaries.

The following conclusions can be drawn from this visual comparison: MIRAN in-
deed computes smooth paths that are visually plausible with respect to the under-
lying region types. The IRM, by contrast, is not designed to account for region
preferences and treats all region types as non-weighted traversable space. This
does not mean that MIRAN and IRM paths always di�er to a great extent. In some
cases, the paths are still close to each other; see Figure 6.8 (top-left) for an example.
The fact that both paths are comparably similar in this example is a result of the
obstacle placements in this environment. The IRM computes an attraction point on
the indicative route based on the largest-clearance disk around the agent’s position,
retracted to the medial axis of the environment. The placement of obstacles (walls
and trees) in the suburb scene lets the agent pick attraction points that happen to
be close to the attraction points as computed by MIRAN. The same attraction-point
computation principle of the IRM causes the two paths to di�er to a great extent in
other examples; see Figure 6.8 (top-right). Here, the amount of free space around
the agent’s retracted position when the agent approaches the lake region makes it
follow a straight line towards the goal.

6.4.3 | The impact of σ and d on path-following behavior

Another contribution of MIRAN is that it allows the user to control how closely an
indicative route should be followed, whereas the IRM depends on the environment
geometry in this regard. In this second experiment, we tested the impact of the
shortcut parameter σ and the sampling distance d on an agent’s path-following
behavior.

We used the military scene with an indicative route that was computed using the
underlying Explicit Corridor Map navigation mesh: The indicative route was set to
be the shortest route to the goal that keeps clearance from obstacles with respect to
the agent’s radius. Figure 6.10 shows the resulting paths as computed with MIRAN
for a �xed shortcut parameter σ of 5 and sampling distances d varying between 0.1
to 4.0.

By visually inspecting the computed paths, we can con�rm the following expected
property: In scenes with no weighted regions, the sampling distance has no im-
pact on path-following behavior, as long as at least one candidate attraction point
is visible in each simulation step, i.e. when d is not set to a larger value than σ.

88 Chapter 6: The MIRAN Method

Figure 6.8: Visual comparison of MIRAN with the IRM in the suburb scene. Left column:

Paths based on indicative routes that were computed usingA∗ on a grid. Right column: Paths
based on manually drawn indicative routes that respect clearance from region boundaries.
All indicative routes are shown in black, all MIRAN paths are shown in red, and all IRM paths
are shown in blue.

Chapter 6: The MIRAN Method 89

Figure 6.9: Visual comparison of MIRAN with the IRM in the abstractRegions scene. Left

column: Paths based on indicative routes that were computed using A∗ on a grid. Right

column: Paths based on manually drawn indicative routes that respect clearance from region
boundaries. All indicative routes are shown in black, all MIRAN paths are shown in yellow,
and all IRM paths are shown in green.

90 Chapter 6: The MIRAN Method

The reason for this is that all candidate attraction points make the agent cross the
same (default) region type, and thus, only their location on the indicative route de-
termines their costs. Since we reward the agent for picking a point that is further
ahead, the agent will always pick the furthest visible point. This point is either
directly determined by σ or by obstacle corners that occlude parts of the indicative
route, but never by the sampling distance d. Since we de�ned the endpoints of the
visibility intervals along the indicative route as candidate attraction points that are
independent of d, we can always set d equal to σ when using MIRAN in scenes with
no weighted regions.

Contrary to scenes with non-weighted regions, we expect d to have an impact in
scenes with weighted regions. The reason is that a varying number of candidate
attraction points induces a varying number of regions that an agent could possibly
cross. In other words, a particular sampling distance could enable a traversal that
would not be available when we used a larger sampling distance. To test whether
our expectation holds in practice, we have computed a set of paths in the suburb

scene with the same parameter settings as in the previous experiment: σ was set to
5, and d varies between 0.1 and 4.0. Figure 6.11 shows the resulting paths.

While the overall paths look similar, we can indeed spot subtle di�erences in the
path-following behavior that are caused by changing the sampling distance. The
di�erences are mainly noticeable around bending points of the indicative route,
while the paths are similar when the agent follows a rather long straight-line seg-
ment of the indicative route. For instance, near the end of the indicative route,
where the agent moves from the sidewalk region to the road region, the agent stays
on the sidewalk for a longer period of time when d is small. The reason is that
smaller values for d induce larger numbers of candidate attraction points, and the
agent has the option to leave the lower-cost region at a later point in time than
with larger values for d. Still, the overall impact of d in path-following behavior
is comparably small, and we can conclude that d can be seen as parameter that is
related to performance rather than path quality.

To test the impact of σ on path-following behavior, we used the same scenes and
indicative routes as in the �rst example, but this time, we used a �xed sampling dis-
tance of 1.0 and shortcut parameters σ varying between 5 and 30. Figures 6.12 and
6.13 show the resulting paths. From these results, we can conclude the following:

In general, when using large values for σ, an agent could take shortcuts and skip
large portions of an indicative route (also see Figure 6.14 (bottom)). However, this
does not happen in the examples we show in Figure 6.12. Due to the geometry of
the scene and the fact that we use a shortest path with clearance as an indicative
route, the only bending points of the indicative route are near obstacle corners.
As such, di�erent values for σ result in the same paths because the agent is not
able to take any shortcuts without running into obstacles. This is di�erent in the
suburb scene. Here, the indicative route has bending points that are not induced by
obstacles, but by the underlying weighted regions in the environment. With larger

Chapter 6: The MIRAN Method 91

d = 0.1 d = 0.5

d = 1 d = 1.5

d = 2 d = 4

Figure 6.10: Six example paths in the military scene for a �xed shortcut parameter σ = 5
and varying sampling distances d. The indicative route is shown in black, and the resulting
MIRAN paths are shown in red.

92 Chapter 6: The MIRAN Method

d = 0.1 d = 0.5

d = 1.0 d = 1.5

d = 2.0 d = 4.0

Figure 6.11: Six example paths in the suburb scene for a �xed shortcut parameter σ = 5
and varying sampling distances d. The indicative route is shown in black, and the resulting
MIRAN paths are shown in dark red.

Chapter 6: The MIRAN Method 93

values of σ, the agent is therefore permitted to take shortcuts. As an example, this is
noticeable with the lawn/garden region, which the agent starts to cross sooner with
larger values for σ. The reason is that the reward factor for picking an attraction
point that is further ahead dominates the higher costs for crossing the lawn, and this
happens in correspondence with the value that is set for σ. Overall, this experiment
shows that σ can have a great impact on the path-following behavior in the way
that we expected it. However, this is not necessarily the case when the geometry
in a scene does not allow any shortcuts. The latter happens when we use a shortest
path with clearance as an indicative route, for which all bending points are induced
by obstacles and not by traversable weighted regions.

Two particular problems with the MIRAN parameters arise when we either set the
shortcut parameter to a very large value, or when we use indicative routes that
contain self-intersections. Figure 6.14 shows two examples that illustrate these
problems. In the top example, we used a manually drawn indicative route that
circumnavigates the lake region in the suburb scene. We used a comparably large
shortcut parameter of 250. As can be seen, the agent starts crossing the lake be-
cause it is attracted to the goal position too soon. The reason for this is that we
reward an agent for picking a candidate attraction point that is further ahead along
the indicative route. Since we use a very large shortcut parameter, the last visible
candidate attraction point along the indicative route yields such a large reward in
the MIRAN weight function that the position of the candidate attraction point alone
dominates the punishment for crossing the high-cost lake region. For future work,
it would thus be interesting to decouple the range of region-weight values from the
curve-length distances of the indicative routes.

Figure 6.14 (bottom) shows an example for the second problem. We use the mil-

itary scene and an indicative route that was manually drawn and contains self-
intersections. While self-intersections are not a problem per se for the MIRAN
method, they can yield undesired behavior when we use a somewhat unlucky short-
cut parameter setting: When the shortcut parameter happens to be large enough
such that it covers the curve-length distance of the loop that is induced by the self-
intersection, the agent might be attracted to a point that makes it move against the
desired walking direction that is induced by the indicative route. This behavior can
be observed for the path shown in blue with a shortcut parameter of 300. For future
work, we could use the intended walking direction as an additional factor to decide
whether a candidate attraction point is feasible or not.

6.4.4 | Performance

In this �nal experiment, we measured the performance of MIRAN. The goal was
to validate that MIRAN still runs at interactive rates, even when the number of
candidate attraction points per simulation step is large.

94 Chapter 6: The MIRAN Method

σ = 5 σ = 10

σ = 15 σ = 20

σ = 25 σ = 30

Figure 6.12: Six example paths in the military scene for a �xed sampling distance d = 1.0
and varying shortcut parameters σ. The indicative route is shown in black, and the resulting
MIRAN paths are shown in red.

Chapter 6: The MIRAN Method 95

σ = 5 σ = 10

σ = 15 σ = 20

σ = 25 σ = 30

Figure 6.13: Six example paths in the suburb scene for a �xed sampling distance d = 1.0
and varying shortcut parameters σ. The indicative route is shown in black, and the resulting
MIRAN paths are shown in dark red.

96 Chapter 6: The MIRAN Method

g

s

g

πind σ = 100 σ = 250

σ = 300 σ = 400 σ = 1250

s

πind σ = 100 σ = 250

σ = 300 σ = 400 σ = 1250

Figure 6.14: Problems with large values for σ. Top: An agent crosses large parts of the high-
cost lake region due to the reward factor in the weight function. Bottom:: An ’unlucky’ value
for σ (here: 300) can make an agent move against the walking direction that is induced by
the indicative route. The sampling distance d used for the shown paths is 20.

Chapter 6: The MIRAN Method 97

abstractRegions16x16 d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0
σ = 5 0.28[0.08] 0.21[0.06] 0.20[0.09] 0.17[0.05] 0.16[0.05]
σ = 10 0.51[0.16] 0.31[0.10] 0.27[0.08] 0.22[0.06] 0.20[0.06]
σ = 15 0.77[0.23] 0.45[0.12] 0.36[0.10] 0.29[0.07] 0.25[0.07]
σ = 20 1.08[0.31] 0.61[0.18] 0.45[0.11] 0.36[0.09] 0.31[0.08]
σ = 25 1.44[0.38] 0.77[0.20] 0.58[0.17] 0.46[0.12] 0.38[0.09]
σ = 30 1.89[0.68] 0.99[0.27] 0.71[0.32] 0.56[0.15] 0.46[0.12]
suburb d = 0.2 d = 0.4 d = 0.6 d = 0.8 d = 1.0
σ = 5 0.25[0.08] 0.18[0.06] 0.16[0.06] 0.14[0.05] 0.13[0.05]
σ = 10 0.46[0.19] 0.27[0.10] 0.22[0.08] 0.19[0.07] 0.17[0.06]
σ = 15 0.70[0.29] 0.41[0.16] 0.30[0.12] 0.25[0.09] 0.22[0.08]
σ = 20 1.00[0.44] 0.55[0.24] 0.43[0.19] 0.34[0.15] 0.28[0.11]
σ = 25 1.33[0.62] 0.72[0.33] 0.51[0.22] 0.43[0.19] 0.35[0.16]
σ = 30 1.66[0.77] 0.91[0.41] 0.60[0.27] 0.51[0.25] 0.42[0.18]

Table 6.1: Average time (ms) needed to compute one simulation step when using MIRAN
in the abstractRegions16x16 and suburb scenes. The total number of simulation steps was
around 460 (abstractRegions16x16) and 950 (suburb). The standard deviations are shown in
square brackets.

We measured the average time that was needed to compute one step of the simu-
lation. To this end, we used MIRAN in two scenes with indicative routes that are
su�ciently long to induce a large number of simulation steps – and thus, a su�-
ciently large number of samples – before the agent reaches the goal position. We
used the abstractRegions16x16 scene, which features no obstacles (and thus, the vis-
ibility checks are expected to be fast), and the suburb scene, which features both
weighted regions and obstacles. The total number of simulation steps was around
460 and 950 in the abstractRegions16x16 and suburb scenes, respectively.

Table 6.1 shows the computation times per simulation step, and Figure 6.15 visual-
izes the results for the abstractRegions16x16 scene and suburb scenes. From these
results, we can conclude that MIRAN does indeed run at interactive rates, with
computation times per simulation step below 2 ms, even for parameter settings
that induce a large number of candidate attraction points. These observations hold
for both scenes with and without obstacle polygons, which induce additional visib-
ility checks and a wider spread of the measured computation times from their mean
value.

6.5 | Limitations

The MIRAN method as described in this chapter improves on the IRM in several
aspects. Still, the method has its limitations.

98 Chapter 6: The MIRAN Method

 0

 0.5

 1

 1.5

 2

 5 10 15 20 25 30

co
m

p
u
ta

ti
o
n
 t

im
e
 p

e
r

si
m

u
la

ti
o
n
 s

te
p

 (
m

s)

shortcut parameter

d=0.2
d=0.4
d=0.6
d=0.8
d=1.0

 0

 0.5

 1

 1.5

 2

 5 10 15 20 25 30

co
m

p
u
ta

ti
o
n
 t

im
e
 p

e
r

si
m

u
la

ti
o
n
 s

te
p

 (
m

s)

shortcut parameter

d=0.2
d=0.4
d=0.6
d=0.8
d=1.0

Figure 6.15: Average time (ms) needed to compute one simulation step when using MIRAN
in the abstractRegions16x16 (top) and suburb (bottom) scenes.

First, it is de�ned for a virtual agent that is represented as a point. Since an agent is
represented as a disc or similar shape that has an actual width in practical applica-
tions, keeping clearance from static obstacles needs to be handled separately when
using MIRAN in the form as described in this chapter. How this is done depends on
the underlying data structure for representing traversable space. In the Explicit Cor-
ridor Map framework, for instance, we can perform visibility checks that account
for an agent’s radius to compute feasible candidate attraction points; see Chapter
11.

Second, MIRAN incorporates region preferences to generate smooth, region-based

Chapter 6: The MIRAN Method 99

trajectories, but when handling collisions as a subsequent step in the navigation-
planning hierarchy, regions are not taken into account. If, for instance, two agents
that are using MIRAN approach each other and make an avoidance maneuver, the
agents might still traverse high-cost terrain or otherwise undesired region types
during that maneuver. As future work, this could be handled by using a method
such as Moussaïd et al. [88] that is based on candidate directions for avoiding col-
lisions with other agents. These could be weighted with the underlying regions
that need to be crossed when picking a particular direction, such that an agent
will always choose a lower-cost region for its avoidance maneuver when all other
invovled factors (such as deviation from the goal direction) are equally feasible.

Third, MIRAN is designed in a way such that the actual curve length of an indicat-
ive route in�uences the costs for particular candidate attraction points. While this
is not a problem per se, it imposes certain constraints on the value ranges of region
preferences that should be used to model a scenario. If, for instance, MIRAN is used
in a very large environment with an agent following an extremely long indicative
route and a large shortcut parameter σ, picking small values for region preferences
will have almost no e�ect on the agent’s trajectory because the curve-length para-
meter in the weight function overrules the particular region preference values. As
such, users of MIRAN need to set region preference values in accordance with the
overall size of the environment to generate feasible results. For future work, it
would therefore be interesting to decouple the range of feasible weight values from
the size of the environment and the lengths of indicative routes. In this context, an-
other promising next step would be to handle dynamically changing weights and
direction-dependent weights. The latter could, for instance, be used to model slopes
and steepness information, where a region resembles a hill or mountain that has a
large weight when an agent tries to ascend it, whereas the weight is low when the
agent tries to descent it.

Lastly, MIRAN is a sampling-based method that allows the user to control the
sampling accuracy via the sampling distance d. It would be interesting to modify
the computation of attraction points by not sampling the indicative route, but using
the route as a continuous set and computing the points that minimize the underly-
ing weight function accordingly. One approach could be to use a radial sweep with
its center point being the agent’s position and having the region-triangle vertices
as event points. This is, however, an open problem because we do not impose any
constraints on the environment. This means that the given polygonal subdivision
can have arbitrary many di�erent shapes and triangle vertices, and the indicative
route can be any curve in the plane, which makes it di�cult to categorize and sort
all possible event points in an ordered fashion.

This concludes the chapter on our MIRAN method. In the next chapter, we will dis-
cuss extensions to the MIRAN method. In particular, we will discuss how to modify
MIRAN such that it handles agents that are represented as a disc. To this end, we
introduce a new weight function, and we explain how to modify the computation
of candidate attraction points accordingly.

Chapter 7

MIRAN for disc-based agents

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

While the MIRAN method as described in the previous chapter enables the simula-
tion of region-based path following at interactive rates, it has its limitations because
an agent is assumed to be represented as a point. In the context of virtual agents in
simulations or gaming applications, this might cause undesired behavior. In such
applications, an agent’s representation for path planning and collision avoidance
has a spacial extension, e.g. the shape of a disc. In this context, we de�ne visibility
in a way such that the entire disc needs to be able to move in a collision-free straight-
line fashion towards a candidate attraction point. As such, a candidate attraction
point that is visible for a point-based agent might not be visible for a disc-based
agent. Furthermore, a disc-based agent should, if possible, not partially intersect a
high-cost region. This might happen when we use our point-based MIRAN method
for a disc-based agent; see Figure 7.1.

In this chapter, we discuss modi�cations to the MIRAN method for agents that are
represented as a disc. Algorithm 4 shows the pseudo-code of the modi�ed MIRAN

102 Chapter 7: Extensions to the MIRAN Method

parked car
puddle

attraction point α

agent

parked car

indicative route πind

Figure 7.1: Example situation with two parked cars, a puddle between them, and a given
indicative route πind that circumnavigates the cars. MIRAN for a point-based agent could
make the agent pick attraction point α and thus traverse the dashed line. This yields an
undesired intersection with the puddle due to the spacial extent of the agent.

method. The di�erences to the point-based variant of the method are the compu-
tation of candidate attraction points and the way in which a best candidate is de-
termined in each simulation cycle. Both of these new sub-methods take the agent’s
radius R into account.

The remainder of this chapter is organized as follows: In Section 7.1, we describe
how to modify the computation of candidate attraction points accordingly. In Sec-
tion 7.2, we introduce a new weight function to determine the costs of a capsule

shape over arbitrary regions, induced by a sliding disc. This new weight function
replaces the weight function in MIRAN for a line segment from an agent’s posi-
tion to a candidate attraction point as described in the previous chapter. Finally, in
Section 7.3, we show some example paths that were computed with the described
modi�cations. We also discuss future work such as how to use the new weight
function in collision-avoidance methods to account for region preferences during a
collision-avoidance maneuver.

7.1 | Candidate attraction points
for disc-based agents

The computation of candidate attraction points for disc-based agents follows the
same general principle that we have used for point-based agents in the previous
chapter: Given an indicative route πind, we �rst determine the endpoints of the
sub-routes of πind that are visible from the agent’s current position xi. We refer
to these sub-routes as visibility intervals. In this context, we say that two points

Chapter 7: Extensions to the MIRAN Method 103

Algorithm 4 The MIRAN method for discs

Input. Start s, goal g, indicative route πind from s to g, agent radius R
Output. Smooth region-dependent path from s to g

1: i← 0
2: x0 ← s
3: while xi 6= g do
4: ri ← ComputeReferencePoint(xi, πind)
5: Ai ← ComputeCandidateAttractionPointsForDisc(ri, xi, πind, R)
6: αi ← PickBestCandidateForDisc(Ai, xi, R)
7: xi+1 ←MoveAgentTowardsAttractionPoint(xi, αi)
8: i← i+ 1

are mutually visible when the straight-line segment between the points, which is
in�ated by the radius of the disc that represents the agent, does not intersect any
static obstacles. We then add the endpoints of the visibility intervals as candid-
ate attraction points. Subsequently, we sample the visibility intervals and add the
sampled points as additional candidate attraction points. Figure 7.2 shows an ex-
ample of a disc-based agent and its candidate attraction points on πind.

The sampling step does not require any changes from the point-based version of
MIRAN to account for disc-based agents. If we ensure that the endpoints of the vis-
ibility intervals are computed correctly, it trivially follows that any sampled point
within such a visibility interval is visible for a disc-based agent. As such, the com-
putation of the endpoints is the only step that requires some changes to account for
discs.

In theory, it is su�cient to compute the visibility endpoints for a disc-based agent
by computing the visible parts of the scene for a point-based agent amidst obstacles
that are in�ated by the radius that represents the agent; see Figure 7.3. The in�ation
of obstacle polygons can be performed by computing the Minkowski sum of each
polygon with the disc that represents the agent [77], and by handling possible inter-
sections between the in�ated polygons [145]. This can be done inO(n log2 n) time

πind
xi

αi1

αi2
αi3

αi4
αi5

αi8

αi7

αi6

αi9

αi10

Figure 7.2: Example of candidate attraction points αij for a disc-based agent at position xi
with indicative route πind and reference point r.

104 Chapter 7: Extensions to the MIRAN Method

Figure 7.3: Left: Visibility of a candidate attraction point for a disc-based agent amidst poly-
gonal obstacles. Right: The same scenario with obstacles that are in�ated by the radius of
the disc that represents the agent, which allows simple straight-line visibility checks.

using a divide-and-conquer approach [67] or inO(n log n) using an randomized in-
cremental approach [20]. Similar to the in�ated obstacle polygons, the visible parts
in the in�ated scene consist of straight-line segments and circular arcs. Similarly
to the generalized visibility graph [74] as discussed in Chapter 2, we can de�ne the
circular arcs as generalized vertices, and visibility between such an arc a and a point
p as the question whether there is a straight-line from p that is tangent to a. We
can then compute the visible parts in the in�ated scene with m generalized ver-
tices in O(m logm) time by using the same methods as for the visibility polygon
for a point amidst non-in�ated obstacles. Note that in general, m is di�erent from
n due to the fact that in�ated obstacles might overlap and induce new (general-
ized) vertices. However, it is known [67] that when the obstacles are disjoint, then
m = O(n) and therefore O(m logm) = O(n log n).

In practice, similarly to the point-based version of MIRAN as described in the pre-
vious chapter, we use a simpler approach to compute the visibility endpoints: We
start with sampling the route and immediately check the visibility of each sampled
point. Here, we assume that the sampling is dense enough such that any two con-
secutive sample points do not skip an entire obstacle. As soon as we detect the
change from a visible point to an invisible point, we perform a binary search on the
route between those two points to determine the actual visibility-interval endpoint.
This is an e�cient approach in practice because a visibility check can be performed
e�ciently within the Explicit Corridor Map framework [56]. For further details on
how we perform such visibility checks within our framework, see Chapter 11.

The above-mentioned modi�cations are su�cient to compute candidate attraction
points for disc-based agents. Figure 7.4 shows an example that was computed
within our framework based on the adjustments as described in this section. What
remains to discuss is a modi�ed weight function for enabling disc-based agents to
use MIRAN.

Chapter 7: Extensions to the MIRAN Method 105

Figure 7.4: Example of candidate attraction points (shown in green) for a disc-based agent,
computed within the Explicit Corridor Map framework [56]. The indicative route is shown
in blue, and the �nal trajectory of the agent is shown in yellow.

7.2 | Weight function for disc-based agents

With the modi�ed method to compute candidate attraction points as described in
the previous section, we can now guarantee collision-free movement towards such a
point for a disc-based agent when using MIRAN. What is left to de�ne is a new func-
tion that assigns weights to such a sliding-disc traversal. The new weight function
should account for the regions that a disc-based agent needs to cross when moving
from its current position to a candidate attraction point. The part of the traversable
space that is intersected by such a move has the shape of a capsule. Alternatively, in
the context of generalizing MIRAN from point-based agents to disc-based agents,
such a capsule can also be seen as an in�ated line segment. Figure 7.5 shows an
example of a capsule induced by a disc-based agent moving from its current posi-
tion xi to an attraction point αi. We now describe the general concept behind the
modi�ed weight function for a capsule.

αi

xi

Figure 7.5: Example of a traversal amidst weighted regions for a disc-based agent from its
current position xi to an attraction point αi, inducing a capsule shape.

106 Chapter 7: Extensions to the MIRAN Method

7.2.1 | General concept

One option to de�ne the costs for such a capsule movement is to compute the area
of each region that is intersected by the capsule. We can then sum up the corres-
ponding weights according to the area ratios against the total area of the capsule.
This, however, might cause an agent to slightly intersect a high-cost region when
other intersected regions have su�ciently low costs to make the overall movement
a feasible option. In the context of virtual-agent navigation in simulation and gam-
ing applications, this is not desired behavior. Particular high-cost regions that rep-
resent undesired or even dangerous areas should not be modeled as a hard obstacle
because an autonomous agent should still be able traverse them, but it should avoid
it whenever possible. Examples are water puddles (Figure 7.1) or lava pits in a game.
In such an example, an agent should never voluntarily touch the lava, unless ex-
ternal forces push it.

What we want instead is a high-cost region such as lava to overrule all lower-cost
regions when determining the overall costs of a capsule-shaped movement. As
such, we use the following general principle to compute the weights for a capsule:
Starting from an agent’s current position xi and considering the movement as a
sliding disc over time, we compute the points in time when the sliding disc starts
and ends intersecting a particular region. Whenever the disc starts intersecting a
particular region, we check whether the newly intersected region should dominate
the overall costs, i.e. whether the costs for the newly intersected region is highest
among all region costs that are currently being intersected by the disc. Similarly,
whenever the disc ceases to intersect a particular region, we check whether that
region was the dominating one and update the costs accordingly. Overall, what we
compute with this heuristic is a set of interval points on the straight-line segment
between the agent’s position xi and its (candidate) attraction point αi. Any two
consecutive interval points on that line segment determine an interval in which a
particular region dominates all other currently intersected regions. Similarly to the
point-based version of MIRAN as described in the previous chapter, we de�ne the
overall weight for a sliding-disc traversal as the weighted Euclidean length of these
intervals (and a reward factor for picking points that are further along the indicative
route, which we omit here for ease of explanation). Figure 7.6 shows an example of
a traversal, the corresponding interval points, and the overall weight when using
our new disc-based version of MIRAN compared against the point-based version of
MIRAN. In the next section, we describe how to compute the interval points.

7.2.2 | Computation of interval points

We now discuss how to compute the interval points on the straight-line segment
between an agent’s position xi and a (candidate) attraction point αi. Throughout
the rest of this chapter, we denote the straight-line segment by l.

Chapter 7: Extensions to the MIRAN Method 107

The �rst step for computing the interval points is to determine all regions that are
intersected by the entire capsule shape. For this step, we assume the region poly-
gons to be triangulated and determine a corresponding list of intersected region
triangles. How this is done in detail depends on the underlying navigation mesh
that is being used. A fast and easy way is to use a grid for e�cient point-location
queries to determine the triangle that contains the agent’s position xi. Using a
structure such as a doubly-connected edge list (DCEL) [90] allows traversing ad-
jacent triangles to check for intersection with the capsule. The capsule consists of
three parts, for each of which we check for intersections: the disc centered in xi,
the disc centered in αi, and the rectangular box that forms the connection between
the two discs; see Figure 7.7.

xi

αi

weight 1

weight 5

weight 15

l1

l2

l3

ωi = 1 ∗ ||l1||+ 5 ∗ ||l2||+ 15 ∗ ||l3||

point-based MIRAN: ωi = 43.5 disc-based MIRAN: ωi = 75.9

weight 1

weight 5

weight 15

xi

αi

l1

l2

l3

Figure 7.6: Computation of interval points (shown in red) on the straight-line segment
between xi and αi for point-based MIRAN (left) and disc-based MIRAN (right).

xi αixi αi

Figure 7.7: Example of region triangles that are intersected by a capsule (shown in light
blue). The capsule itself consists of the disc centered in xi, the disc centered in αi, and a box

(shown in red) that connects the two discs.

108 Chapter 7: Extensions to the MIRAN Method

xi αixi αi

T

lTin Tout

Figure 7.8: An intersected triangle T and the corresponding in-point Tin and out-point Tout
on the straight-line segment l.

Once the list of intersected triangles has been computed, we compute for each tri-
angle T in that list an in-point Tin and an out-point Tout on l. By orienting l from xi
to αi and considering the agent’s disc sliding along l, we de�ne the in-point Tin as
the point on l at which the agent’s disc centered in Tin starts intersecting triangle
t. Similarly, we de�ne the out-point Tout as the point on l at which the agent’s disc
centered in Tout ceases intersecting triangle t; see Figure 7.8. Note that these points
can also lie on the extension of l beyond xi or αi. To detect this, we parameterize l
as l(t) = (1− t)xi + t αi for t ∈ [0, 1]. In-points or out-points beyond l then yield
t < 0 or t > 1. Whenever this happens, we let Tin = xi or Tout = αi, respectively.
The reason is that the disc then either already intersects triangle T at the start of
the traversal, so the intersection interval on l starts in xi, or the disc still intersects
triangle T at the end of the traversal, so the intersection interval on l ends in αi.

For ease of explanation, we de�ne a coordinate system with xi being the origin, and
we let l determine the positive direction of the x-axis of that coordinate system. We
can do the computations for each of the three edges per intersected triangle and
pick the minimum and maximum values in x-dimension of the computed points to
determine the in-point and the out-point for each triangle. Alternatively, to save
some of the computations, we can compute a list of intersected triangle edges in
the initial step instead of intersected triangles, using a DCEL representation of the
environment.

Having computed the interval points of all intersected triangles, we can now go
through these points in increasing order of x-coordinates on l and check for each
found in-point whether the corresponding triangle has a weight that dominates the
previously found dominating weight value. We then update the currently dom-
inating weight accordingly. Similarly, we update the currently dominating weight
whenever we �nd an out-point on l. While doing this, we discard all interval points
that do not correspond to the dominating weight and only store the ones that are

Chapter 7: Extensions to the MIRAN Method 109

needed for the �nal computation of the overall weight of the traversal from xi to
αi. This can be done by going through the sequence of interval points once. By li,
1 ≤ i ≤ k, we denote the Euclidean length of the i− th interval of the sequence of
k �nal interval points on l. By R(li), we denote the corresponding region costs for
li, and by di we denote the curve-length distance on the indicative route from the
agent’s reference point to the candidate attraction point αi. The overall weight ωi
of the traversal is then computed similar to the point-based version of MIRAN as
described in the previous chapter:

ω(l(xi, αi)) =
∑

1≤i≤k
R(li) · li/di (7.1)

This concludes the description of the disc-based modi�cations of our MIRAN method.
In the following section, we discuss results and possible future extensions.

7.3 | Results and future extensions

With the modi�ed computation of candidate attraction points and the modi�ed
weight function as described in the previous sections, we are now able to use MIRAN
for disc-based agents without having to deal with collisions between an agent and
static obstacles due to an agent’s spacial extension. Furthermore, an agent is now
able to follow a given indicative route based on its region preferences that account
for its whole spacial extension rather than its center point alone. In other words,
an agent now tries to avoid intersections with high-cost regions, even when such
intersections occur only partially and do not a�ect an agent’s entire disc.

Figure 7.9 shows example paths that were computed with our modi�ed MIRAN
method within the Explicit Corridor Map (ECM) framework [56]. All paths were
computed by simulating the agents’ traversal in real-time on a PC running Win-
dows 7 with a 3.20 Ghz AMD PhenomTMII X2 B57 Processor, 4 GB Ram, and an
NVIDIA GeForce GTX 650 graphics card.

In addition, we have created the car-puddle example as shown in theory in the
beginning of this chapter (Figure 7.1), and compared the point-based version of
MIRAN to the disc-based modi�cation of MIRAN. We have used the same indicative
route for both methods, and the same overall parameter settings: The sampling
distance d was set to 0.2, and the shortcut parameter σ was set to 50. The overall
scene is 20 x 20 meters, and it features one puddle-region with weight 30. The
cars are obstacles and thus not part of the traversable space, and the remaining
region is a default terrain with weight 1. The scene and the resulting paths can be
seen in Figure 7.10. Note that for both types of paths, we used the adjustments for
computing the endpoints of the visibility intervals that we described in this chapter.
The reason for this is that agents in the ECM framework are represented as discs,

110 Chapter 7: Extensions to the MIRAN Method

Figure 7.9: Example paths computed with our disc-based modi�cation of MIRAN within the
Explicit Corridor Map framework [56]. Goal positions at the end of each path are shown in
red.

and thus, the point-based computation of the visibility intervals as described in
Chapter 6 would yield undesired collisions with obstacles corners. As such, the
di�erences between the paths are due to the di�erences in the weight functions
only.

These preliminary experiments show that our modi�cations for disc-based agents
indeed generate the desired di�erences in an agent’s navigational behavior. In the
car-puddle scene, the agent avoids the puddle and circumnavigates the cars when
using the disc-based weight function. Furthermore, the extensions to MIRAN that
we describe in this chapter do not a�ect the real-time applicability of our method,
and the paths are still smooth and visually convincing for autonomous-agent nav-
igation in simulation or gaming applications.

For more future extensions, it would be interesting to try the modi�ed weight func-
tion in a collision-avoidance method that uses sampled candidate directions. The
collision-avoidance method by Moussaïd et al. [88] is an example of such a method.
Adjusting the computation of candidate directions to avoid collisions with other
agents might enable region-based collision-avoidance. This feature is currently
missing in the work presented in this thesis. While agents are now able to traverse
a virtual environment based on region preferences, agents might still temporarily
intersect high-cost regions when avoiding collisions with other agents.

This concludes our chapter on the disc-based extensions of MIRAN. In the follow-
ing chapter, we will recapitulate our region-based path-following contributions and
give an outlook on open problems and future work in this area.

Chapter 7: Extensions to the MIRAN Method 111

Figure 7.10: Comparison of point-based MIRAN (left) with disc-based MIRAN (right) in the
car-puddle example within the Explicit Corridor Map framework [56]. The indicative route
is shown in blue, and the agents’ �nal trajectories are shown in yellow.

Chapter 8

Conclusion Part II

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

This chapter concludes the second part of this thesis: path following in weighted
regions. We have taken the discussions on path planning in weighted regions in
Part I to the next level of our �ve-level planning hierarchy (see Chapter 1). Here,
a global path, computed within the route-planning level of the hierarchy, is taken
as an input to make an agent traverse it while considering an agent’s individual
region preferences.

In Chapter 6, we have introduced a novel path-following method named Modi�ed

Indicative Routes and Navigation (MIRAN) for point-based agents. MIRAN can be
seen as the successor of the Indicative Route Method (IRM) by Karamouzas et al.
[63]. It adopts the concept of computing an attraction point on a given global path
(or indicative route) in each step of the simulation and making an agent approach
its attraction point based on steering forces. The novel contributions of MIRAN
over the IRM are twofold: First, MIRAN takes an agent’s region preferences into
account. In each simulation step, an agent picks its attraction point from a set of
candidate points, based on the region types it would have to cross, plus the location
of a candidate point on the indicative route. Second, MIRAN allows to control the

114 Chapter 8: Conclusion Part II

path-following behavior of an agent. To be precise, MIRAN introduces a shortcut

parameter that determines how closely an agent should follow its indicative route,
or – in other words – how much of its indicative route an agent is allowed to skip
while following it. In the IRM, there is no control over this type of behavior be-
cause the location of an attraction point is dependent on the local geometry of the
environment around an agent.

In Chapter 7, we have discussed extensions to the MIRAN method that enable the
simulation of agents that are represented as disks. We have discussed how to adjust
the computation of candidate attraction points accordingly. Furthermore, we have
introduced a new weight function that replaces the weight function for point-based
MIRAN. The new weight function takes the entire spacial extent of a disk-based
agent into account. It computes the costs for a particular candidate attraction point
α based on a capsule shape that is induced by the movement of the agent from its
current position towards α. The region types that are intersected by the capsule
determine the overall costs. Here, high-cost regions dominate lower-cost regions
in the sense that they override the overall costs whenever the disk intersects them,
even when the intersection is only a small portion of the disk. This heuristic yields
navigational behavior that is desired for typical simulations and gaming applic-
ations, in which particular region types (e.g. lava pits in a game) should never be
purposely crossed by an agent, while still allowing an agent to be pushed into them,
so that treating such regions as hard obstacles is not a feasible solution.

The path-following methods that we have discussed in Part II assume an indicative
route as an input. We theoretically de�ned such an indicative route as an arbitrary
curve in the plane, which is usually a connected sequence of straight-line segments
in practice. In the context of this thesis, decoupling the computation of an indicative
route from subsequent path-following behavior is one of the key aspects of the �ve-
level planning hierarchy that we have discussed in Chapter 1. However, using a
�xed indicative route in such a hierarchy still leaves room for improvements. There
are open problems that arise from the fact that we use a �xed indicative route that
cannot change during the simulation.

In many applications, an indicative route is a shortest path with clearance from
obstacles for disk-based agents. This causes problems when all agents in a simu-
lation use such an indicative route. The areas around obstacle corners usually get
congested quickly, which might lead to unrealistic deadlock situations. In real life,
one would expect a crowd to make use of all traversable space around such a con-
gested corner. Even though our MIRAN method allows an agent to skip particular
parts of an indicative route, all attraction points are still located on the correspond-
ing indicative route. This makes an agent stick closely to such a route and does
not allow them to make use of the free space around a congested corner. The main
reason is that – both with the IRM and with MIRAN – candidate attraction points
that are further ahead are not visible until an agent succeeds in navigating around
an obstacle corner. A possible approach for future work could be to generalize the
concept of an indicative route to an indicative surface, so that candidate attraction

Chapter 8: Conclusion Part II 115

points can be located in a two-dimensional area instead of a one-dimensional path.
Then a path-following method such as MIRAN could be extended to not only ac-
count for region preferences but also for the current local crowd density around a
candidate attraction point when picking the currently best candidate.

Another problem is that a �xed indicative route, together with a force-based steer-
ing approach, can always lead to an agent being pushed behind an obstacle such
that the indicative route is not visible any more. Again, an indicative surface could
overcome this issue. Alternatively, allowing local and dynamic changes of parts
of an indicative route, together with re-planning strategies that do not re-plan an
entire indicative route but only relevant parts of it, could be another interesting
approach for future work.

In the upcoming Part III of this thesis, we take our discussions from single-agent
behavior to crowd behavior. We will discuss how we can improve coordination
among agents when crowd density is high. In this context, we also tackle the afore-
mentioned problem of unrealistic deadlock situations due to a lack of coordination.
Furthermore, we will discuss social-group behavior from a navigational point of
view by introducing a novel method that generates emergent social formations and
group coherence.

Part III

Crowd Simulation

117

Chapter 9

The Stream model:
coordinating dense crowds

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

The novel algorithms – VBP and MIRAN – that we have presented in Parts I and II
of this thesis, respectively, aim at steering virtual agents through an environment
with weighted regions. They can be combined with collision-avoidance methods
to form a crowd-simulation framework for large numbers of agents, in which each
agent uses VBP and MIRAN independent of other agents. In other words, both VBP
and MIRAN are designed as single-agent methods. Such methods usually do not
consider the coordination of multiple agents and large virtual crowds. This lack
of coordination can lead to unrealistic crowd behavior such as deadlock situations
when crowd density is high.

In this chapter, we present a new crowd-coordination model named Stream, which
tackles some of these problems. Stream combines the advantages of agent-based
and �ow-based paradigms while only relying on local information. It is designed
in a modular way, and it can therefore be used as an additional step in the local-

movement level of the simulation pipeline (see Chapter 1). In particular, it can

120 Chapter 9: The Stream Model - Coordinating Dense Crowds

Figure 9.1: Left: Example scene of our Stream model: A dense crowd of agents collaborat-
ively moves through a narrow doorway. Right: A 2D representation of the doorway shows
that each agent interpolates between individual behavior (green) and coordinated behavior
(red).

be combined with any global path-planning and local collision-avoidance method
within such a planning hierarchy. Stream handles the coordination of virtual crowds
at arbitrary densities. When using Stream as an additional step within the local-
movement level of the planning hierarchy, we show that it can signi�cantly reduce
the occurrence of deadlock situations in extremely dense crowds. It also enables
the simulation of varying agent pro�les that determine an agent’s willingness to
coordinate with a crowd, based on a small set of factors. Figure 9.1 shows an ex-
ample scene in which Stream is being used.

In Section 9.1, we discuss work that is related to our Stream model. We give prelim-
inary de�nitions in Section 9.2, and we present the details of our Stream model in
Section 9.3. Lastly, we conduct experiments and validate our model in Section 9.4.

This chapter is based on the following publications:

[136] A. van Goethem, N. Jaklin, A. Cook IV, and R. Geraerts. On streams and
incentives: A synthesis of individual and collective crowd motion. In 28th Inter-

national Conference on Computer Animation and Social Agents (CASA 2015), pages
29–32, 2015.

[137] A. van Goethem, N. Jaklin, A. Cook IV, and R. Geraerts. On streams and
incentives: A synthesis of individual and collective crowd motion. Technical Report
UU-CS-2015-005, Utrecht University, 2015.

9.1 | Related work

For a general overview of crowd simulation topics, we refer the reader to the books
by Thalmann and Musse [128] and Pelechano et al. [107]. In the remainder of this

Chapter 9: The Stream Model - Coordinating Dense Crowds 121

section, we focus on selected work that is related to our Stream model.

One of the �rst �ow-based models was proposed by Hughes [51]. Hughes represen-
ted pedestrians as a continuous density �eld, and crowd dynamics were described
using partial di�erential functions. Treuille et al. [130] proposed a continuum-based
crowd simulation model. They used a dynamic potential �eld to simulate large
crowds in real-time. This model yields emergent phenomena such as lane forma-
tion. Individual autonomous agents can be added to the crowd as dynamic obstacles.
Lee et al. [78] presented a regression-based model. The model is able to simulate
particular crowd behavior that has been learned from recorded video data of real
crowds.

Other �ow-based approaches come from the robotics community. Kerr and Spears
[69] use a simulation model based on gas-kinetics for mobile robots. Pimenta et
al. [109] propose a method for swarms of mobile robots that is based on Smoothed
Particle Hydrodynamics.

All of these �ow-based models are able to solve high-density scenarios, but they
are not well-suited for low- to medium-density scenarios where the individuality
of single agents has a large impact on the overall behavior of the crowd. Further-
more, these �ow-based methods usually have high computational costs when many
di�erent goal states are involved.

In addition to �ow-based models, a wide range of agent-based crowd simulation
models is available. Helbing et al. introduced a social-force model for pedestrian
dynamics in [45] and subsequent work [43, 44, 46]. Torrens [129] has proposed a
crowd simulation framework that aims at handling higher-level trip planning com-
putations, medium-level computations such as vision and steering, and low-level
computations for locomotion and physical collision detection. Similar to our model,
the framework accounts for following behavior and agents aligning their direction
of movement. Contrary to Torrens’ work, our model lets agents automatically in-
terpolate between following and aligning behavior for agents that have a desire to
coordinate with the crowd. This desire is based on a unique set of factors including
the locally perceived crowd density. The HiDAC system by Pelechano et al. [106]
combines psychological and geometrical rules with a social- and physical-forces
model. Shao and Terzopoulos [118] show how to integrate motor, perceptual, be-
havioral and cognitive components within one model to simulate pedestrians in an
urban environment.

Lemercier et al. [79] have conducted an experimental study on herding and fol-
lowing behaviors. Models based on real-world pedestrian movements have been
proposed by Antonini et al. [4] and Paris et al. [102]. Vizzari et al. [143] combine
a group-cohesion force with a goal force. Their environment is discrete and uses a
�oor-�eld to guide the pedestrians. Another approach is the PLEdestrians algorithm
by Guy et al. [40]. Based on the Principle of Least E�ort [153], the authors propose
a local greedy strategy that approximates the minimum of a biomechanical energy

122 Chapter 9: The Stream Model - Coordinating Dense Crowds

function in order to compute trajectories for individual agents. The method exhibits
desirable emergent behaviors.

Unlike �ow-based models, agent-based models struggle when coordinating the move-
ments of dense crowds. This can lead to non-desired phenomena such as deadlocks,
oscillations, slow movements with unnecessary turns and detours, or a high num-
ber of collisions.

Due to the gap between �ow-based models and agent-based models, hybrid meth-
ods combining both paradigms have recently been considered. The method by
Narain et al. [97] uses a dual representation of the crowd that is based on both in-
dividual agents and continuum dynamics. Like our model, agents have individual
goals, but they can be forced to deviate from their preferred direction by the �ow
of the crowd. Contrary to their approach, our model omits continuum dynamics
and simulates the tendency of humans to follow each other on a local and agent-
based level. Our resulting herding behavior can therefore be related to Reynold’s
well-known model on �ocks, herds and schools [114], while still allowing individual
agent behaviors. Furthermore, our model measures local crowd density based on
an agent’s vision, and this overcomes problems that can occur with a grid-based
approach. Examples of such problems are �nding a feasible cell size, and abruptly
changing densities caused by agents moving from one cell to another. Kountouriotis
et al. [73] proposed to combine �ow-based models and agent-based models with a
local approach that is similar to ours. In their work, the interpolation between indi-
vidual and coordinated movement is based solely on crowd density. By computing a
perceived local crowd �ow that can di�er from agent to agent, we achieve a simple
yet extensive interpolation. Our model also introduces a unique set of factors on
which the interpolation is based, which enables the simulation of di�erent agent
pro�les. In addition, our model allows the inclusion of di�erent collision avoidance
and global path-planning methods.

Schuerman et al. [117] proposed a method to add complex steering logic through the
external use of situation agents. The authors claim that incorporating such logic in
a steering algorithm itself leads to overly complicated algorithms that have to deal
with many special cases. Our Stream model, by contrast, is based on an intuitive
and simple interpolation which can be combined with existing steering methods
and which does not pollute agents with additional computation. Still, our model
shows an improved coordination and a signi�cant reduction of deadlocks in high-
density situations without the need of pre-processing the environment to identify
narrow passages as in [117].

Other related work involves global path planning and collision avoidance among
agents. Such methods can be used as black boxes within our model. A global path
planning method related to our work is the Indicative Route Method (IRM) [63],
which we have also discussed in Chapter 6. Given a global indicative route from an
agent’s start position to a goal position, the IRM computes an attraction point on
the route in each step of the simulation and makes the agent approach this point

Chapter 9: The Stream Model - Coordinating Dense Crowds 123

using steering forces. Collision avoidance among agents is available via a range of
velocity-based methods. One of the more popular ones is the ORCA method [133],
which is based on reciprocal velocity obstacles. Another collision-avoidance method
was presented by Karamouzas and Overmars [64]. It predicts future collisions for
each agent and lets an agent take an action that guarantees collision-free movement.
Park et al. [104] predict future collisions using a gaze movement angle. Vision-based
approaches such as [88, 100] use a �eld of view (FOV) for each agent to detect and
prevent collisions. In this work, we combine our model with the IRM, and we test
it with several velocity- and vision-based collision avoidance methods [64, 88, 133].

9.2 | Preliminaries

9.2.1 | Agent representation

Similar to our modi�cations of MIRAN as described in Chapter 7, we represent each
agent as a disk with a variable radius. The center of the disk is the current position
of the agent. Such a disk representation is widely used in agent-navigation and
crowd-simulation algorithms; see e.g. [31, 40, 59, 63, 79, 88, 133]. Research on more
accurate representations for full-body agent navigation is rather novel and has been
addressed only recently [103].

Each agent has a �eld of view (FOV), and an agent’s steering behavior is based
on a number of perceived neighboring agents. This is a fundamental di�erence
from continuum-based and other �ow-based methods [130] because these methods
assume global knowledge of the environment. We assume that real people mainly
execute and adapt their movement to visual input without global knowledge of
the crowd. We therefore believe that a local vision-based approach is well-suited
for approximating realistic crowd behavior and simulating emergent phenomena
observed in real crowds.

Similar to Moussaïd et al. [88], we assume that an agent’s FOV is a circular segment
centered at the agent’s current position and bounded by both a maximum look-
ahead distance dmax and a maximum viewing angleφ. See Figure 9.2 for an example
and Section 9.4 for the exact values used in our experimental setup.

9.2.2 | Overview of the Stream model

In each cycle of the simulation, we compute a velocity vector for each agent. This
velocity vector is then applied to an agent’s current velocity using a time-integration
scheme such as Euler integration [10], which guarantees smooth paths [33].

124 Chapter 9: The Stream Model - Coordinating Dense Crowds

vA dmax

A

φ
2 φ

2

Figure 9.2: Agent A’s �eld of view with a maximum viewing angle φ and a maximum look-
ahead distance dmax, centered aroundA’s velocity vA. We set φ to 180◦ for all agents within
our experiments, but the value can be adjusted if larger or smaller angles are desired for a
particular application.

LetA be an arbitrary agent. We perform the following �ve steps in each simulation
cycle:

1. We compute an individual velocity for agent A. This represents the velocity A
would choose if no other agents were in sight. Our model is independent of the
exact method that is used. Any method that computes a preferred velocity for
agent A is a feasible choice, e.g. [52, 63].

2. We compute the local crowd density that agent A can perceive; see Section 9.3.1.
3. We compute the locally perceived stream velocity of agents near A; see Section

9.3.2.
4. We compute A’s incentive λ. This incentive is used to interpolate between the

individual velocity from step 1 and the perceived stream velocity from step 3; see
Section 9.3.3.

5. The interpolated velocity is passed to a collision-avoidance algorithm. Our model
is independent of the exact method that is used, and we have tested it with three
popular ones [64, 88, 133].

9.3 | Stream behavior

A central concept in our model is the notion of locally perceived streams of agents.
Intuitively, streams are �ows of people that coordinate their movement by either
aligning their paths or following each other. Streams can be observed in real-life
situations as crowd density increases; see Figure 9.3. We base our model on the
assumption that people tend to move by following a least-e�ort principle of energy-
minimization [40, 124]. We postulate that actively forming and following streams at
high densities is a more energy-e�cient strategy compared to pursuing individual
goals. This follows because the use of streams leads to fewer collisions and abrupt
changes in the direction of movement.

Chapter 9: The Stream Model - Coordinating Dense Crowds 125

Figure 9.3: Example of stream formation in real-life situations. Arrows indicate the direc-
tions of streams. People between arrows of the same color belong to the same stream.

Local crowd density is one of the key factors that determines an agent’s behavior
in our model. In Section 9.3.1, we discuss three di�erent ways to measure local
crowd density, and we motivate why we chose to compute local density information
using an agent’s FOV. In subsequent sections, we discuss how to compute an agent’s
perceived stream velocity (Section 9.3.2) and its incentive (Section 9.3.3).

9.3.1 | Computing local density information

After agent A’s individual velocity has been computed as an initial step, we calcu-
late the crowd density ρ ∈ [0, 1]. We have tested three di�erent density measures
in a set of preliminary experiments: grid-based density, vision-based density, and
density based on the cells of the underlying Explicit Corridor Map (ECM) navigation
mesh [31] in our framework. The results of these preliminary experiments showed
no clear practical advantage of one density measure over the others with respect
to travel times, collisions, and deadlock situations. However, there are theoretical
di�erences between the three measures, which favor the vision-based approach. In
the remainder of this section, we discuss these di�erences.

In the �rst approach, we use the ECM to subdivide all navigable space into ECM
cells [31]. A similar approach has been taken by van Toll et al. [141]. Each ECM cell
is induced by exactly one edge of the medial axis graph of the virtual environment.
We can therefore store the amount of space occupied by agents for each edge of the
medial axis. We compute the total area of each ECM cell in an initial o�ine step,
and it su�ces to update density information whenever an agent leaves an ECM cell
and enters an adjacent one. This approach is computationally e�cient. However,
it is not necessarily a local measure of crowd density because ECM cells may vary
in size and span large areas of the environment. An agent might therefore switch

126 Chapter 9: The Stream Model - Coordinating Dense Crowds

from individual behavior to coordinated stream formation due to an increase in
crowd density far away from the agent’s actual position, and vice versa. As our
Stream model is based on local density information, this approach turns out to be
less suitable.

The second method uses a grid to approximate the navigable space of the envir-
onment. We have tested three di�erent cell sizes of 1m2, 4m2 and 9m2, and we
compute density information for each grid cell. Like the ECM-based approach, it
allows for constant-time updates of density information per agent because we only
need to update it when an agent switches from one grid cell to an adjacent one. This
is a more local approach compared to the ECM-based method, and it is therefore
better suited for our streams model. However, the performance strongly depends
on the grid cell size. Small cells increase the computational requirements and may
lead to incorrect density measurements. The area around an agent might be densely
packed except for certain gaps, and an incorrect density value is computed if such
a gap happens to be evaluated. Large cells, however, yield the same issues as dis-
cussed for the ECM-approach because locality of the measurement is lost.

The third approach uses the agent’s FOV to locally measure crowd density inform-
ation. Since our model is based on the agent’s FOV to a great extent, the extra
overhead of using it to measure local density is small. With this approach, agents
next to or slightly behind A will be considered when calculating density inform-
ation. We determine the set N of all neighboring agents that have their current
position (i.e. the center point of the disk representing the agent) inside A’s FOV of
φ = 180◦. By summing up the area ∆(N) occupied for each such agent N ∈ N
and dividing it by the total area ∆(FOV) of A’s FOV, we get the percentage value
indicating how much of the FOV is occupied. In practice, it is highly unlikely that
the FOV will ever be entirely occupied, though. Fruin [28] was the �rst to formalize
the impact crowd density has on the safety of pedestrians. Fruin has introduced a
six-stage Level-of-Service system, ranging from free movement without collisions
to highly dense situations. According to this system, an FOV occupied to one third
can already be considered a highly crowded situation. We therefore take the afore-
mentioned percentage value, multiply it by 3 and cap it at a maximum of 1. This
yields a maximum density value of 1 as soon as at least one third of A’s FOV is
occupied by other agents. Formally, we de�ne the crowd density ρ as follows:

ρ := min

(
3

∆(FOV)

∑
N∈N

∆(N), 1

)
. (9.1)

While agents with a position outsideA’s FOV might intersect its FOV, they will not
be taken into consideration. However, agents with a position inside but close to the
boundaries of A’s FOV will be counted with their full area. On average, we expect
the number of falsely selected agents to cancel out the number of falsely neglected
ones. The results of our experiments in Section 9.4 show that this approximation
works well in practice.

Chapter 9: The Stream Model - Coordinating Dense Crowds 127

vAvB

B

A

vper(A,B)

xB

xA

vdir(A,B)

Figure 9.4: An example of the perceived velocity vper(A,B) based on an interpolation between
vB and vdir(A,B).

9.3.2 | The perceived stream velocity

The next step is to compute the direction and speed of the stream of neighboring
agents as perceived by agent A. In situations where A is willing to coordinate with
the crowd, our model lets A approach the perceived stream whenever the distance
fromA to the stream members is still large. If, by contrast,A is close to the stream, it
will align its direction with the other members and follow the stream. We motivate
this in Section 9.3.2.1, where we initially consider the case where only one single
agent is perceived. In Section 9.3.2.2, we generalize the single agent procedure for
multiple perceived agents. The overall perceived stream velocity is the average of
the single stream directions and speeds for each agent.

9.3.2.1 | Perceiving a single agent

LetB be a single agent inA’s FOV, and let xA and xB be the current positions ofA
and B, respectively. We de�ne the perceived velocity vper(A,B) as an interpolation
betweenB’s actual velocity vB and a vector vdir(A,B) of the same length that points
along the line of sight between A and B. Formally, we let vdir(A,B) = (xB − xA) ·
‖vB‖ be the normalized vector between xA and xB scaled to the speed of B; see
Figure 9.4. A factor fA,B = ρ · dA,B is used to angularly interpolate between the
two vectors. Here, ρ ∈ [0, 1] is the local density in A’s FOV, and dA,B = ‖xB−xA‖

dmax

is the relative distance between A and B. Thus, fA,B ∈ [0, 1], and we use it to
interpolate between vB and vdir along the smallest angle between the two.

If we assume a density of 1 in the above de�nition, the factor fA,B only depends on
the relative distance between A and B. If B is on the edge of the view-distance of
A, i.e. ‖xB −xA‖ = dmax, then vper(A,B) equals vdir(A,B). This makes A pursue a
follow strategy [114] because A is attracted to B’s current position. If, by contrast,
A is close to B, then vper(A,B) is close to vB , and A picks an alignment strategy.

128 Chapter 9: The Stream Model - Coordinating Dense Crowds

The local density ρ is an extra factor that interpolates between the follow strategy

and the alignment strategy: The higher the number of agents intersecting A’s �eld
of view, the moreA is inclined to pick the follow strategy. This yields more compact
crowd formations at higher densities and a wider crowd spread across the available
free space at lower densities, which is a phenomenon observed in real crowds [46].

9.3.2.2 | Perceiving the local stream

We de�ne the local stream velocity perceived by agent A as the average of all per-
ceived velocities that are taken into consideration, both with respect to direction
and speed. We limit the total number of potential neighbors ofA and only consider
its �ve nearest neighbors that are currently in its FOV. This comparably small num-
ber corresponds to �ndings in research for �ocks of birds [6], and has been used in
related work, e.g. [64].

In theory, there can be arbitrarily many closest neighbors with equal distance from
A, with positions on the border of a circle centered on A’s position xA. We do not
propose a �xed rule of which �ve neighbors to pick in this situation. We need to
ensure that our model computes a feasible stream velocity whenever there is an
actual stream of agents. Since there is no such stream in this example, all possible
choices of neighbors are equally feasible.

Let N5 be a set of up to 5 nearest neighbors of A. We de�ne the average perceived

stream speed s for A as follows:

s :=
1

|N5|
·
∑
N∈N5

||vper(A,N)||. (9.2)

The locally perceived stream velocity vstream perceived by agent A is then de�ned
as follows:

vstream := s ·

∑
N∈N5

vper(A,N)

|| ∑
N∈N5

vper(A,N)||
, (9.3)

which is the average perceived stream speed times the average direction of all per-
ceived velocities scaled to unit length.

Since we de�ne the local stream velocity as the average of a set of velocities, it can
result in a null-vector when the corresponding velocities cancel each other out. In
this case, agent A cannot adapt to the stream velocity, even if there is an actual
stream of neighboring agents it should coordinate with. To avoid perceived stream
velocities canceling each other out, we restrict the maximum angle between the
velocities of agents A and B to strictly less than π

2 . Perceived neighbors yielding
a larger angle are not taken into consideration. This choice is further justi�ed by
the fact that an agent should only consider streams that are going roughly in its

Chapter 9: The Stream Model - Coordinating Dense Crowds 129

vA

H+(A)

H−(A)

vBi

vdir(A,Bi)

vdir(A,Bi)

Per(A,Bi)

vA

H+(A)

H−(A)

B1

B2
= vper(A,B2)

vdir(A,B1)

vdir(A,B2)

= vper(A,B1)

Figure 9.5: Top: An example constellation of two agents and the corresponding set
Per(A,Bi) of all possible perceived velocities. Bottom: An example of two agents in A’s
FOV with perceived velocities canceling each other out.

own preferred direction. Furthermore, due to the FOV with its viewing angle of
π, perceived neighbors reside only in the closed halfplane H+(A) in front of A,
which is induced by the line through xA perpendicular to A’s current velocity vA.
If either of these two restrictions is violated, perceived velocities may cancel each
other out.

For any neighbor Bi of A, we let βi := min(∠(vA, vBi
), 2π − ∠(vA, vBi

)) be
the angle between A’s current velocity and Bi’s current velocity. By H−(A), we
denote the complement of H+(A), which is the open halfplane behind A. Figure
9.5 (bottom) shows an example of two neighbors B1, B2 with B1 ∈ H−(A), B2 ∈
H+(A), and β1 > π

2 , which leads to −vper(A,B1) = vper(A,B2). We now give a
proof that the perceived velocities of any two neighbors of A cannot cancel each
other out if the above restrictions are met.

Lemma 3. LetB1, B2 be two distinct perceived neighbors of agentA. Then the fol-
lowing property holds: For i ∈ {1, 2} : xBi ∈ H+(A) andβi < π

2 ⇒ −vper(A,B1) 6=
vper(A,B2).

Proof: Let Bi be an arbitrary perceived neighbor of A with xBi
∈ H+(A) and

βi <
π
2 . Let VBi

be the set of all possible velocities vBi
for agent Bi. Since

βi <
π
2 , it follows that VBi

= H+(A). Let Per(A,Bi) be the set of all possible
perceived velocities vper(A,Bi). Then Per(A,Bi) ⊂ VBi

= H+(A); see Figure

130 Chapter 9: The Stream Model - Coordinating Dense Crowds

9.5 (top). Since this holds for all neighbors, it holds for neighbors B1, B2 in par-
ticular. From Per(A,B1) ⊂ H+(A), we can conclude that vper(A,B1) ∈ H+(A)
and −vper(A,B1) ∈ H−(A). This yields −vper(A,B1) /∈ Per(A,B2) and therefore
−vper(A,B1) 6= vper(A,B2). 2

In the degenerate case of all neighbors standing still, we set the perceived velocit-
ies to a minimum-threshold value as described in Section 9.3.2.1. With the above
de�nitions and Lemma 3, we can now show that vstream 6= 0.

Lemma 4. The perceived stream velocity vstream 6= 0.

Proof: We prove this by induction on the number of neighbors |N5|. If |N5| = 1,
the perceived stream velocity equals the perceived velocity of that one neighbor.
Since we assume a minimum threshold on the perceived velocity, it follows that
vstream 6= 0. If |N5| = k > 1, we pick k − 1 neighbors, and we let vk−1

stream be the
perceived stream velocity for these k−1 neighbors. From the induction assumption,
we know that vk−1

stream 6= 0. Since the sum of velocities residing in H+(A) is in
H+(A), too, it follows that vk−1

stream ∈ H+(A). Furthermore, the angle between vA
and vk−1

stream is strictly less than π
2 . We can therefore use Lemma 3 for vk−1

stream and
the perceived velocity of the kth neighbor, and conclude that vstream 6= 0. 2

9.3.3 | Incentive

Now that A’s individual velocity vindiv and the perceived stream velocity vstream
have been computed, we de�ne the incentive λ ∈ [0, 1] of A to interpolate between
vindiv and vstream. In Section 9.3.3.1, we discuss the set of factors that enable
the simulation of various character pro�les, and we describe how these factors in-
�uence λ. In Section 9.3.3.2, we describe how to interpolate between vindiv and
vstream using λ.

9.3.3.1 | Computing the incentive

The incentive λ is de�ned by four di�erent factors: internal motivation γ, deviation
Φ, local density ρ, and time spent τ . We simulate the behavior of an agent A in
a way such that – aside from the internal motivation factor – the most dominant
factor among Φ, ρ and τ has the highest impact on the behavior of A. We de�ne
the incentive λ as follows:

λ := γ + (1− γ) ·max
(
Φ, (1− ρ)3, τ

)
. (9.4)

Internal motivation γ ∈ [0, 1] determines a minimum incentive that an agent has
at all times. This enables the simulation of various agent pro�les such as a hurried
agent or a strolling agent.

Chapter 9: The Stream Model - Coordinating Dense Crowds 131

The local density factor ρ is de�ned in Section 9.3.1. For this factor, a non-linear
relation with the incentive is desired, which makes the incentive drop rapidly when
the local crowd density increases. To account for this, we induce a cubic descent by
using (1−ρ)3 in Equation 9.4. The deviation factor Φ makes agentA leave a stream
when vstream deviates too much from its preferred individual velocity vindiv . We
introduce a minimum threshold angle φmin. Whenever the angle between vstream
and vindiv is smaller than φmin, the factor Φ will be 0. This yields stream behavior
unless the other factors determine a di�erent strategy. If the angle is greater than
φmin, we gradually increase Φ up to a maximum deviation of 2φmin. Angles greater
than this threshold correspond to a deviation factor of 1, thus yielding individual
steering behavior. Let φdev := min(∠(vindiv, vstream), 2π − ∠(vindiv, vstream))
be the angle between the velocities. We de�ne the deviation factor Φ as follows:

Φ := min

(
max

(
φdev − φmin

φmin
, 0

)
, 1

)
. (9.5)

The time spent factor τ is used to make stream behavior less attractive the longer it
takes the agent to reach its goal. We initially calculate the expected time τexp agent
Awill need to get to its destination. How this is done depends on howA’s individual
velocity is calculated, i.e. what method is used as a black box in the initial step of
our model. If, for instance, an indicative route is used [63], the expected time can be
calculated by weighting the length of the route with the local density ρ. This value
can then be mapped to an expected time value according to the agent’s preferred
speed. We keep track of the actual simulation time τspent that has passed since A
has started moving. We then de�ne the time spent factor τ as follows:

τ := min

(
max

(
τspent − τexp

τexp
, 0

)
, 1

)
. (9.6)

9.3.3.2 | Using the incentive

Given the incentive λ, we interpolate between vindiv and vstream as follows: We
rotate vstream towards vindiv in a similar manner as the interpolation between vdir
and vB is performed for a single neighbor; see Section 9.3.2. Let β be the smallest
angle between the two vectors, and let βrot = βλ be the rotation angle between 0
and β, based on the incentive λ. We then rotate vstream towards vindiv by βrot. In
this step, however, the lengths of vindiv and vstream are not the same in general.
Therefore, we also linearly interpolate the lengths of these vectors.

This concludes the description of our Stream model. In the following sections, we
discuss the validation of our model and the set of experiments we have conducted.

132 Chapter 9: The Stream Model - Coordinating Dense Crowds

9.4 | Experiments

Our Stream model has been implemented in a framework based on the Explicit Cor-
ridor Map (ECM) [31]. The ECM is a time- and space-e�cient navigation mesh
for crowd simulation. All experiments have been conducted on a laptop running
Windows 8.1 with a 2.4 GHz Intel Core i7-4700HQ 2-Core CPU, 8 GB RAM and
an NVIDIA GeForce GTX 870M graphics card with 6 GB of GDDR5 memory. We
used one CPU core for the computations. To compute a preferred individual velo-
city for each agent, we combined our model with the Indicative Route Method by
Karamouzas et al. [63].

We used the following parameter values for our experiments. We set the agents’
radii to 0.24 meters, the look-ahead distance dmax to 1.5 meters, and the maximum
viewing angle φ to 180◦. The latter re�ects the approximate viewing range people
can perceive in real life [147]. Preferred speeds were randomly chosen between
0.85 and 2.05 meters per second. For the simulation itself, we de�ned the time step
between any two simulation cycles as 0.1 seconds.

We have validated our model both qualitatively and quantitatively. For a qualitative
inspection of the crowd motions generated by Stream, we refer the reader to the
corresponding video1. For a quantitative evaluation, we used the following metrics:
The average number of collisions between agents, the average travel time per agent,
the average expended energy per agent, the average traveled distance per agent, and
the number of runs in which agents were are not able to reach their goal positions
(deadlock situations). To approximate the expended energy per agent, we compute
the average change in an agent’s kinetic energy over its travel time, measured over
the discrete time steps of our simulation.

9.4.1 | Scenarios

For the qualitative evaluation, we created a scenario that represents a virtual uni-
versity, in which agents autonomously walk around under dynamically changing
crowd-density conditions; see Figure 9.1. This scenario can be inspected in the cor-
responding video1.

For our quantitative evaluation, we used �ve di�erent scenarios, some of which
have been proposed in the Steerbench framework for evaluating steering algorithms
[121]; see Figure 9.6. Throughout all scenarios, agents that reached their goal were
removed from the simulation. This prevents congestion near the goal areas, which
would otherwise lead to meaningless results when measuring the average number
of collisions.

1 https://youtu.be/XSusPwT81pI (accessed January 13, 2016)

https://youtu.be/XSusPwT81pI

Chapter 9: The Stream Model - Coordinating Dense Crowds 133

In the merging-streams scenario, two groups with a total of 250 agents merge to
pass through a bottleneck and split again afterward. The goal is to test whether
two streams merge and split as an emergent phenomenon within our model. The
crossing-streams scenario features two groups of 50 agents that approach each other
in a perpendicular manner. The goal is to test whether di�erent streams can cross
each other without heavy interference. The hallway1 scenario shows one group of
200 distributed agents, and the hallway2 scenario shows two groups that each have
100 distributed agents. These agents traverse the hallway in either one direction
(hallway1) or two opposing directions (hallway2). The goal is to test our model in
medium-density scenarios. In the narrow-x scenarios, we use a narrow hallway of
3m and two comparably large groups of x agents (x = 50 and x = 100). The agents
try to reach the opposite ends of the hallway. The goal of this experiment is to test
our model in high-density situations.

In addition, we have measured the running times of our model in two scenarios, de-
noted as military and hallway-stress. Military features a 200 x 200 meters footprint
of the McKenna MOUT training site at Fort Benning, Georgia, USA; see Figure 9.6
(bottom). It represents a scene with small passages, open squares and large areas
of free space, which could be part of a gaming or simulation application. Agents
are placed at the border and pick random goal positions at the opposite side of the
scene. Compared to randomly distributing the agents throughout the scene, this
setup enforces high crowd densities in the center of the environment as the agents
approach their goal positions. The goal is to test whether our model performs at
interactive rates in these types of scenarios. In hallway-stress, we use a hallway
of 30m to provide enough space for a large number of agents. The goal is to test
whether our model performs at interactive rates for large numbers of agents when
the environment enforces a high level of coordination.

9.4.2 | Modeling various agent profiles

We have tested the e�ects of the incentive on an agent that wishes to cross a large
stream of other agents; see Figure 9.7. This example can be qualitatively inspected
in the video that accompanies this work. We turned o� the time spent computations
to enhance the display of the e�ect of internal motivation and deviation. With an
internal motivation of 1, we get a constant incentive of 1. This makes the agent
push through the stream to reach its goal position at the opposite side of the crowd.
With an internal motivation of 0, and a threshold φmin for the deviation factor of
π
4 , the agent is dragged away by the stream �ow until the deviation factor causes
the incentive to rise and makes the agent leave the stream.

This shows that our Stream model enables the simulation of various agent pro�les
such as impatient or relaxed agents, rude agents that push through a dense crowd,
or polite agents that try to avoid pushing behavior and instead coordinate with
other agents. When such pro�les are based on �ndings from social-science studies,

134 Chapter 9: The Stream Model - Coordinating Dense Crowds

Figure 9.6: The di�erent scenarios in our experiments are (from top to bottom): merging-

streams, crossing-streams, hallway1, hallway2, narrow-50 and military.

Chapter 9: The Stream Model - Coordinating Dense Crowds 135

Figure 9.7: A stream of agents moving from left to right, and an agent trying to follow a path
from the bottom left to the upper right corner. Red path: γ = 1. Green path: γ = 0, φmin =
π
4

. We refer the reader to our accompanying video for an animated sequence.

we believe that Stream can be a useful addition to future crowd simulators. This
will display more complex agent behavior than state-of-the-art frameworks while
still keeping the underlying computations simple and intuitive.

9.4.3 | Comparing different collision-avoidance methods

In a �rst set of experiments, we have tested Streams with three popular collision-
avoidance methods [64, 88, 133]. For each method, we have computed the results
for each metric mentioned in Section 9.4, averaged over 50 runs for each scenario.
The results are depicted in Table 9.1 (average number of collisions) and Figure 9.8
(expended energy, travel times, traveled distances, and number of deadlock runs).

The following conclusions can be drawn from this experiment. In terms of the av-
erage expended energy per agent, the method by Moussaïd et al. [88] shows the
overall best results. All three methods perform equally well in terms of the average
traveled distance per agent. Only the method by Karamouzas and Overmars [64]
yields comparably small distances in the narrow-50 scenario. The reason is that the
method uses a personal space radius for each agent, which becomes a problem in
this dense scenario and leads to a deadlock situation in 100% of the tested cases.
We used a default value of 0.5 meters for the personal space radius, which is in cor-
respondence with [64]. In addition, we have run a preliminary set of experiments
with lower values for the personal space radius. With lower values, deadlocks oc-
cur less frequently, but the method struggles with an increased number of collisions
between the agents. In terms of travel times, all three methods perform equally well
in low- to medium-density scenarios. In dense scenarios such as narrow-50, how-
ever, both ORCA [133] and the method by Karamouzas and Overmars result in a
deadlock in almost all cases. This is the reason why no corresponding data is plot-
ted in Figure 9.8. The method by Moussaïd et al. by contrast, resolves all tested
scenarios without any deadlocks. ORCA struggles with a signi�cantly higher num-
ber of collisions compared to the other two methods; see Table 9.1. This becomes
especially apparent in the merging-streams scenario.

136 Chapter 9: The Stream Model - Coordinating Dense Crowds

0

5

10

15

20

25

crossing-streams hallway1 hallway2 merging-streams narrow-50

A
v
e
ra

g
e
 E

x
p
e
n
d
e
d
 E

n
e
rg

y Karamouzas and Overmars
Moussaïd et al.

Van den Berg et al.

0

20

40

60

80

100

crossing-streams hallway1 hallway2 merging-streams narrow-50

A
v
e
ra

g
e
 T

ra
v
e
le

d
 D

is
ta

n
ce

 (
m

e
te

rs
)

0

20

40

60

80

100

crossing-streams hallway1 hallway2 merging-streams narrow-50

A
v
e
ra

g
e
 T

ra
v
e
l
T
im

e
 (

se
co

n
d
s)

0

10

20

30

40

50

crossing-streams hallway1 hallway2 merging-streams narrow-50

N
u
m

b
e
r

o
f

D
e
a
d

lo
ck

 R
u
n
s

Figure 9.8: Results for our Stream model with three di�erent collisions-avoidance methods
in �ve di�erent scenarios. The results are averaged over 50 runs of each method-scenario
combination. Lower scores correspond to better results. Missing travel times data in narrow-

50 indicates deadlock situations in more than half of the runs.

Chapter 9: The Stream Model - Coordinating Dense Crowds 137

crossing-streams hallway1 hallway2

Karamouzas and Overmars 17.5 5.9 5.3

Moussaïd et al. 111.9 28.7 16.6
Van den Berg et al. 1970.9 612.2 138.6

merging-streams narrow-50

Karamouzas and Overmars 95.7 32.4

Moussaïd et al. 290.4 170.3
Van den Berg et al. 16555.8 3876.7

Table 9.1: The average number of collisions for our Stream model with three di�erent
collisions-avoidance methods in �ve di�erent scenarios. The results are averaged over 50
runs of each method-scenario combination.

For the remainder of our experiments, we used the method by Moussaïd et al. The
main reason is that this method performed signi�cantly better in high-density scen-
arios. While the other two methods lead to a deadlock in almost all cases, the
method by Moussaïd et al. was able to resolve all of them. Since Stream aims at im-
proving high-density crowd �ow while still being able to simulate low-density scen-
arios, this is a critical factor. Furthermore, the method does not show any signi�cant
disadvantages in any of the other metrics. The fact that our model already uses a
FOV further justi�ed the choice for the vision-based collision avoidance method by
Moussaïd et al.

9.4.4 | Testing the effect of streams

We have compared our streams approach to the same scenarios when stream-be-
havior is turned o� and only individual behavior is being displayed. We use the
Indicative Route Method (IRM) [63] for path following, and we used the collision-
avoidance method by Moussaïd et al. [88] because it yielded the best results in our
experiments; see Section 9.4.3. We tested both low-density scenarios such as hall-
way1 and hallway2 and high-density scenarios such as narrow-50 and narrow-100.

Table 9.2 (average number of collisions) and Figure 9.9 (expended energy, travel
times, traveled distances, and number of deadlock runs) show the results of this ex-
periment, averaged over 50 runs per scenario. It turned out that our Stream model
causes slightly more collisions in low-to medium-density scenarios such as crossing-
streams or the hallway scenarios. In high-density scenarios such asmerging-streams

and the narrow scenarios, however, the Stream model shows a signi�cantly lower
number of collisions due to the improved coordination among agents. A similar
observation can be made for the expended energy. While the agents spend slightly
more energy in crossing-streams and the hallway scenarios when Stream is used,

138 Chapter 9: The Stream Model - Coordinating Dense Crowds

crossing-streams hallway1 hallway2

With Stream 111.9 28.7 16.6
Without Stream 34.7 10.5 13.0

merging-streams narrow-50 narrow-100

With Stream 290.4 170.3 4787.3

Without Stream 677.9 15799.2 43070.9

Table 9.2: The average number of collisions with and without our Stream model in six di�er-
ent scenarios. The results are averaged over 50 runs of each method-scenario combination.

the expended energy is lower in high-density scenarios due to the improved co-
ordination among agents. The traveled distance is slightly higher when Stream is
used because agents do not take the shortest path to their goals, but instead accept
small detours to improve crowd coordination and �ow. The increase in travel dis-
tances is comparably small, though. The most signi�cant di�erence between the
two methods shows when we compare the average travel times and occurrence of
deadlocks. With our Stream model, the average travel times are slightly higher
in scenarios that can still be handled without Stream. This is caused by the longer
travel distances and aligning of motions among the agents. However, when we turn
o� the Stream model, only crossing-streams and merging-streams could be resolved
without any deadlocks while all other scenarios resulted in a deadlock in 40 out of
50 runs for the hallway scenarios, and in 49 and 50 runs for narrow-50 and narrow-

100, respectively. With Stream, by contrast, no deadlocks occurred in all scenarios
expect for narrow-100, in which a comparably small number of 15 out of 50 runs
could not be resolved.

From these observations, we conclude that, overall, our Stream model performs
equally well as a purely individualistic crowd model in low- to medium-density
scenarios. In high-density scenarios, Stream signi�cantly reduces the occurrence
of deadlocks and improves the overall coordination and �ow of a crowd.

9.4.5 | Performance

In a �nal set of experiments, we tested our Stream model with respect to its real-
time performance. Figure 9.10 shows the average running times needed to compute
one step of the simulation for an increasing number of agents in the military and
hallway-stress scenarios. Each measurement shows the average step time of 10 runs.

The results show that we could simulate up to 1700 agents at interactive rates in the
military scenario. For higher numbers, deadlocks frequently started to occur, which
is what we expected given the size of the scene compared to the number of agents.
In the hallway-stress scenario, we could simulate up to 1100 agents simultaneously

Chapter 9: The Stream Model - Coordinating Dense Crowds 139

0

5

10

15

20

crossing-streams hallway1 hallway2 merging-streams narrow-50 narrow-100

A
v
e
ra

g
e
 E

x
p
e
n
d
e
d
 E

n
e
rg

y With Stream
Without Stream

0

20

40

60

80

100

120

crossing-streams hallway1 hallway2 merging-streams narrow-50 narrow-100

A
v
e
ra

g
e
 T

ra
v
e
le

d
 D

is
ta

n
ce

 (
m

e
te

rs
)

0

20

40

60

80

100

crossing-streams hallway1 hallway2 merging-streams narrow-50 narrow-100

A
v
e
ra

g
e
 T

ra
v
e
l
T
im

e
 (

se
co

n
d
s)

0

10

20

30

40

50

crossing-streams hallway1 hallway2 merging-streams narrow-50 narrow-100

N
u
m

b
e
r

o
f

D
e
a
d

lo
ck

 R
u
n
s

Figure 9.9: Comparison between crowd behavior with and without our Stream model in six
di�erent scenarios. The results are averaged over 50 runs of each method-scenario com-
bination. Missing travel times data in the hallway and narrow scenarios indicates deadlock
situations in more than half of the runs.

140 Chapter 9: The Stream Model - Coordinating Dense Crowds

 0

 20

 40

 60

 80

 100

 120

 200 400 600 800 1000 1200 1400 1600 1800 2000A
v
e
ra

g
e
 T

im
e
 /

 S
im

u
la

ti
o
n
 S

te
p

 (
m

s)

Number of Agents

narrow-stress
military

Figure 9.10: Average running times needed to compute one step of the simulation for an
increasing number of agents in the military and hallway-stress scenarios. Each measurement
shows the average step time of 10 runs.

at interactive rates on a single CPU. We conclude that our model runs at interactive
rates for larger numbers of agents, even when coordination among the agents is
high.

9.5 | Limitations

Many problems with dense crowds are caused by the global path planning step of
the planning hierarchy; see Section 1.2. Whenever the global paths of a large num-
ber of agents intersect in the same point of the environment, the probability for
deadlocks and an overall low throughput is high. This happens at the corners of
obstacles when many agents are following the shortest path around these obstacles.
Our model cannot prevent deadlocks entirely because it is designed to resolve prob-
lems on a local level. It is not designed to let agents dynamically re-plan their global
path, or to make use of the full free space around obstacles. Improvements on a
higher planning level are the subject of current research. Results in that �eld may
strengthen the applicability of our model even more in the future.

We have shown that our model allows real-time simulation for up to 1700 autonom-
ous agents on one CPU core in a medium-sized environment that contains both
narrow passages and areas of open space; see Figure 9.10. However, since agents
are simulated as individuals, computation is still expensive. When the application
requires tens of thousands of agents with only a few distinct goals, a �ow-based
model may be a better choice.

Lastly, the coordination of real crowds depends signi�cantly on social factors and
group behavior. Stream provides a unique set of factors to simulate various agent
pro�les that could be based on social-science studies. However, it simulates how

Chapter 9: The Stream Model - Coordinating Dense Crowds 141

an agent perceives and reacts to neighboring agents on a purely geometrical level,
and it does not yet take higher-level aspects into account.

This concludes the chapter on our Stream model. In the next chapter, we will
present another novel method, which – similarly to the model presented in this
chapter – can also be related to coordinating multiple virtual agents. Instead of co-
ordinating arbitrary numbers of agents in dense situations, the method discussed
in the next chapter aims at introducing social behavior for small pedestrian groups
to establish more coherent and socially-friendly walking patterns.

Chapter 10

Social Group Behavior

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

With the Stream model as described in the previous chapter, we are able to improve
the coordination among agents in arbitrary crowd-density situations. The Stream
model itself is based on the walking behavior of individual agents with individual
parameter settings that can be used to simulate particular agent pro�les such as
impatient agents that display pushing behavior, or agents that are willing to com-
ply with the local crowd �ow around them. Another aspect that is important for
the simulation of believable crowds and that is missing in the previous model is
social-group behavior. Empirical research shows that up to 70% of crowd members
walk in small social groups in urban environments and public places [15, 57, 89].
Existing methods model explicit formations to keep groups coherent [70] and in
socially-friendly formations [65, 149]. Such formations have been observed in real
crowds [89], but they are not strictly kept at all times due to the wide range of
factors that in�uence a group’s walking behavior in real-life situations. We there-
fore believe that explicitly modeling such formations may yield arti�cial-looking
group behavior. Groups may lack �exibility and put too much emphasis on main-
taining an explicit formation. For instance, groups might not be able to temporarily
split and instead take unrealistic detours to keep a particular formation.

144 Chapter 10: Social Group Behavior

In this chapter, we present a novel method named Social Groups and Navigation

(SGN) to simulate the walking behavior of small pedestrian groups. SGN is based on
the social-force model by Moussaïd et al. [89] and the vision-based collision avoid-
ance method by Moussaïd et al. [88], which we have modi�ed and extended to yield
more coherent and socially-friendly walking behavior. We do not explicitly model
social formations. We instead introduce quantitative metrics to measure the coher-

ence and sociality of small pedestrian groups, and we use these metrics to let form-
ations emerge from the group members’ attempts to stay coherent and social. The
generated group behavior is more �exible and diverse than with existing methods.
For instance, SGN allows groups to temporarily split to avoid dynamic obstacles
such as other agents or groups, and groups automatically re-organize themselves
when coherence is lost. Thus, SGN handles social group behavior on both global
and local levels of a crowd simulation framework.

In Section 10.1, we discuss work that is related to our SGN method. In Section 10.2,
we present basic settings, we give an overview of SGN and its simulation loop,
and we discuss how to integrate SGN in a larger crowd simulation framework. In
Section 10.3, we present the details of the method itself. In Section 10.4, we conduct
experiments and compare our SGN to the methods by Moussaïd et al. [88, 89] with
respect to social-group behavior. Furthermore, we show that SGN can be used to
simulate several thousands of agents in real-time.

This chapter is based on the following publication:

[54] N. Jaklin, A. Kremyzas, and R. Geraerts. Adding sociality to virtual pedestrian
groups. In 21st ACM Symposium on Virtual Reality Software and Technology (VRST

2015), pages 163–172, 2015.

10.1 | Related work

For a general overview of the �eld of crowd simulation, we refer the reader to the
books by Thalmann and Musse [128] and Pelechano et al. [107]. In this section, we
focus on selected work related to our SGN method.

Musse and Thalmann [91] described a model to simulate group behavior based on
inter-groups relationships. Their model uses a small set of simple parameters such
as interests, emotional status, and domination for the agents. Their work can be
seen as an early attempt to capture real-life crowd behavior with a focus on social
relationships between groups and their members.

Kamphuis and Overmars [60] presented a method to simulate coherent groups.
They focus on large groups such as military armies. Their method handles both
global path planning and local steering. Socially-friendly formations are not sup-
ported, and coherence is not re-established when it is lost during the simulation.

Chapter 10: Social Group Behavior 145

Qiu and Hu [111] presented a model to simulate pedestrian groups based on util-
ity theory and social comparison theory. Their method enables agents to switch
between di�erent groups during the simulation. It does not explicitly model coher-
ence and socially-friendly formations of the generated groups.

Moussaïd et al. [89] use video recordings of urban areas to collect empirical data of
pedestrian crowds. They also describe a social-force model to simulate the walking
behavior of small pedestrian groups. Our SGN method is based on this social-force
model.

Inspired by Moussaïd et al. [89], Karamouzas and Overmars [65] presented a velocity-
based approach to simulate small pedestrian groups. Socially-friendly formations
are explicitly modeled, and the method optimizes a cost function to maintain group
coherence and guarantee collision-free movement.

Kimmel et al. [70] presented an extension to the Velocity Obstacle (VO) approach
[26] to simulate social-group behavior. The authors de�ne a geometrical Loss of
Communication Obstacle (LOCO) that can be combined with a VO to generate col-
lision-free movement for small groups. Such groups try to stay close to each other
during the simulation. Coherence is handled such that no agent is further away
from the group than a particular threshold distance. There is no explicit formulation
of socially-friendly formations, and the method works only locally as an extension
of the VO method and its reciprocal variants, e.g. van den Berg et al. [133].

Park et al. [105] presented a model that considers higher-level social interactions
between the group members. It assigns a leader to each group, and it handles group-
coordination strategies based on common ground theory.

Wu et al. [149] combined the work by Karamouzas and Overmars [65] with the
vision-based steering approach by Ondřej et al. [100]. They validated their method
by comparing the distortion, dispersion, and out-of-formation metrics of their sim-
ulation with data from a real crowd.

Huang et al. [50] presented a path planning method to simulate coherent and per-
sistent groups. The method is based on the Local Clearance Triangulation by Kall-
mann [59], and it handles groups as deformable shapes. Deformations as well as
splitting and merging actions of a group in�uence the overall costs of a path.

Compared to most of the above methods, our SGN method handles social-group be-
havior on both global and local planning levels. We achieve this by not only adding
coherent and socially-friendly walking behavior, but also letting groups re-establish
their coherence in case they have to temporarily split during the simulation.

146 Chapter 10: Social Group Behavior

10.2 | Preliminaries

10.2.1 | Basic settings

Assume we are given k groups of agents Gi, 1 ≤ i ≤ k. We assume group sizes |Gi|
of 2 through 4, which corresponds to observations made in real pedestrian crowds
[89]. Note that these group sizes are not a hard constraint, and SGN can be easily
modi�ed to simulate bigger groups; see Section 10.3.6.3. The method is designed
in a modular way, and it can be used to also simulate individual agents that do
not display group behavior by switching o� the corresponding group-related parts
of the method. It also allows to simulate mixed scenarios with both groups and
individuals. For ease of explanation, we assume that all groups are present at the
start of the simulation. However, our method can be easily modi�ed to let groups
enter the simulation at a later point in time.

For 1 ≤ i ≤ k and 1 ≤ j ≤ |Gi|, we denote by Aij the jth member of group Gi,
which is represented as a disc with radius rij (in m) and a mass mij = 320rij (in
kg), following the de�nition by Moussaïd et al. [88]. By xij , we denote the center
point of the disc that represents the agent, and we refer to it as the agent’s position.
In addition, each agent has a personal space radius r′ij ≥ rij . Each agent Aij has
a preferred speed sij , and each group has a preferred group speed si = min

1≤j≤|Gi|
sij ,

which is the smallest preferred speed of its members. Furthermore, each agent Aij
has a �eld of view (FOV), which is a circular segment centered in the agent’s current
position xij with a maximum viewing distance dij and a viewing angle of Φij . We
say that an agent Ai′j′ is visible to an agent Aij , if the FOV of Aij contains at

least one point of the disc that represents Ai′j′ . We assume that dij ≥ 2
|Gi|∑
j′=1

r′ij′

to ensure that an agent can visually perceive all its group members when they are
lined up in front of the agent, with the personal spaces of any two consecutive
agents overlapping in at least one point (Figure 10.1). This is important for (re-
)establishing group coherence; see Section 10.3.3 for details.

Each group Gi has a goal area Gi. We assume that each group has a feasible global
route to its goal area. A feasible global route can be computed with any existing
path planning method that ensures clearance from static obstacles for disc-shaped
agents, e.g. [31, 59, 99]. To ensure collision-free movement for all group members,
the global route should keep clearance from obstacles that corresponds to the largest
disc radius of all group members.

Chapter 10: Social Group Behavior 147

di1

Ai1

Ai2

Ai3

r′i1

r′i2

r′i3

Figure 10.1: Example of a group of 3 agents that are lined up. Agent Ai1 can perceive its
fellow group members because its viewing distance di1 is larger than the sum of the personal
space diameters of all group members.

10.2.2 | Overview of the SGN method

In short, our method works as follows: A group that enters the simulation �rst es-
tablishes its coherence by letting all members walk individually towards the ini-
tial group leader. All coherent groups walk towards their goal along a shared
global path that is initially computed. While walking, social forces try to make
the group members stay coherent and social. Whenever coherence is lost, a group
re-establishes its coherence by letting the leader wait for its fellow members as
soon as the local crowd density around the leader is low. Figure 10.2 provides a
visual overview of our SGN method and its two main modes: coordination mode

and group-walking mode.

We now give an overview of the initialization step in Section 10.2.2.1, and we con-
tinue with the simulation loop in Section 10.2.2.2. In Section 10.2.3, we discuss how
our method can be integrated into existing crowd simulation frameworks.

10.2.2.1 | SGN initialization

The initialization step for our SGN method is as follows. For each group Gi in the
simulation, we perform the following actions:

• Set Gi to coordination mode (Section 10.3.3).

• Assign to an arbitrary member of Gi the role of the leader Li (Section 10.3.1).

• Compute an indicative route πij to Li for each member Aij that is not Li.

• Compute a global indicative route πi from Li to the goal area Gi using exist-
ing path-planning methods.

148 Chapter 10: Social Group Behavior

Coordination Mode Group-Walking Mode

if group is

coherent

if group lost

its coherence

Group members approach

their group leader along

individual paths until the

group is coherent.

Members walk as a group

based on social forces and

visual perception, thus

maintaining sociality.

Group initialization
if there is a new

Method terminates

goal area if all members

reached their

goal area

Figure 10.2: Overview of the SGN method and its two main modes: coordination mode and
group-walking mode.

10.2.2.2 | The SGN simulation loop

The simulation loop for our method is as follows. For each group Gi in coordination

mode (Section 10.3.3), we perform the following actions:

• Compute a preferred velocity for each non-leading member Aij to move
along πij with the preferred speed sij . Any existing path following method
can be used here.

• Pass the preferred velocities to a modi�ed version of the collision-avoidance
method by Moussaïd et al. [88] (Section 10.3.5).

• Check for each waiting member whether there is an agent of the same group
in its personal space. If so, set that agent to a waiting state, too.

• If all group members are in a waiting state, then set Gi to group-walking mode

(Section 10.3.4).

For each group Gi in group-walking mode (Section 10.3.4), we perform the following
actions:

• (Re-)assign the role ofLi to the group member that is closest toGi, measured
via the curve-length distance along πi (Section 10.3.1).

• Determine the current last member li of the group, which is farthest away
from Gi, measured via the curve-length distance along πi (Section 10.3.1).

Chapter 10: Social Group Behavior 149

5. High-level planning

4. Global route planning

simulation loop

3. Route following

2. Local movement

1. Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

SGN

Figure 10.3: Example of a multi-level crowd-simulation framework [142] into which our
SGN method has been integrated. SGN a�ects agent behavior on the global-route planning
level, the route-following level, and the local-movement level.

• Compute a preferred velocity for each member along the group’s global path
πi using the preferred group speed si. Any existing path following method
can be used here.

• Pass the preferred velocities to a modi�ed version of the collision-avoidance
method by Moussaïd et al. [88] (Section 10.3.5).

• Compute the acceleration for each agent using a modi�ed version of the
social-force model by Moussaïd et al. [89] (Section 10.3.4).

• If Gi is not coherent (Section 10.3.2) and the density around Li is smaller than
0.7 pedestrians per m2, then set Gi to coordination mode (Section 10.3.3).

10.2.3 | Integration of SGN into a crowd simulation framework

We assume that SGN is used in the context of a larger crowd simulation framework.
We have implemented it within the framework described by van Toll et al. [142];
see Figure 10.3. Note that SGN does not depend on this particular framework. It
can be easily integrated into any framework that treats global route planning, local
route following, and micro-behavior such as collision avoidance as separate steps
in the simulation cycle, e.g. Curtis et al. [17].

This concludes the overview of our method. In Section 10.3, we describe the details
of all aforementioned steps.

150 Chapter 10: Social Group Behavior

10.3 | The Social Groups and Navigation method

10.3.1 | Leader and last member

For each group Gi, we de�ne a leader Li and a last member li. These roles are
updated and re-assigned at the end of each simulation cycle. The leader is de�ned to
be the group member that is closest to the goal area, measured via the curve-length
distance along the group’s global path. Similarly, the last member is de�ned as the
member that is farthest away from the goal area; see Figure 10.4 for an example.
The only exception is in the initialization phase of our method. Here, no global
path has been computed yet, and the role of the leader is therefore assigned to an
arbitrary member.

Note that the global path serves as an indicative route [63], and the agents’ positions
are in general not located exactly on that route. It depends on the path following
method what points on the route are used to determine the roles of the leader and
the last member. A feasible option is to de�ne a reference point on the global path
for each agent, e.g. the point on the global path that is closest to an agent’s position
[52].

10.3.2 | Coherence and sociality

Let xij be the position of an agent Aij with viewing distance dij and radius rij .
Given the roles of a leader and a last member for each group, we de�ne the coherence

Li (leader)

li (last member)

Gi

Figure 10.4: Example of a group Gi with a leader Li and a last member li, following an
indicative route to a goal area Gi. The discs resemble the group members themselves, and
we do not display their personal space discs. The dotted line segments indicate the distance
from each agent to its reference point on the indicative route.

Chapter 10: Social Group Behavior 151

and sociality of a group in the following way:

De�nition 10.1. Let Gi be a group with leader Aij and last member Aij′ . We say
that Gi is coherent i� ||xij − xij′ || ≤ dij′ + rij .

In other words, a group is coherent when at least one point of the disc that models
the leader can potentially be seen by the last member. Note that De�nition 10.1
does not re�ect whether the leader is actually inside the FOV of the last member.
As long as their distance is within the de�ned range, the group is coherent, even
when the last member is not looking in the leader’s direction.

Furthermore, we de�ne a social threshold distance dsocial. Intuitively, it is a max-
imum distance that two members of the same group are allowed to keep from each
other while still being able to socially interact. This threshold distance is based on
empirical observations [16, 27, 89, 153]. It should not be larger than the minimum of
the viewing distances of all agents, i.e. ∀i ∈ [1, ..., k] ∀j ∈ [1, ..., |Gi|] dsocial ≤ dij .

De�nition 10.2. Let Gi be a group. We say that Gi is in a partially social con�g-
uration i� ∀j ∈ [1, ..., |Gi|] ∃j′ ∈ [1, ..., |Gi|], j 6= j′, such that Aij and Aij′ are
mutually visible (inside each other’s FOV) and ||xij − xij′ || ≤ dsocial + rij + rij′ .

De�nition 10.3. LetGi be a group. We say thatGi is in a totally social con�guration
i� Gi is partially social and ∀j ∈ [1, ..., |Gi|] ∀j′ ∈ [1, ..., |Gi|], j 6= j′, Aij and Aij′
are mutually visible.

In other words, a group is partially social when each member has at least one mu-
tually visible other member within the social threshold distance, and it is totally
social when, in addition, all members are mutually visible.

10.3.3 | Coordination mode

Whenever a group loses its coherence, it enters coordination mode. In this mode, the
members of a group will gather around their leader to (re-)establish coherence. The
leader enters awaiting state and does not move until group coherence is established.
Coordination mode is also the default mode of each newly spawned group in the
simulation. In other words, as soon as a group enters the simulation, it will �rst
start coordinating to establish group coherence before moving towards the goal
area as a group.

Each non-leading member of a group in coordination mode �rst computes a route to
the leader and starts following it. How this is done is independent of our method.
Similar to the global route planning for an entire group, any path planning method
that guarantees clearance from obstacles is su�cient in this step [31, 59, 99]. In the

152 Chapter 10: Social Group Behavior

same way, any existing route-following method can be used that takes an indicat-
ive route or similar guidance path as an input and computes a preferred velocity
for each agent. In coordination mode, this preferred velocity is then passed to a
collision-avoidance method; see Section 10.3.5.

Any non-leading member follows its route to the leader until it detects a member
of its own group that is in a waiting state. When coordination mode starts, only the
leader is in a waiting state. Members that are su�ciently close to the leader enter a
waiting state, too. We use an agent’s personal space to determine whether another
agent is su�ciently close in the following way: At the end of each simulation cycle,
each waiting member of a group in coordination mode checks whether there is a
non-waiting member in its personal space. If so, that non-waiting member switches
to a waiting state, too. Since we assume the viewing distance dij of each agent Aij

to be at least 2
|Gi|∑
j′=1

r′ij′ (see Section 10.2), the group will always be coherent as soon

as all members have switched to a waiting state. This ensures that we can safely
set the group to group-walking mode when there are no non-waiting members left
at the end of a simulation cycle.

10.3.4 | Group-walking mode

In this mode, each group Gi moves along its global path πi to the goal area Gi.
Any existing route-following method can be used that takes an indicative route or
similar guidance path as an input and computes a preferred velocity for each agent.
This preferred velocity is then passed to a collision-avoidance method; see Section
10.3.5. Afterwards, contrary to coordination mode, the preferred velocity is passed
to a social-force model that maintains group-coherence and sociality; see Section
10.3.6.

After the group has moved, we check whether it is still coherent according to De�n-
ition 10.1. If not, the group needs to re-establish its coherence. In real-life, we expect
the leader to wait for its fellow group members in a non-congested area of the en-
vironment. If such an area is not available, the group will not be able to re-establish
its coherence until it reaches an area of low crowd density. Thus, in order to prevent
a leader from stopping in the middle of a highly dense situation when coherence is
lost, we check whether the local crowd density around the leader is smaller than a
threshold value of 0.7 agents per m2. This value is based on the Pedestrian Level Of
Service (PLOS) system proposed by Fruin [28]. Only when both conditions are met,
i.e. when the group lost its coherence and when the local crowd density around the
leader is small, we set the group back to coordination mode.

Chapter 10: Social Group Behavior 153

10.3.5 | Collision avoidance

Within our SGN method, we use the vision-based collision-avoidance method by
Moussaïd et al. [88] with some modi�cations. We keep the following core concepts
as proposed in the original method:

Let vij be the preferred velocity of agent Aij as computed by the path-following
algorithm that is used. Let α0 be the corresponding angle of vij measured against
the agent’s line of sight. Let Oij be the last visible point in Aij ’s FOV that lies in
the direction α0. Let α ∈ [−Φij

2 ,+
Φij

2] be a candidate angle direction, and let Ωα
be the last visible point in Aij ’s FOV that lies in the direction of α. Let Tα be the
point in the direction of α that is the last collision-free position within the agent’s
FOV. Figure 10.5 shows an example of the situation. The desired direction is then
de�ned as

αdes = argmin
α∈[−Φij

2 ,+
Φij
2]

d(α),

where d(α) =
√
d2
ij + f(α)2 − 2dijf(α) cos(α0 − α).

In the original method, the term f(α) is de�ned as the distance from the agent’s
position to Tα. If no collision occurs within the distance of dij , then Tα coincides
with Ωα, and f(α) is therefore set to dij . For our SGN method, we modify the
de�nition of f(α) in the following way: We let F (α) be the perpendicular foot of
Oij on the straight-line segment between xij and Ωα (Figure 10.5). We then de�ne

f(α) = min(|xijTα|, |xijFα|).

The moment when the next directional change occurs should not solely be based
on the impending collisions, but also on the distance to Oij . In other words, an

xij

α

α0

Oij

Fα

Ωα
vij

Tα

f (α)

Figure 10.5: Example of the situation during the modi�ed collision-avoidance method for
a candidate angle α. Here, the point F (α) is closer to xij than Tα. Thus, f(α) is set to
|xijFα|.

154 Chapter 10: Social Group Behavior

agent should also change its direction when it reaches a point where moving on in
its current direction would increase the distance to Oij , even with no impending
collisions. The point where this happens is F (α). Without that option, an agent
might ’overshoot’ in the desired direction.
Now that αdes is computed, we can compute the desired walking speed sdes. From
the original method, we adopt the concept of a relaxation time τ . This relaxation
time ensures that an agent chooses its speed such that there is enough time to avoid
a collision within the given time frame. Let sij be the agent’s preferred speed, and
let dcol be the distance between the agent and the �rst collision in the direction of
αdes. We de�ne

sdes = min(sij , dcol/τ).

This ensures that the agent moves at its preferred speed when there are no impend-
ing collisions in the given time frame, and it slows down accordingly when needed.
Finally, let vdes be the resulting desired velocity in the direction of αdes and scaled
to the desired speed sdes.

10.3.6 | Social-force model

We apply social forces to each group in group-walking mode after the collision-
avoidance step. The social forces are based on the model by Moussaïd et al. [89],
with some modi�cations. We will �rst explain the model and then discuss what
details have been modi�ed compared to the original method.

Given an arbitrary agent Aij , its desired velocity vdes after the collision-avoidance
computations, and the actual velocity v from the previous simulation step, we com-
pute the acceleration dv

dt in the following way:

dv

dt
=
vdes − v

τ
+

1

m

k∑
u=1

|Gu|∑
v=1

fuv +
1

m

W∑
w=1

fw +
fgroup
m

, (10.1)

where fuv is a repelling force to avoid physical contact with another agent Auv
(Section 10.3.6.1), fw is a repelling force to avoid physical contact with one of the
W obstacle segments in the environment (Section 10.3.6.2), and fgroup is a group
force to maintain coherent and socially-friendly formations (Section 10.3.6.3).

10.3.6.1 | Physical-contact force with another agent

The force fuv is applied to agent Aij when there is physical contact with agent
Auv . By dist(Aij , Auv), we denote the Euclidean distance between Aij and Auv .

Chapter 10: Social Group Behavior 155

Let n(Aij , Auv) =
xij−xuv

dist(Aij ,Auv) be the unit vector pointing from Auv to Aij . Fur-
thermore, let S be a global parameter that de�nes the strength of the force. We then
de�ne the force as follows:

fuv =

{
S ·max

(
0, rij + ruv − dist(Aij , Auv)

)
· n(Aij , Auv) if u 6= i or v 6= j,

0 otherwise.

10.3.6.2 | Physical-contact force with obstacles

The force fw is applied to agent Aij when there is physical contact with one of the
obstacle segmentsw in the environment. By dist(Aij , w), we denote the Euclidean
distance between Aij and w. Let n(Aij , w) be a vector that is perpendicular to w
and points from w to Aij , normalized to unit length. Furthermore, let S be the
global force-strength parameter as described in Section 10.3.6.1. We then de�ne the
force fw as follows:

fw = S ·max
(

0, rij − dist(Aij , w)
)
· n(Aij , w).

10.3.6.3 | Group force

The group force fgroup is de�ned as fgroup = fvis + fatt, where fvis is a decel-
eration force that represents the desire of Aij to keep its fellow group members in
its FOV, and fatt is an attractive force that represents the desire of Aij to maintain
group coherence.

To de�ne fvis, let θij′ , j 6= j′, be the minimum rotation angle (in degrees) that
is required to let the position xij′ of agent Aij′ be inside agent Aij ’s FOV. Let
θ = max

1≤j′≤|Gi|
θij′ be the maximum of the minimum rotation angles. Furthermore,

let Svis be a global parameter that de�nes the strength of fvis. We then de�ne fvis
as follows:

fvis = −Svis · θ · vdes

This means that we scale the desired velocity vdes by the rotation angle θ and the
strength parameter Svis in negative direction of vdes to compute the �rst part of
the group force.

The force fatt describes agent Aij being attracted to the centroid

156 Chapter 10: Social Group Behavior

Ci =
1

|Gi|
∑

1≤j≤|Gi|
xij

of the group Gi (viewed as a given set of points) to maintain group coherence. Let
dist(Aij , Ci) be the distance from the agent to the centroid. Similar to Moussaïd
et al. [89], we de�ne a threshold distance d = 0.5 · (|Gi| − 1), such that Aij is
attracted to Ci as soon as its distance to Ci exceeds d. Let n(Aij , Ci) be the vector
pointing fromCi toAij , normalized to unit length. Furthermore, let Satt be a global
parameter that de�nes the strength of fatt. We then de�ne fatt as follows:

fatt =

{
Satt · n(Aij , Ci), if dist(Aij , Ci) ≥ d and vdes 6= 0

0, otherwise

In the above de�nition, we check whether the desired velocity vdes given by the
collision avoidance method is 0. If so, this means that the agent has reached its
goal, and we therefore let the attraction force be 0, too. This yields an overall group
force of 0, and it disables social behavior for agents that have reached their goal.

According to Costa [16], large social groups in real-life tend to split up into smaller
sub-groups of up to 3 members. Our SGN method could be adjusted to account for
this behavior in the computation of the visual group force fvis. We can split up
each group into subgroups of at most 3 members. Instead of computing fvis with
respect to all group members, only the members of agentAij ’s sub-group are taken
into consideration. All other steps of the method remain unchanged.

10.3.6.4 | Differences to the original model

In the original social-force model by Moussaïd et al. [89], the acceleration term for
agent Ai is de�ned as

dvi
dt

= f0
i + fwalli +

∑
j

fij + fgroupi .

Here, f0
i is an attractive force to move agent Ai in a particular direction at a pre-

ferred speed, fwalli is a repulsive force to avoid static obstacles, fij is a repelling
force to avoid physical contact with another agent Aj from a di�erent group. The
resulting behavior is reactive and lacks anticipation. To add a more predictive avoid-
ance behavior within our SGN method, we have replaced the above forces by the
avoidance forces of Moussaïd et al. [88]; see Equation 10.1 in Section 10.3.6.

Chapter 10: Social Group Behavior 157

Another modi�cation is that we use the centroid Ci of the group Gi when comput-
ing the group force fgroup. In the original method, the center of mass of the group
is used instead of the centroid. We assume that a variation in mass among the group
members should not have an e�ect on the group force, which is why we consider
the centroid a better choice.

Similarly, we modi�ed the computation of the force fvis: In the original method,
the force is de�ned via the required rotation angles for each agent to keep the center
of mass of the group in its FOV. Instead, we de�ne the force via the required rota-
tion angles to keep the group members themselves in an agent’s FOV. Again, we
believe that a variation in mass should not have an e�ect on this step. Furthermore,
the original method does not guarantee that group members e�ectively slow down
when a fellow member is left behind in dense situations, which our modi�cation
does.

Another change in the force fvis is that we use the desired velocity vdes that already
takes predictive avoidance behavior into account. In the original method, the actual
velocity of an agent is used here, which lacks anticipation.

Finally, we changed the repulsive forces between agents: In the original method,
the group force fgroupi contains a repulsive term to model the interaction between
members of the same group. In our SGN model, we skip this term. Physical contact
between agents are generally resolved by our de�nition of fuv in Equation 10.1,
independent of whether the agents are from the same group or not.

10.4 | Experiments

10.4.1 | Experimental setup

We have validated SGN and compared it against the social-force model by Mous-
saïd et al. [89], which we have combined with the collision-avoidance method by
Moussaïd et al. [88]. The goals of these experiments are threefold: First, we aimed at
determining whether SGN yields more coherence and socially-friendly formations
than the combination of [89] with [88]. Second, we have used SGN in a room-
evacuation scenario, for which ground-truth data of a real-life experiment [80] was
available. Third, we have measured the running times of SGN for varying group
sized to validate its real-time performance. All three experiments have been per-
formed on a PC with an Intel Core i7 860 processor with 2.8 GHz, an Nvidia GeForce
GTX 285 video card and 8 GB of RAM, running Windows 7 Ultimate 64bit. We have
used one single core for all experiments.

We integrated the method into the crowd simulation framework described by van
Toll et al. [142]. For each agent, we used a radius of 0.24 m, an FOV of Φij = π

158 Chapter 10: Social Group Behavior

with maximum viewing distance of 10 m. The personal space radius and the social
threshold distance were set to 1 m each. Following Weidmann et al. [144], we used
a normal distribution with a mean of 1.34 m/s and a standard deviation of 0.26 m/s
to randomly choose the preferred speed for each agent. Each goal area was modeled
as a disc with radius 0.6 m. The relaxation time τ used in the social-force model
was set to 0.5 s. Following Moussaïd et al. [88], the strength parameter S of the
physical forces was set to 5000, and the strength parameters Svis and Satt were set
to 1 and 3, respectively. Furthermore, we set the time for one simulation step to 0.1
s.

We tested our method with group sizes of 2, 3, and 4 in �ve di�erent scenarios:
bidirectional corridor, bottleneck, corners, building evacuation, and room evacuation.
The scenarios are displayed in Figures 10.6 and 10.7.

Bidirectional corridor features a 20 m long corridor that is 10 m wide. Three groups
are placed on each end of the corridor, and each group has its goal areas at the
opposite end of the corridor. We use this scene to test whether groups stay coherent
and in socially-friendly formations when they encounter other groups moving in
the opposite direction.

Bottleneck features a 50 m long corridor that linearly decreases in width towards
the right side. On the left, the corridor is 40 m wide, and on the right it is 10 m wide.
Twelve groups are placed on the left end and have their goal areas on the right end.
We use this scene to test whether groups stay coherent and in socially-friendly
formations when the environment becomes more narrow and crowd density in-
creases.

Corners features an empty square room with four social groups. Each group is
placed near a di�erent corner and has its goal position near the opposite corner of
the room. We use this scene to test whether groups stay coherent and in socially-
friendly formations when having to cross the center point of a room with other
groups approaching from di�erent directions.

Room evacuation features a room with one exit, and a crowd of 180 agents sub-
divided into groups of varying size. The agents have to evacuate the room through
the exit. This experimental setup was proposed by Köster et al. [72]. It is based
on a controlled laboratory experiment performed by Liddle et al. [80]. We use this
scene to test whether our SGN method generates group behavior that is in line with
empirical data, and what e�ect the group size has on evacuation times.

Building evacuation features a building that spans an area of 95 m × 128 m. The
building has ten rooms that are connected via one large corridor. The corridor has
an exit at each end. A total of 490 groups is placed in the rooms, and each group has
to leave the building through the nearest exit. The members of a group are all placed
at random positions in the same room. We use this scene to test whether groups stay
coherent and in socially-friendly formations in a high-density evacuation situation.

Chapter 10: Social Group Behavior 159

Figure 10.6: The �rst four scenarios we used for our experiments, shown with groups of 4.
From top to bottom: bidirectional corridor, bottleneck, corners, and room evacuation. Small
discs indicate the agents, grouped by color, and large discs indicate the corresponding goal
areas.

160 Chapter 10: Social Group Behavior

Figure 10.7: The largest scenario that we have used for our experiments, shown with groups
of 4: building evacuation.

Chapter 10: Social Group Behavior 161

10.4.2 | Effects of SGN on coherence and sociality

In a �rst set of experiments, we compared our SGN method against the methods
by Moussaïd et al. [88, 89]. To this end, we integrated both the collision-avoidance
method [88] and the social-force model [89] into the local movement layer of the
framework (Figure 10.3) by van Toll et al. [142].

The goal was to test whether SGN with its additions to the combined work by
Moussaïd et al. yields group behavior that better re�ects real-life situations than
the original methods. An overall assumption is that agents do not switch groups
during the simulation. Thus, real-life behavior in a corresponding situation means
that each person tries to stay in coherent and socially-friendly formations as much
as possible while approaching the goal area. We therefore compared the frequency
of coherence and sociality in our simulated groups for the SGN method and for the
work by Moussaïd et al. We measured the percentage of simulation steps over the
lifetime of a group in which it is coherent according to De�nition 10.1. By lifetime,
we refer to the number of simulation steps that it takes a group to reach its goal
area. Similarly, we measured the percentage of simulation steps over the lifetime
of a group in which it is in a partially-social and totally-social formation according
to De�nitions 10.2 and 10.3, respectively. We ran each scenario 100 times and took
the average coherence and sociality over all runs.

Table 10.1 shows the average coherence (%) and the corresponding standard de-
viation (%) for both methods and varying group sizes in the �rst four scenarios.
Similarly, tables 10.2 and 10.3 show the average partial and total sociality (%), re-
spectively, and the corresponding standard deviation (%).

The results show that our SGN method improves over the work by Moussaïd et
al. in all cases with respect to partial and total sociality. Regarding coherence, our
method improves in all cases except the bottleneck scenario with groups of 3. In that
scenario, coherence is lost in one single run for our SGN method. A Welch’s t-test
on the di�erence between the two coherence results (for SGN and Moussaïd et al.)
yielded a p-value of 0.3198, and the di�erence is thus not considered statistically
signi�cant.

10.4.3 | Evacuation times

In a second set of experiments, we used the room evacuation scenario (Figure 10.6,
bottom) to simulate an evacuation scene with a total of 180 agents. First, we meas-
ured the evacuation times achieved by our SGN method, by Moussaïd et al. [88, 89]
and by Köster et al. [72]. For this experiment, we set the radius of each agent to 0.2
m. All other settings were kept as described in Section 10.4.1. Since the constrained
space for this scenario does not allow for much variation in the initial spacial distri-
bution of the groups, we used a �xed initial con�guration for the 180 agents. With

162 Chapter 10: Social Group Behavior

Scenario Group size Coherence

Average (%) StDev (%)

SGN Moussaïd SGN Moussaïd

et al. et al.

2 100 100 0.0 0.0
Bidirectional corridor 3 100 100 0.0 0.0

4 100 100 0.0 0.0
2 100 100 0.0 0.0

Bottleneck 3 99.9 100 0.2 0.0
4 100 100 0.0 0.0
2 100 100 0.0 0.0

Corners 3 100 100 0.0 0.0
4 100 100 0.0 0.0
2 96.0 92.7 0.4 0.6

Building evacuation 3 90.6 84.1 0.8 0.9
4 83.3 75.7 0.9 1.0

Table 10.1: Results from our comparison of SGN with Moussaïd et al. in the �rst four of our
scenarios. We show the average group coherence (%) and corresponding standard deviation
(%) for both methods and varying group sizes.

no randomness left, we ran our SGN method once per group size and measured the
total time needed to evacuate the room.

Table 10.4 shows the result of this experiment. The corresponding real-life exper-
iment by Liddle et al. [80] was performed with 180 individuals, for which a total
evacuation time of 80 s was reported. There is no corresponding ground truth data
for bigger group sizes. However, according to empirical data obtained by Xu and
Duh [150], the evacuation times should increase when the group size increases.
With the method by Moussaïd et al. a decrease in evacuation times can be ob-
served for groups of 4, which contradicts the empirical observations. By contrast,
both the method by Köster et al. and our SGN method indeed show this trend.

In addition to the group size, we tested the e�ect that the radius of an agent’s disc
has on evacuation time when using SGN. To this end, we repeated the scenario four
times with all radii increased, ranging from 0.21 m up to 0.24 m with a step size of
0.01 m. Furthermore, we ran a variant of this scenario with mixed radii that were
randomly chosen in the range of 0.20 m to 0.24 m for each agent. Table 10.5 shows
the result of these experiments. We conclude that an increase in the radius increases
the evacuation times for all group sizes. This is an expected result because higher
radii yield less free space in the environment, which increases the overall crowd
density. Coordination and re-establishing coherence thus takes more time because

Chapter 10: Social Group Behavior 163

Scenario Group size Partial sociality

Average (%) StDev (%)

SGN Moussaïd SGN Moussaïd

et al. et al.

2 91.7 89.0 2.2 2.6
Bidirectional corridor 3 77.4 51.1 5.1 13.2

4 64.3 21.9 5.3 6.7
2 92.4 90.4 1.0 1.2

Bottleneck 3 82.5 61.0 3.6 9.6
4 72.2 20.5 4.6 6.0
2 91.3 89.6 2.5 2.7

Corners 3 80.5 52.7 4.7 19.0
4 70.7 19.4 4.7 8.0
2 54.5 50.4 0.9 1.0

Building evacuation 3 31.2 15.6 0.8 0.7
4 20.5 6.9 0.7 0.4

Table 10.2: Results from our comparison of SGN with Moussaïd et al. in the �rst four of
our scenarios. We show the average group partial sociality (%) and corresponding standard
deviation (%) for both methods and varying group sizes.

leaders wait for fellow members only when the local crowd density is low (Section
10.3.3).

10.4.4 | Performance

In a �nal set of experiments, we tested the performance of our SGN method. We
used an extended variant of the room evacuation scenario, which consists of eleven
copies of the scenario, i.e. eleven rooms as displayed in Figure 10.7. Each room is
initially occupied by 180 agents, yielding a total of 1980 agents in this stress-test
scenario. The agents are subdivided into groups, and each group has to evacuate
the room it is starting in. We ran the scenario 100 times for group sizes of 1, 2,
3, 4, and mixed sizes, and we measured the average time needed to compute one
simulation step.

Tables 10.6 and 10.7 show the average time per simulation step and standard devi-
ation we achieved for a serial and parallel execution our method, respectively. For
the parallel execution, we used 4 CPU cores and a total of 8 threads. The results
show that the average running times are all close to each other for the varying
group sizes, and mixed group sizes yield intermediate running times. For all group

164 Chapter 10: Social Group Behavior

sizes, our SGN method only yields a small increase in average running times over
the simulation of individual agents. When executing the method in parallel, one
simulation step is performed about 4.5 times as fast as with a serial execution. For
all tested group sizes, we achieved an average rate of slightly less than 20 steps per
second. Since we set the time for one simulation step to 0.1 s, we can conclude that

Scenario Group size Total sociality

Average (%) StDev (%)

SGN Moussaïd SGN Moussaïd

et al. et al.

2 91.7 89.0 2.2 2.6
Bidirectional corridor 3 66.7 25.1 6.4 10.7

4 41.5 0.3 7.3 1.0
2 92.4 90.4 1.0 1.2

Bottleneck 3 75.5 27.2 4.2 10.1
4 56.2 0.6 6.0 1.2
2 91.3 89.6 2.5 2.7

Corners 3 71.6 25.4 5.5 15.2
4 50.4 0.2 6.5 1.3
2 54.5 50.5 0.9 1.0

Building evacuation 3 26.5 7.2 0.7 0.4
4 12.4 0.5 0.6 0.1

Table 10.3: Results from our comparison of SGN with Moussaïd et al. in the �rst four of
our scenarios. We show the average group total sociality (%) and corresponding standard
deviation (%) for both methods and varying group sizes.

Method Evacuation time (s)

Group size

1 2 3 4 Mixed

SGN 73.50 98.10 112.20 115.70 99.20
Moussaïd et al. 82.10 93.50 95.40 84.30 84.10
Köster et al. 73.63 86.93 - 90.59 -
Liddle et al. 80.0 - - - -

Table 10.4: Evacuation times for the room-evacuation scenario. Due to spacial constraints,
for SGN and Moussaïd et al. we used a �xed starting con�guration for all agents with no
randomness involved. The results show the evacuation times for a single run of each of the
two methods. For comparison, we list the mean evacuation times of the method by Köster et
al. [72] for individuals and for groups of 2 and 4, and the ground-truth data for individuals
as obtained by Liddle et al. [80].

Chapter 10: Social Group Behavior 165

our SGN method achieves real-time performance for large numbers of agents when
using parallel computation.

10.5 | Limitations

While our SGN method generates coherent and socially-friendly group behavior
for a large number of agents in real time, it has some limitations. In its current
version, SGN does not include avoidance behavior with respect to entire groups.
Furthermore, the method does not give the user control over the temporary splitting
behavior of a group. Groups may split and re-establish coherence after a successful
avoidance maneuver. However, in the actual splitting phase, the group members
are treated as individuals.

In addition, the synthetic vision of an agent is still a rough approximation and does
not re�ect the in�uence of the environment. For instance, agents in wide open
spaces should be able to see hundreds of meters ahead, while their vision should
be limited in narrow corridors and indoor environments. The computational com-
plexity of maintaining actual vision during the simulation is still a bottleneck that
justi�es the usage of a rougher approximation of an agent’s vision as used in pre-
vious methods, e.g. by Moussaïd et al. [88].

This concludes our chapter on social-group behavior. The SGN method is the last
contribution in the form of a novel algorithm that is made in this thesis. In the next
chapter, we will present practical implementation details and experimental results
of the underlying crowd simulation framework [142], in which the novel algorithms
presented in this thesis have been developed.

Agent radius (m) Evacuation time (s)

Group size

1 2 3 4

0.20 73.5 98.1 112.2 115.7
0.21 82.9 103.6 120.8 129.6
0.22 86.5 113.8 135.9 135.0
0.23 93.8 293.2 145.0 151.6
0.24 98.9 337.7 170.7 251.8
Mixed 86.3 112.5 131.8 142.8

Table 10.5: The evacuation times for the room-evacuation scenario using our SGN method
for di�erent agent radii and group sizes.

166 Chapter 10: Social Group Behavior

Time per step (msec) Frame-rate (#steps/sec)

Average StDev Average StDev

Individuals 228.6 0.7 4.4 0.01
Groups of 2 235.1 0.9 4.3 0.01
Groups of 3 235.6 0.9 4.2 0.01
Groups of 4 236.4 0.7 4.2 0.01
Mixed 233.8 0.9 4.3 0.01

Table 10.6: The average time per step and frame rate we achieved with a serial execution of
SGN for 1980 agents and di�erent group sizes.

Time per step (msec) Frame-rate (#steps/sec)

Average StDev Average StDev

Individuals 52.4 1.4 19.1 0.5
Groups of 2 56.8 9.2 17.9 1.7
Groups of 3 54.2 1.1 18.5 0.4
Groups of 4 54.1 1.3 18.5 0.4
Mixed 53.3 1.0 18.8 0.4

Table 10.7: The average time per step and frame rate we achieved with a parallel execution
of SGN on 4 CPU cores and a total of 8 threads for 1980 agents and di�erent group sizes.

Chapter 11

Combining it all: the ECM
crowd-simulation framework

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

All novel algorithms that we have presented in the previous chapters are designed
in a modular way. They can be combined to form a larger crowd-simulation frame-
work that follows a �ve-level hierarchy as discussed in Chapter 1. We have designed
all algorithms in a way such they can be used in any framework that follows such
a multi-level planning approach. While we have discussed the algorithms from an
abstract and general point of view, we omitted particular implementation details of
some of the sub-methods whenever these sub-methods made use of a framework-
dependent feature. As an example, we omitted the details in Chapters 6 and 7 of
how to perform e�cient visibility checks between an agent’s current position and
a candidate attraction point. As long as the underlying framework supports such
visibility-checks, the details of how they are performed are not key to the overall
idea of a method.

In this chapter, we close this gap by discussing all implementation details of the
framework in which the described algorithms have been developed. We start with

168 Chapter 11: Combining VBP, MIRAN and Streams

describing the Explicit Corridor Map (ECM) [31] navigation mesh and its properties
in Section 11.1. This section expands on the brief discussion of the ECM that we
have given in Chapter 2, Section 2.1.3. Subsequently, we present implementation
details on the overall framework and its sub-methods in Section 11.2. To show
the functionality and e�ciency of the ECM framework, we conduct experiments in
Section 11.3.

This chapter is based on the following publications:

[52] N. Jaklin, W. van Toll, and R. Geraerts. Way to go – a framework for multi-
level planning in games. In Proceedings of the 3rd International Planning in Games

Workshop (ICAPS’13 | PG2013), pages 11–14, 2013.

[142] W. van Toll, N. Jaklin, and R. Geraerts. Towards believable crowds: A generic
multi-level framework for agent navigation. In ASCI.OPEN, 2015.

11.1 | The Explicit Corridor Map

We now provide more details on the navigation mesh called the Explicit Corridor

Map (ECM) [31, 138]. The ECM is an annotated data structure based on the medial
axis of the environment, which is the set of all points that are equidistant from at
least two distinct closest obstacle points. An example of an ECM in a scene with a
U-shaped obstacle polygon and four obstacle-line segments as the boundary of the
scene is shown in Figure 11.1.

g

s

Figure 11.1: A simple environment with obstacles (shown in gray). Left: The ECM is the
medial axis (blue) annotated with closest-obstacle information (orange). This subdivides the
walkable space into polygonal regions. Right: A path along the medial axis induces a corridor
(light blue) due to the ECM’s annotations. Within the corridor, we can de�ne any indicative
route from s to g; two examples are shown in dotted black.

Chapter 11: Combining VBP, MIRAN and Streams 169

The medial axis is usually associated with its corresponding medial-axis graph,
which can be seen as a special type of waypoint graph. There are two types of
vertices in the medial-axis graph: The �rst type are the points on the medial axis
that have three or more nearest obstacles in the environment (the larger black discs
in Figure 11.1 (left)). As a degenerate case, such a point can also be located in a
non-convex corner of an obstacle, when the boundary of such an obstacle is treated
as separate obstacle line segments. The second type of vertices are so-called event

points at which the medial axis locally changes from a straight-line segment to a
parabolic arc (the small black discs in Figure 11.1 (left)). The medial-axis graph is
closely related to the Generalized Voronoi Diagram (GVD) with the obstacle poly-
gons being the corresponding Voronoi sites [8]. A medial-axis edge consists of a
series of event points. Between each pair of consecutive event points, the medial
axis is a straight-line segment or a parabolic arc, depending on the type of corres-
ponding obstacles to its left and right (with respect to a given orientation of the
edges).

The ECM is based on the medial-axis graph, but in addition, it stores the left and
right closest obstacle points for each vertex. When imagining the vertices being
connected with their associated closest-obstacle points via straight-line segments
(the orange segments in Figure 11.1 (left)), the ECM partitions a 2D environment
into a set of walkable areas called ECM cells. This partitioning can be obtained in
O(n log n) time and with O(n) space, where n is the total number of obstacle ver-
tices of the given scene. Each ECM cell corresponds to one particular obstacle poly-
gon, as all points in that area are closer to that obstacle than to all other obstacles
(similar to the relation between a Voronoi cell and its corresponding Voronoi site).

Technically, the ECM can be seen as a variant of the GVD, in which all edges are
pruned that the GVD might contain due to treating obstacles as sets of line seg-
ments, while adding information about closest obstacles for each event point. The
GVD depends on how the given Voronoi sites are de�ned. For the exact same geo-
metrical scene, di�erent variants of the GVD can be obtained depending on whether
obstacle polygons are treated as separate lines or as whole (convex or non-convex)
polygonal sites. The medial axis, by contrast, is independent of this choice because
any two distinct obstacle points induce a point of the medial axis, no matter what
the structure of the overall obstacle is.

The di�erences between a GVD, a medial axis, and an ECM are only subtle, though,
and existing approximation techniques for computing a GVD e�ciently using graph-
ics hardware [48] can also be used to compute ECMs: First, for each two-dimensional
site (i.e. the obstacle polygons, lines or points) a three-dimensional distance mesh
is computed and drawn by the graphics hardware, each mesh in a di�erent color.
By projecting the distance meshes back onto the 2D plane and tracing the bound-
ary lines of the di�erent regions in the color bu�er, a feasible approximation of the
GVD can be obtained. This approach requires the obstacle polygons to be convex,
so concave polygons are �rst subdivided into convex ones.

170 Chapter 11: Combining VBP, MIRAN and Streams

There are software libraries available for computing GVDs: Vroni [47] and Boost
1.

As a pre-processing step, undesired intersections and overlaps caused by impreci-
sion in the geometry data can be detected and removed using corresponding func-
tions of the Boost library. Vroni or Boost can then be used to robustly compute an
ECM.

The ECM has many advantages that make it well-suited for a real-time crowd-
navigation framework: It is a sparse graph with only O(n) vertices and edges.
Hence, it requires little storage space. As a consequence, global paths can be com-
puted e�ciently when using an optimal graph-search strategy such as A∗ with
an admissible heuristic; see Section 2.2. Furthermore, an ECM can be constructed
in O(n log n) time, and as such, the construction times scale well with increasing
numbers of obstacle vertices. Consequently, an ECM can be e�ciently computed
even for larger or more detailed environments. As discussed in Chapter 2, it repres-
ents the exact geometry of the traversable space of an environment. This resolves
the issues that are inherent to approximated representations such as grids.

An ECM enables path planning for disc-based agents of arbitrary size, using only a
single data structure. This means that agents of di�erent sizes do not need to store
their own version of the world geometry that depends on which areas are accessible
for them and which are not. Because the ECM stores clearance information, a search
method such as A∗ can determine in real-time whether an agent is small enough
to traverse an edge. Most other navigation meshes arti�cially in�ate the obstacles
and work well for only one agent size. Another useful property of an ECM is the
fact that the ECM cells are non-overlapping, which makes it well-suited for point-
location queries. For any point in the free space, the ECM cell that contains it can
be found in O(log n) time, after which the nearest obstacle can be found in O(1)
time. This also allows e�cient collision checking with static obstacles. An ECM
can be used to compute a variety of indicative routes, et al. routes that stay on
the left and right side of the medial axis, or short paths with a preferred amount of
clearance [31]; see Figure 11.1 (right). Van Toll et al. [140] have shown that the ECM
can also be e�ciently updated in response to insertions and deletions of obstacles,
such that it allows crowd simulation in dynamic environments. Furthermore, it
is well-de�ned for multi-layered 3D environments [138] that consist of multiple
connected 2D layers. A multi-layered ECM locally has the same properties as the
two-dimensional ECM, so many 2D algorithms (e.g. dynamic updates, visibility
queries, or computing short paths with clearance) also work in the multi-layered
ECM. Overall, the ECM is a generic basis for e�cient path planning and crowd
navigation in simulations and gaming applications.

1 The Boost C++ Library; http://www.boost.org/ ; accessed January 13, 2016.

http://www.boost.org/

Chapter 11: Combining VBP, MIRAN and Streams 171

11.2 | Implementation details

In this section, we provide implementation details on the crowd-simulation soft-
ware framework that is based on the ECM navigation mesh. As discussed in the
context of the �ve-level planning hierarchy that we presented in Section 1.2, the
software can be applied to geometric planning problems induced by a semantic high-
level planner. The framework was written in C++ using Visual Studio 2013, but the
code has recently been made platform-independent and has been successfully tested
on Unix systems, too.

11.2.1 | Input and output

The framework supports 2D environments and multi-layered 3D environments
that consist of multiple, usually (but not necessarily) connected 2D layers [138].
All environments are encoded as XML �les in a format that describes the geometry
of each 2D layer. Per layer, the geometry can consist of walkable areas, which are
polygonal regions that form the traversable space of the environment, obstacles,
which are non-passable polygons, and openings, which are (walkable) polygons that
can be used to ’cut holes’ into already de�ned obstacles. The latter concept is use-
ful for creating environments that mainly consist of non-walkable space with only
a few walkable corridors, such as a maze. An example environment is shown in
Figure 11.2 (left). Layers can also contain connections; a connection is a straight-
line segment that connects the walkable space of two adjacent layers. Figure 11.2
(right) shows a multi-layered environment with connections. Finally, each layer
can contain weighted regions as discussed in Parts I and II of this thesis. A weighted
region is a simple polygon with a certain type (et al. ‘grass’ or ‘road’) to which each
agent can associate an individual weight value. These weight values are stored in
separate agent pro�les, which are blocks within an XML �le that describe all agent-
based parameters required for running a simulation. These parameters comprise an
agent’s radius, the preferred walking speed, the algorithms to use for global plan-
ning, path following, and collision avoidance, and the weight values that indicate
an agent’s region preferences.

For a given environment, a corresponding ECM can be computed and then saved
as an XML �le that describes its vertices, edges, and closest-obstacle annotations.
Running a simulation in the ECM framework requires such an ECM navigation
mesh, a set of agent pro�les, and an environment. All results (the environment, the
ECM, or the state of the simulation at any point in time) can also be exported to
a vector �le for the Ipe drawing editor2. As an optional feature, a simulation can
also take an additional scenario �le as an input. Such a scenario �le is an XML �le
that describes individual agents or agent groups, their start and goal positions, or
2 The Ipe extensible drawing editor; O. Cheong; http://ipe.otfried.org/; accessed Janu-

ary 13, 2016.

http://ipe.otfried.org/

172 Chapter 11: Combining VBP, MIRAN and Streams

L0

L1

L2

C01

C12

Figure 11.2: Constructing an environment. Left: Users can de�ne the walkable space of a
layer in terms of walkable areas (light gray), obstacles (white and dark gray for two di�erent
layers), and openings (yellow). The medial axis of the combined walkable space is shown in
blue. Right: Multi-layered environments consist of 2D layers Li and connections Cij . The
layers are drawn in di�erent colors for clarity.

rectangular areas in which start and goal positions should be randomly created at
the beginning of a simulation. Using such a scenario �le with a �xed random seed
(which can also be speci�ed within the XML scenario �le) allows running a scenario
with the same start and goal positions multiple times.

11.2.2 | Computing navigation meshes

We now go into more details on how the ECM software framework can compute the
ECM of a walkable environment. For a 2D environment, we �rst convert the geo-
metry into a set of disjoint non-walkable polygons, by applying Boolean operations
using the OpenGL3 tessellator.

The resulting polygons are sent to an ECM generator of choice. Three such gener-
ators are currently implemented within the framework:

1. The �rst implementation renders an approximated Voronoi diagram on the
GPU [48], which is converted to an ECM on the CPU [31]. It requires the user
to set the rendering resolution, e.g. at 20 pixels per meter. See Figure 11.3 (left)
for an example that was computed with the GPU-based ECM generator.

2. The second implementation uses Vroni [47], a library that is widely used in
geometry-related research. It computes a topologically correct Voronoi dia-
gram for a set of line segments, which are the boundaries of the obstacle

3 OpenGL; https://www.opengl.org/; accessed January 13, 2016.

https://www.opengl.org/

Chapter 11: Combining VBP, MIRAN and Streams 173

polygons. From the result, the medial axis can be extracted, and the ECM’s
closest-obstacle annotations can be added. In a subsequent �ltering step,
graph components that lie inside the obstacle space are discarded. Figure
11.3 (right) shows an example that was computed with the Vroni-based ECM
generator.

3. The third implementation works similarly to the second, but it uses the Voronoi-
diagram functionality of the open-source Boost library.

Figure 11.3: Two ways to generate the ECM. Left: Using rendering techniques, we can ap-
proximate the Voronoi diagram on the GPU frame bu�er. Right: External libraries such as
Boost and Vroni can compute the Voronoi diagram, which we convert to an ECM. Graph
elements inside obstacles are �ltered out in a post-processing step.

Boost and Vroni have the advantage that they do not depend on a resolution para-
meter. However, since these exact methods respond to imprecision in the input,
their resulting ECMs may contain undesired details. Additional �ltering steps (e.g.
�lling small openings, merging line segments that are close together, and resolving
intersections between segments) are needed to handle such imprecision for arbit-
rary environments.

For multi-layered 3D environments, an iterative algorithm is used that �rst com-
putes the 2D ECM for each layer and then stitches these ECMs together to obtain a
continuous multi-layered navigation mesh [138]. The construction algorithm con-
sists only of a sequence of 2D steps, so any of the above mentioned generators can
be used. The ECM generator can either write the navigation-mesh data to an XML
�le or keep it in memory. This way, the user can run a simulation from the ECM in
memory as an alternative to loading an external XML �le.

174 Chapter 11: Combining VBP, MIRAN and Streams

11.2.3 | Algorithms of the planning hierarchy

Within the context of the �ve-level planning hierarchy as described in Section 1.2,
the ECM framework contains implementations for each of the center levels: global-
route planning, route following, and local movement. The following algorithms
have been implemented:

For the global-route planning level, the framework contains an implementation of
A∗ [42] to compute shortest paths on the medial axis. The resulting path can be
converted to various types of indicative routes: short paths with a preferred amount
of clearance, or paths with side preference (e.g. for staying on the left and right
side of the free space). It also contains a re-planning algorithm that recomputes
a medial axis path e�ciently after an obstacle has been inserted or deleted [139].
When the environment features weighted regions, agents can perform anA∗ search
on a weighted grid instead. In addition, an implementation of the VBP method as
described in Chapter 4 is available.

For the route-following level, our framework includes the IRM [63] and both ver-
sions of the MIRAN method as described in Chapters 6 and 7. At the local-movement
level, the framework includes implementations of the velocity-based collision-avoid-
ance algorithms by Moussaïd et al. [88] and Karamouzas et al. [64], as well as
the Stream model as described in Chapter 9 for improved coordination between
agents at high crowd densities. In addition, it includes the popular ORCA collision-
avoidance library by van den Berg et al. [133], which is publicly available online4.

The framework also includes an implementation of the SGN method as described in
Chapter 10. The SGN method is not contained in a single layer of the planning hier-
archy, but it a�ects global-route planning, route-following, and local movement.

11.2.4 | Architecture

We will now highlight a number of details concerning the architecture of the ECM
software. This discussion focuses on aspects that emphasize the modularity of the
framework and its e�ciency.

Modularity: For each of the three geometric levels in the hierarchy (route plan-
ning, route following, local movement), any algorithm can be plugged in as long
as it implements the required abstract methods. For instance, all route-following
implementations should compute a preferred velocity for a given agent, but the
programmer can decide on the internal details. The framework uses the factory

design pattern so that new implementations can easily be added. Users can assign
any combination of algorithms to an agent (e.g. short global paths with clearance,
MIRAN for path following, and ORCA for collision avoidance) using a settings �le.

4 http://gamma.cs.unc.edu/ORCA/; accessed January 13, 2016.

http://gamma.cs.unc.edu/ORCA/

Chapter 11: Combining VBP, MIRAN and Streams 175

A similar architecture is used for the ECM generators as described in Section 11.2.2,
so that users can easily switch between implementations.

Sequence of simulation loops. Instead of performing all computations at once for
each agent, one simulation step is subdivided into multiple loops. We �rst compute
the preferred velocity of an agent. Next, we compute an agent’s actual velocity.
Finally, we update an agents’ position. This ensures that the correctness of the
used methods does not depend on the order in which agents are being stored. The
�rst agent in the ordering uses the exact same information as the last agent, and
the result is deterministic.

Multi-threading. Each of the loops in a simulation step can easily be parallelized
because an individual agent only needs to read properties of the environment or
neighboring agents. Hence, the calculations for di�erent agents are completely
independent. The framework uses basic OpenMP5 instructions to automatically
divide multiple agents over multiple threads, without having to lock parts of the
code to prevent con�icts and deadlocks between threads.

API / Library. The framework has also been built as a Windows library (DLL) with
a number of basic API functions such as loading an environment, computing the
ECM, or adding an agent. The API function that performs a single simulation step
�lls an array of wrapper objects (C structs) that contain the new positions and ori-
entations of each agent, and it returns a pointer to this array. If an external program
is linked to the DLL and de�nes the exact same wrapper object, both programs can
share the array. Using this technique, we have linked our DLL to the Unity3D game
engine6 to simulate moving crowds in 3D. Examples of such a 3D visualization can
be seen in the videos for our Stream model7 as described in Chapter 9 and for the
SGN method8 as described in Chapter 10. The Pedestrian Dynamics crowd analysis
software9 uses our framework in a similar fashion.

11.2.5 | Visibility checks

Some of the novel methods (MIRAN, Stream, and SGN) that we have presented in
this thesis require e�cient visibility checks between two points in a virtual envir-
onment. For all methods that assume an agent to be represented as a disk, these
checks also require that an agent’s radius is taken into account. We have argued
that the methods themselves do not depend on a particular data structure as long
as the given data structure supports such checks. We now discuss how visibility

5 OpenMP; http://openmp.org/; accessed January 13, 2016.
6 Unity3D; http://www.unity3d.com/; accessed January 13, 2016.
7 https://youtu.be/XSusPwT81pI ; accessed January 13, 2016.
8 https://youtu.be/nuGyOLW_6eE ; accessed January 13, 2016.
9 Pedestrian Dynamics; InControl Simulation Solutions;

http://www.pedestrian-dynamics.com/; accessed January 13, 2016.

http://openmp.org/
http://www.unity3d.com/
https://youtu.be/XSusPwT81pI
https://youtu.be/nuGyOLW_6eE
http://www.pedestrian-dynamics.com/

176 Chapter 11: Combining VBP, MIRAN and Streams

checks are implemented in the ECM framework, which we have omitted when de-
scribing the methods in their corresponding chapters. Throughout this section, we
let n be the total number of obstacle vertices in the environment.

For a given query point p, we would like to know whether point p is visible from
an agent’s current position x. There are two types of visibility checks that we want
to perform: The �rst type is point-point visibility, for which only the straight-line
segment between x and p needs to be fully contained in the traversable space of the
environment. The second type is disk-point visibility, for which the entire capsule
shape (see Chapter 7), which is induced by a sliding disk from x to p, needs to be
fully contained in the traversable space of the environment. Both types of visibility
checks are performed in the same way, where the �rst type can be seen as a special
case of the second type with a disc radius of 0 around x.

The �rst step for determining the visibility of p from x is to perform a point-location
query for x. This point-location query yields the correct ECM cell in which x is be-
ing contained. To answer such point-location queries, a regular grid is initially
computed and overlain after the ECM has been constructed. Each cell in this grid
then stores pointers to all ECM cells that intersect the grid cell. To this end, we
iterate over the O(n) many ECM cells and add a pointer to an ECM cell from each
grid cell that is being intersected by it. This can be done in O(1) time per inter-
sected grid cell, so the time needed for this step depends on the overall number of
intersected grid cells, which again depends on the resolution of the grid. With this
point-location grid, we can then �nd the correct ECM cell in which x is contained
in O(k) time, where k is the number of ECM cells that intersect a grid cell.

The second step for determining the visibility of p from x is to trace the ECM struc-
ture and traverse all ECM cells that are intersected by the straight-line segment
between x and p. We start with the ECM cell that contains x, which we determine
using the point-location grid in the �rst step. Since each ECM cell has only con-
stant complexity [31], we can �nd in O(1) time the point q where the line segment
between x and p intersects the boundary of the current ECM cell, if such a q exists.
If not, we know that p is in the same cell as x. For a point-based agent with no
radius, we can directly conclude that p and x are mutually visible. If q does exist,
we do the following: Let o be the closest obstacle, which induces the current ECM
cell. We then have to compute the point s on the sub-segment between x and q
that minimizes the distance to (the boundary of) o. We then have to check whether
the shortest distance from s to o is smaller than the agent’s radius or not. For the
special case of a point-based agent with no radius, it su�ces to check whether the
point q itself is an obstacle point or not. If the distance between s and o is bigger
than the agent’s radius, we know that the agent does not intersect any obstacles
when moving from x to q. We can then iterate the previous steps inside the next
adjacent ECM cell, for which q takes over the role of x. When this process does not
terminate due to an agent being too large to �t through a particular ECM cell, we
�nally �nd the ECM cell that contains p. We then have to do a �nal check whether
the distance between p and its closest obstacle o is smaller than the agent’s radius

Chapter 11: Combining VBP, MIRAN and Streams 177

or not. This last check is needed to determine whether the agent would intersect
o if it were located on p (and consequently p would not be visible with respect to
disk-point visibility).

Overall, with a point-location grid as described above, a visibility check in the ECM
structure can be performed in O(k) time, where k is the number of ECM cells that
are intersected by the straight-line segment between the query points. In theory,
there can be O(n) many intersected ECM cells, when the environment is one long
corridor with query points at the opposite ends. In practice, however, the number
of intersected ECM cells is usually small compared to the total number of ECM cells.

11.3 | Experiments

In this section, we demonstrate the capabilities of the ECM software using two large
environments: City, a 2D footprint of a virtual city, and Station, a multi-layered
model of a train station in the Netherlands. Numerical data on the complexity of
the environments and their ECMs can be found in Table 11.1. Both environments
and their ECMs are visualized in Figure 11.4. All experiments were performed on a
Windows 7 PC with a 3.20 GHz Intel i7− 3930K CPU, an NVIDIA GeForce GTX
680 GPU, and 16 GB of RAM. In general, only one thread was used, except in the
�nal experiment which shows the bene�t of multi-threading.

Environment Geometry ECM
O V Size (m) V E A

City 184 2098 500× 500 1444 1623 6310
Station 568 1800 153× 111 660 768 2804

Table 11.1: The Geometry columns show the number of obstacles (O), their combined num-
ber of vertices (V), and the width and height of the environment (in meters). The ECM

columns show the complexity of the ECM: the number of vertices (V), edges (E), and an-
notations (A) as the number of points with closest-obstacle information.

Environment Constr. time (ms)
Vroni Boost GPU

City 84 [1.3] 141 [1.7] 554 [4.6]
Station 368 [4.4] 381 [5.2] 1266 [8.1]

Table 11.2: The construction times for the ECM using all three implementations. Running
times were averaged over 10 runs each, and the standard deviations are shown in square
brackets.

178 Chapter 11: Combining VBP, MIRAN and Streams

Figure 11.4: The two environments used in our experiments. Top: The city environment.
Bottom: The station environment. The medial axis is shown in blue; closest-point annota-
tions are shown in orange. For the Station environment, only the two main layers are shown.
Layer connections are displayed in red.

We have computed the ECM for both environments using all three ECM-generator
implementations: the Vroni-based generator, the Boost-based generator, and the
GPU-based generator. For the GPU-based method, we used a resolution of 4000×
4000 pixels. All computations were repeated 10 times. The results are shown Table
11.2. This table shows that the Vroni-based implementation is the fastest: on aver-
age, it computes the ECM ofCity in 84 ms, and the ECM of Station in 368 ms. Hence,
even for large multi-layered environments, the ECM is generated well within a
second, which allows our framework to be integrated into a modeling tool with
interactive feedback.

Next, we have dynamically inserted 100 obstacles into both environments at ran-
dom free positions. After an insertion, the ECM is updated along with its point-
location grid structure (see Section 11.2.5), such that agents are able to use the
updated navigation mesh in subsequent simulation steps. For simplicity, we only
added square obstacles measuring 2 × 2 meters. Note, however, that the insertion

Chapter 11: Combining VBP, MIRAN and Streams 179

Environment Dynamic Visibility (ms) Indicative
insertions (ms) routes (ms)

City 3.70 [0.38] 0.15 [0.06] 1.17 [0.70]
Station 1.25 [0.21] 0.10 [0.07] 0.85 [0.47]

Figure 11.5: Results of three experiments. Standard deviations are shown in square brackets.
The Dynamic insertions column displays the time to dynamically insert a square obstacle into
the ECM, averaged over 100 obstacles. The Visibility column displays the time to compute
a visibility polygon, averaged over 1, 000 random positions. The Indicative routes column
denotes the time to compute a short indicative route with clearance, averaged over 1, 000
pairs of random start and goal positions.

algorithm supports any convex polygon that does not intersect existing geometry
[140]. Figure 11.7 (top-left) shows the obstacles and the resulting ECM for City. The
insertion times (for updating both the ECM and the point-location grid structure)
are shown in Table 11.5. On average, an insertion took 3.70 ms in City and 1.25 ms
in Station. The running times in City are higher because this environment is more
complex in the sense that a dynamic update a�ects more ECM cells on average.
These results indicate that the ECM can e�ciently model dynamically changing
environments, e.g. with bridges that may collapse, or parked vehicles that tempor-
arily block roads. More experiments on the dynamic ECM have been conducted by
van Toll et al. [140].

11.3.1 | Computing visibility polygons

In addition to point-point and disk-point visibility checks as described in Section
11.2.5, the ECM software can also compute the 2D visibility polygon V (p) for any
given point p in (traversable space of the) environment. In this context, we assume
that all surfaces are �at and the only occluding features are the obstacle polygons.
The method also works in multi-layered environments, where the visibility polygon
may cover multiple layers. Note that this does not correspond to actual 3D visibil-
ity, but it can be rather seen as 2.5D visibility, which is useful for crowd simulation
of 2D surfaces (e.g. for letting agents respond to visual input in multi-layered en-
vironments).

The visibility polygon can be used to model what agents can visually perceive, e.g.
to let them respond to an event in the environment when they see it. To this end
– instead of keeping track of the dynamically changing visibility polygon for each
agent – we can compute the visibility polygon V (a) for a particular and stationary
area a (e.g. for the center point of a newly inserted obstacle that blocks a previously
open passage) and keep track of when an agent enters V (a) during the simulation.
Similar to the visibility checks for single query points as described in Section 11.2.5,

180 Chapter 11: Combining VBP, MIRAN and Streams

the visibility polygon is computed by traversing the ECM cells in an ordered man-
ner. As such, the running time depends on the number of cells that V (p) intersects.

We computed the visibility polygon for 1, 000 random query points in both envir-
onments. On average, the algorithm took 0.15 ms in the City environment and
0.10 ms in the Station environment. We conclude that the ECM framework can
easily answer visibility queries for a large number of agents in real-time. Figure
11.7 (top-right) shows a number of visibility polygons in the City environment.

11.3.2 | Computing indicative routes

We have computed global indicative routes for 1, 000 pairs of random start and
goal positions per environment. To compute such a route, we �rst performed an
A∗ search [42] on the ECM graph structure, which yields a shortest path along the
medial axis. We then extract an indicative route through the corridor around this
path. In Section 11.1, we stated that there are multiple options for computing an
indicative route through a corridor, such as a shortest route with clearance, or a
route with a side preference with respect to the medial axis. Since these options
have comparable complexity, showing only one option is su�cient for giving a
general indication of global-planning times. For this experiment, we have used the
shortest-route option [31] with a preferred clearance of 0.5 m.

On average, global planning takes 1.17 ms in the City environment and 0.85 ms in
the Station environment. Examples of indicative routes in the City environment are
shown in Figure 11.7 (bottom-left).

11.3.3 | Crowd simulation

To show the e�ciency of our crowd simulation software, we have generated in-
creasingly large crowds of agents in our environments. Figure 11.7 (bottom-right)
shows a crowd in theCity environment. We measured the running time of each sim-
ulation step as long as all agents were still traversing a path, i.e. up to and including
the step in which the �rst agent reached its goal. All agents received random start
and goal positions, with a minimum 2D Euclidean distance of 50 meters between
start and goal to ensure a miminum traversal time for each agent. Note that we
excluded the time required for computing the indicative routes because this aspect
was already covered in the previous experiment.

We ran all simulations using �xed timesteps of 0.1 seconds, which is a common
value in comparable crowd simulation software [63]. Thus, whenever the simula-
tion steps take at most 100 ms to compute, we say that the simulation runs in real
time. In line with real-life measurements [144], we used an agent radius of 0.24
meters and a preferred walking speed of 1.4 m/s. For path following, we used the

Chapter 11: Combining VBP, MIRAN and Streams 181

MIRAN method as described in Chapter 6 with the modi�cations for computing
candidate attraction points as described in Chapter 7. The MIRAN parameters we
used were a sampling distance of 1 m and a shortcut parameter of 5 m. We used
the vision-based collision algorithm by Moussaïd et al. [88] because – similar to
our experiments for the Stream model in Chapter 9 – it yielded the best results in
most of the tested scenarios. However, since collision avoidance is inherently the
most expensive phase (because it requires agents to compute nearest-neighbor in-
formation on the �y), we have run this experiment both with and without collision
avoidance.

In addition, we have run all simulations in the City environment with and without
multi-threading. As described in Section 11.2.4, a step of the simulation loop consists
of multiple substeps: computing the preferred velocities of all agents, computing the
actual velocities to avoid collisions, and updating all positions using these velocities.
We used OpenMP to divide the workload of each substep over a total of 8 threads.
Note that the three substeps are still executed in sequence to maintain consistency
among agents.

When collision avoidance is disabled, the running time of a simulation step scales
linearly with the number of agents, as indicated by the red line in Figure 11.6 (top).
For example, with 100, 000 agents, a step took 82 ms on average. With one million

agents, it is worth noting that the framework used 2.3 GB of memory in this scen-
ario, which is a small memory footprint considering the size of the crowd. A crowd
of this size cannot be simulated in real-time yet, but multi-threading techniques
and hardware improvements will make this possible in the future. Using 8 parallel
threads greatly improves the running times, as indicated by the green line in Figure
11.6 (top). The simulation does not become 8 times as fast, because it is not possible
to parallelize the entire simulation step, i.e. the three subtasks need to be performed
sequentially. Still, we achieved a speed-up factor of 3 to 4 for large crowds. For in-
stance, simulating 200, 000 agents took 50 ms per step on average. Future work
will show how the number of threads in�uences the improvement ratio.

Figure 11.6 (bottom) shows the running times for the same scenario with collision
avoidance turned on. Note that this �gure has a di�erent scale than Figure 11.6 (top)
on both axes. The reason is that we could not model the largest numbers of agents
because the environment became too congested. Simulating up to a million agents
is only feasible in a much larger environment. A multi-threaded simulation with
10, 000 agents requires 63 ms per step on average. The computation time appears
to scale quadratically with the number of agents. This is most likely due to the grid
used for nearest-neighbor queries, which has cells of a �xed size. If large clusters of
agents appear in one cell, agents need to evaluate many potential neighbors. A data
structure such as a kd-tree could overcome this problem, although such a structure
would need to be rebuilt in each simulation step. We leave a comparison of these
data structures for future work.

182 Chapter 11: Combining VBP, MIRAN and Streams

In conclusion, the ECM framework can simulate tens of thousands of agents in real-
time, including collision avoidance. Many simulations will include more steps than
the ones we measured, such as global (re-)planning and high-level planning. Also,
if real-time visualization is desired (such as in a game or an interactive simulation),
less time is available for the simulation itself. The details depend on the application
at hand.

11.4 | Conclusion and future work

In this chapter, we have presented the Explicit Corridor Map (ECM) framework as
an implementation of the three center levels of the �ve-level planning hiearchy as
described in Chapter 1. These three center levels comprise the geometric aspects of
navigation: global route planning, route following, and local movement. The ECM
is a navigation mesh that has many advantages over classical graph or grid repres-
entations. For instance, it enables fast and �exible planning of global paths due to
an underlying sparse graph structure. Furthermore, it supports disk-based agents
of all sizes using only one data structure, and it allows fast collision checking with
obstacles due to its cell decomposition. Experiments show that the ECM software
allows many operations at interactive rates, and that it can simulate large crowds
in complex 2D and multi-layered environments in real-time.

For future work, one possible extension of the framework is to take agents of dif-
ferent heights into account. For instance, big vehicles may not �t through small
tunnels that regular agents can use. Another challenging research topic is the val-

idation of crowd simulation models, i.e. measuring how closely the simulated be-
havior resembles real-life behavior. Validation software for the steering aspects of
a crowd simulation does exist [120], and the Menge framework by Curtis et al. [18]
can be seen as a �rst attempt to provide a uni�ed framework to validate crowd-
simulation models. However, the question of how to compare higher-level aspects
of simulated crowds to real-life crowds is still largely open.

Chapter 11: Combining VBP, MIRAN and Streams 183

0

100

200

300

400

500

600

700

800

900

1000

 0 100 200 300 400 500 600 700 800 900 1000

av
g.

 r
u

n
n

in
g

ti
m

e
p

er
 s

te
p

 (
m

s)

number of agents (x 1,000)

City, 1 thread
City, 8 threads

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 0 10 20 30 40 50 60 70 80 90 100

av
g.

 r
u

n
n

in
g

ti
m

e
p

er
 s

te
p

 (
m

s)

number of agents (x 1,000)

City, 1 thread
City, 8 threads

Figure 11.6: Running times of crowd simulations in the City environment. The horizontal
axis shows the number of agents (×1, 000); the vertical axis shows the average running time
of a simulation step, which models 100 milliseconds of simulation time. Top: Without colli-
sion avoidance, the running time is proportional to the number of agents. Multi-threading
improves the results by a factor of 3 to 4. Bottom: With collision avoidance, the running time
increases at a higher rate.

184 Chapter 11: Combining VBP, MIRAN and Streams

Figure 11.7: Experiments in the City environment. Top-Left: We have dynamically inser-
ted 100 square obstacles (shown in black) at random positions. The updated medial axis is
shown in blue. Top-Right: Visibility polygons. Query points are shown in black; their visib-
ility polygons are shown in di�erent colors. Bottom-Left: Examples of 500 indicative routes
(shown in blue) between random start and goal positions, computed by performing A* on the
ECM and computing a short route within the resulting corridor. Bottom-Right: A crowd of
5, 000 agents, shown as orange disks. Agents have been enlarged for illustrative purposes.

Chapter 12

Conclusion Part III

High-level planning

Global route planning

simulation loop

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

visual cues,

Navigation

events

Environment

mesh

Weighted
regions

This chapter concludes the third part of this thesis: crowd simulation. We have
discussed the problem of coordinating virtual crowds in high-density scenarios, as
well as maintaining socially-friendly formations and the coherence of small social
groups.

In Chapter 9, we have presented Stream, a novel crowd-simulation model that com-
bines the advantages of agent-based and �ow-based paradigms while relying only
on local information. The core idea of Stream is to let each agent perceive an aver-
age stream velocity of the perceived velocities of neighboring agents in its vicinity.
We then compute a new velocity for that agent, which is an interpolation of the
agent’s currently preferred velocity (under the assumption that no other agents are
present) and the perceived stream velocity. This interpolation is based on an agent’s
incentive, which is a dynamically changing value that models an agent’s willingness
to comply with the local crowd �ow. The incentive is based on factors such as local
crowd density, deviation from the agent’s currently preferred direction, the travel
time spent so far, and a base-incentive value called internal motivation.

186 Chapter 12: Conclusion Part III

As we have shown in our experiments, the Stream model reduces the occurrence
of deadlock situations in high-density scenarios such as a narrow hallway with a
large number of agents. In such scenarios, the model improves coordination among
agents and yields the formation of lanes. This usually comes at the cost of slightly
increased travel times and travel distances because coordinating agents do not al-
ways follow the shortest path to their goals. Another contribution of Stream, which
we have demonstrated in a corresponding video1, is that internal motivation is a
�xed parameter that can be set to simulate various behavioral pro�les. Such pro-
�les can be a strolling person in a shopping mall, who is not in a hurry and thus
willing to comply with the local crowd �ow. Another example is a policeman in a
riot scenario, who might need to push through a crowd that is moving in opposite
direction.

In Chapter 10, we have presented Social Groups and Navigation (SGN), a method
that enables the simulation of small pedestrian groups. SGN is based on the social-
force model by Moussaïd et al. [89], which we have modi�ed and extended to gen-
erate more socially-friendly and more coherent group behavior. To this end, we
de�ne two quantitative metrics: coherence and sociality. In addition, SGN incorpor-
ates social-group behavior on the global-planning level by letting a group follow a
shared global path, and by letting agents wait for each other when coherence is lost
during the simulation. This waiting behavior to re-establish a group’s coherence is
based on the local crowd density around the waiting members: Only when crowd
density is low, group members will wait for their fellow members to catch up with
them.

We have shown experimentally that SGN yields more coherent and socially-friendly
group behavior than a combination of the social-force model by Moussaïd et al.
[89] with the collision-avoidance method by Moussaïd et al. [88]. Furthermore, we
have compared SGN with existing ground-truth data of a real-world evacuation
experiment [80]. We concluded that SGN is in line with the real-world observation
[150] that evacuation times increase when the group sizes increase. Lastly, we have
shown that SGN yields only a small increase in average running times over the
simulation of individual agents. When executing the method in parallel on 4 CPU
cores and a total of 8 threads, one simulation step was performed about 4.5 times
as fast as with a serial execution. As a consequence, a parallel execution allows the
simulation of a few thousand agents at interactive rates on current hardware.

The work that we have presented in Part III has its limitations, which give rise
to interesting future-research questions. We have shown that Stream reduces the
occurrence of deadlocks in narrow-hallway environments and similar areas within
a virtual scene (such as the virtual university that we show in the corresponding
video). However, Stream still does not fully resolve problems that are caused by
the global-route planning step of the hierarchy. Examples of such problems are
crowd congestion near obstacle corners when a large number of agents is trying to

1 https://youtu.be/XSusPwT81pI (accessed January 13, 2016)

https://youtu.be/XSusPwT81pI

Chapter 12: Conclusion Part III 187

follow a shortest path around obstacle polygons, or agents that start in a circular
arrangement and try to walk to the opposite position on the circle. The common
problem in both these examples is that large numbers of agents try to follow global
paths that all intersect in a particular point or small area at the same point in time
during the simulation. Overcoming these problems is therefore an open question
related to global path planning rather than local-movement models such as Stream.

Regarding social-group behavior, it would be interesting to further validate our
SGN method by comparing it against more social-group methods. It would also
be interesting to collect and use more ground-truth data from real-life experiments
and see how SGN performs in this regard. Such ground-truth data could also be
used to derive more behavioral features from the real world, similar to the waiting
behavior we have already incorporated in the method. Another conceptual future
extension could be to allow larger groups and incorporate a recursive approach for
simulating dynamically changing subgroups that can merge and split.

Chapter 13

Overall conclusion and
future research

All work that we have presented in this thesis contributes to one single long-term
goal: The realistic simulation of the navigational aspects of autonomous virtual
humans, both for individual agents and large crowds. A general and mathematically
exact formulation of what we mean by ‘realistic’ cannot be given because it heavily
depends on the context. Formulating it within a particular context will always be
a simpli�cation of real-world behavior and omit factors that are less relevant for
a given application. As such, the novel algorithms that we have presented each
pick a particular aspect of real-world human navigation and aim at letting these
aspects emerge from a set of geometric rules and properties. In the remainder of
this conclusion chapter, we discuss the overall limitations of the contributions made
in this thesis and of current approaches in crowd-simulation research in general.
From these limitations, we derive some interesting challenges for future research.

One interesting question in the context of this thesis is how ‘realistic’ the results
are when we use particular combinations of the described methods. The Expli-

cit Corridor Map framework [142], in which all methods have been developed, al-
lows the combination of methods from all layers of the planning hierarchy. Future
research should indicate whether this free-combination approach has limitations,
which methods do not work well with others, and how the order in which particular
sub-steps are executed in�uences the outcome.

Another aspect that will a�ect future research is the fact that the underlying plan-
ning hierarchy is based on the concept of indicative routes. The work in this thesis
shows that we can gain promising results from subdividing the planning hierarchy
into computing a rough indication of a preferred path �rst, and then re�ning this
indicative route. However, there are still problems that are caused by the in�ex-
ibility of that approach, e.g. crowd congestion near obstacle corners when a large
number of agents uses a shortest path (with clearance) as an indicative route. We
believe that the future lies in overcoming the concept of a �xed indicative route and
take it to the next level by either allowing it to dynamically change or by using a
two-dimensional indicative surface instead of a one-dimensional indicative route.

Second, some of the methods that we discussed – such as the VBP and MIRAN
methods in Chapters 4 and 6, respectively – take a set of weights for the weighted

190 Chapter 13: Future Research

regions as an input. While the methods themselves do not aim at �nding concrete
weight values, the right choice of weight values still has a signi�cant impact on the
results that we can obtain when using these methods. As such, an interesting future
research direction would be to derive methods that automate the process of �nding
reasonable weights. Deep-learning techniques or neural-network approaches could
be used to automatically learn weight values from recorded video data of real-world
locations, or from recorded user-behavior in virtual environments.

When we look even further into the future, the current focus in crowd simulation
literature on aspects that can be modeled via geometric rules will certainly have
its limitations, too. Simulating human behavior in a virtual environment – be it
walking behavior and navigation or any other aspect of human life – essentially
means understanding and mimicking real-world human behavior in its full com-
plexity. In the long run, it involves more than mathematical modeling and com-
bining velocity-based steering behaviors. In this context, crowd simulation can
essentially be seen as a arti�cial-intelligence (AI) research, even though typical AI
paradigms and learning techniques are not yet the focus in the �eld as a whole.
Furthermore, research �elds that study human nature – such as psychology, soci-
ology, or anthropology – should be involved in this long-term challenge to a great
extent. Questions such as how cultural di�erences in�uence the walking behavior
of a crowd cannot be answered without such expertise. Over the past years, the still
comparably young �eld of crowd-simulation research has started to acknowledge
the need for �nding proper ways to validate its models [18, 121]. However, how
to validate a crowd-simulation model is still an open research question, which is
highly challenging and eventually interdisciplinary in its nature.

Overall, it can be said that the �eld of crowd simulation is gaining more and more
popularity in both the academic world and in society and the media as a whole.
Crowd simulations have been used to validate environments with respect to safety
of real-world places and events1 for more than a decade now [19], and we believe
this trend to continue while the simulations are becoming more reliable. Due to
the challenging nature of the �eld and because simulated crowds are attractive and
fascinating to watch for both experts and non-experts, the �eld of crowd simulation
will certainly stay a ‘hot topic’ in the decades to come.

1 For instance, the work presented in this thesis has been used to prepare for the Grand Depart of
the Tour de France, which happened in Utrecht in July 2015.

Bibliography

[1] L. Aleksandrov, H. Djidjev, H. Guo, A. Maheshwari, D. Nussbaum, and J.-R.
Sack. Algorithms for approximate shortest path queries on weighted poly-
hedral surfaces. Discrete & Computational Geometry, 44:762–801, 2010.

[2] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack. An epsilon-
approximation for weighted shortest paths on polyhedral surfaces. In Pro-

ceedings of the 6th Scandinavian Workshop on Algorithm Theory (SWAT ’98),
pages 11–22. Springer-Verlag, 1998.

[3] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining approximate
shortest paths on weighted polyhedral surfaces. Journal of the ACM, 52(1):25–
53, 2005.

[4] G. Antonini, M. Bierlaire, and M. Weber. Discrete choice models of pedestrian
walking behavior. Transportation Research Part B: Methodological, 40(8):667–
687, 2006.

[5] C. Bajaj. The algebraic degree of geometric optimization problems. Discrete
& Computational Geometry, 3:177–191, 1988.

[6] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,
V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic.
Interaction ruling animal collective behavior depends on topological rather
than metric distance: Evidence from a �eld study. Proceedings of the National
Academy of Sciences, 105(4):1232–1237, 2008.

[7] B. van Basten, J. Egges, and R. Geraerts. Combining path planners and motion
graphs. Computer Animation and Virtual Worlds, 22:59–78, 2011.

[8] M. d. Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geo-

metry: Algorithms and Applications. Springer-Verlag, 3rd ed. edition, 2008.

[9] Y. Björnsson, M. Enzenberger, R. Holte, J. Schaejfer, and P. Yap. Comparison
of di�erent grid abstractions for path�nding on maps. In Proceedings of the

18th International Joint Conference on Arti�cial Intelligence)IJCAI’03), pages
1511–1512. Morgan Kaufmann Publishers Inc., 2003.

[10] J. C. Butcher. Numerical Methods for Ordinary Di�erential Equations. John
Wiley & Sons, 2008.

192 Bibliography

[11] J.-L. D. Carufel, C. Grimm, A. Maheshwari, M. Owen, and M. Smid. Unsolv-
ability of the weighted region shortest path problem. In European Workshop

on Computational Geometry (EuroCG), pages 65–68, 2012.

[12] D. Chen, R. Szczerba, and J. J. Uhran. Planning conditional shortest paths
through an unknown environment: a framed-quadtree approach. In Pro-

ceedings of the 8th IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS ’95), volume 3, pages 33–38, 1995.

[13] S.-W. Cheng, J. Jin, A. Vigneron, and Y. Wang. Approximate shortest ho-
motopic paths in weighted regions. In O. Cheong, K.-Y. Chwa, and K. Park,
editors, Algorithms and Computation, volume 6507 of Lecture Notes in Com-

puter Science, pages 109–120. Springer Berlin Heidelberg, 2010.

[14] J. Chestnutt, K. Nishiwaki, J. Ku�ner, and S. Kagami. An adaptive action
model for legged navigation planning. In Proceedings of the 7th IEEE-RAS

International Conference on Humanoid Robots, pages 196–202, 2007.

[15] J. S. Coleman and J. James. The equilibrium size distribution of freely-forming
groups. Sociometry, 24(1):36–45, 1961.

[16] M. Costa. Interpersonal distances in group walking. Journal of Nonverbal

Behavior, 34(1):15–26, 2010.

[17] S. Curtis, A. Best, and D. Manocha. Menge: A modular framework for sim-
ulating crowd movement. Technical report, University of North Carolina at
Chapel Hill, 2014.

[18] S. Curtis, J. Snape, and D. Manocha. Way portals: E�cient multi-agent nav-
igation with line-segment goals. In Proceedings of the 2012 ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games, pages 15–22. ACM, 2012.

[19] W. Daamen. SimPed: A pedestrian simulation tool for large pedestrian
areas. In Proceedings of the 2002 EuroSIW (European Simulation Interoper-

ability Workshop), 2002.

[20] M. de Berg, J. Matoušek, and O. Schwarzkopf. Piecewise linear paths among
convex obstacles. Discrete and Computational Geometry, 14:9–29, 1995.

[21] E. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, 1959.

[22] P. Drews, D. Macharet, and M. Campos. A terrain-based path planning for
mobile robots with bounded curvature. In Proceedings of 2012 the Robotics

Symposium and Latin American Robotics Symposium (SBR-LARS), pages 202–
207, 2012.

[23] D. Dummit and R. Foote. Abstract Algebra. John Wiley & Sons, 2003.

Bibliography 193

[24] D. Ferguson and A. Stentz. Using interpolation to improve path planning:
The �eld d* algorithm. Journal of Field Robotics, 23:79–101, 2006.

[25] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of the-
orem proving to problem solving. Arti�cial Intelligence, 2(3—4):189–208, 1971.

[26] P. Fiorini and Z. Shiller. Motion planning in dynamic environments using
velocity obstacles. The International Journal of Robotics Research, 17(7):760–
772, 1998.

[27] N. Fridman, G. A. Kaminka, and A. Zilka. The impact of culture on crowd dy-
namics: An empirical approach. In Proceedings of the 2013 International Con-

ference on Autonomous Agents and Multi-agent Systems (AAMAS ’13), pages
143–150. International Foundation for Autonomous Agents and Multiagent
Systems, 2013.

[28] J. J. Fruin. Pedestrian Planning and Design. Metropolitan Association of Urban
Designers and Environmental Planners, 1971.

[29] J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling: knowledge, reason-
ing and planning for intelligent characters. In Proceedings of the 26th Annual

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99),
pages 29–38, 1999.

[30] H. J. Q. García and L. Garrido. Towards exploration of unknown dynamic
worlds using multiple robots. In Proceedings of the 6th Mexican International

Conference on Arti�cial Intelligence (MICAI ’07), Special Session, pages 407–
417, 2007.

[31] R. Geraerts. Planning Short Paths with Clearance using Explicit Corridors.
In Proceedings of the 2010 IEEE International Conference on Robotics and Auto-

mation, pages 1997–2004, 2010.

[32] R. Geraerts and M. Overmars. Sampling and node adding in probabilistic
roadmap planners. Journal of Robotics and Authonomous Systems (RAS),
54:165–173, 2006.

[33] R. Geraerts and M. Overmars. The corridor map method: Real-time high-
quality path planning. In Proceedings of the 2007 IEEE International Conference

on Robotics and Automation, pages 1023–1028, 2007.

[34] R. Geraerts and E. Schager. Stealth-based path planning using corridor maps.
In Proceedings of the 23rd International Conference on Computer Animation

and Social Agents (CASA 2010), 2010.

[35] A. Gheibi, A. Maheshwari, and J.-R. Sack. Weighted region problem in ar-
rangement of lines. In Proceedings of the 25th Canadian Conference on Compu-

tational Geometry (CCCG 2013). Carleton University, Ottawa, Canada, 2013.

194 Bibliography

[36] S. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press,
2007.

[37] S. Ghosh and D. M. Mount. An output sensitive algorithm for computing
visibility graphs. SIAM Journal on Computing, 20:888–910, 1991.

[38] Y. Guo, L. Parker, D. Jung, and Z. Dong. Performance-based rough terrain
navigation for nonholonomic mobile robots. IEEE Industrial Electronics Soci-

ety, pages 2811–2816, 2003.

[39] Y. Guo, M. Yang, and J. Cheng. Knowledge-inducing global path planning for
robots in environment with hybrid terrain. International Joirnal of Advanced
Robotics Systems, pages 239–248, 2010.

[40] S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. C. Lin, and D. Manocha.
Pledestrians: A least-e�ort approach to crowd simulation. In Proceedings of

the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 119–128. Eurographics Association, 2010.

[41] D. Harabor and A. Botea. Hierarchical path planning for multi-size agents in
heterogeneous environments. Computational Intelligence and Games, pages
258–265, 2008.

[42] P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determ-
ination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100 –107, 1968.

[43] D. Helbing, L. Buzna, A. Johansson, and T. Werner. Self-organized pedestrian
crowd dynamics: Experiments, simulations, and design solutions. Transport-
ation Science, 39(1):1–24, 2005.

[44] D. Helbing, I. J. Farkas, P. Molnar, and T. Vicsek. Simulation of pedestrian
crowds in normal and evacuation situations. Pedestrian and Evacuation Dy-

namics, 21:21–58, 2002.

[45] D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Phys-
ical Review E, 51(5):4282–4286, 1995.

[46] D. Helbing, P. Molnar, I. J. Farkas, and K. Bolay. Self-organizing pedestrian
movement. Environment and Planning B, 28(3):361–384, 2001.

[47] M. Held. Vroni and arcvroni: Software for and applications of voronoi dia-
grams in science and engineering. In Proceedings of the 8th International Sym-

posium onVoronoi Diagrams in Science and Engineering (ISVD 2011), pages 3–
12, June 2011.

[48] K. Ho�, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast computation of
generalized voronoi diagrams using graphics hardware. In Proceedings of

the 26th Annual Conference on Computer Graphics and Interactive Techniques,

Bibliography 195

SIGGRAPH ’99, pages 277–286. ACM Press/Addison-Wesley Publishing Co.,
1999.

[49] S. Hoogendoorn. Microscopic simulation of pedestrian �ows. In Proceedings

of the 82nd Annual Meeting at the Transportation Research Board, pages 1–11,
2003.

[50] T. Huang, M. Kapadia, N. Badler, and M. Kallmann. Path planning for co-
herent and persistent groups. In Proceedings of the 2014 IEEE International

Conference on Robotics and Automation (ICRA 2014), pages 1652–1659, May
2014.

[51] R. L. Hughes. The �ow of human crowds. Annual Review of Fluid Mechanics,
35(1):169–182, 2003.

[52] N. Jaklin, A. Cook IV, and R. Geraerts. Real-time path planning in hetero-
geneous environments. Computer Animation and Virtual Worlds (CAVW),
24:285–295, 2013.

[53] N. Jaklin and R. Geraerts. Navigating through virtual worlds: From single
characters to large crowds. In D. Russel and J. M. La�ey, editors, Handbook
of Research on Gaming Trends in P-12 Education, chapter 25, pages 527–554.
IGI Global, 2015.

[54] N. Jaklin, A. Kremyzas, and R. Geraerts. Adding sociality to virtual pedestrian
groups. In 21st ACM Symposium on Virtual Reality Software and Technology

(VRST 2015), pages 163–172, 2015.

[55] N. Jaklin, M. Tibboel, and R. Geraerts. Computing high-quality paths in
weighted regions. In Proceedings of the 7th International ACM SIGGRAPH

Conference on Motion in Games (MIG 2014), pages 77–86, 2014.

[56] N. Jaklin, W. van Toll, and R. Geraerts. Way to go – a framework for multi-
level planning in games. In Proceedings of the 3rd International Planning in

Games Workshop (ICAPS’13 | PG2013), pages 11–14, 2013.

[57] J. James. The Distribution of Free-Forming Small Group Size. American So-

ciological Review, 18(5):569–570, 1953.

[58] M. Kallmann. Navigation queries from triangular meshes. In Proceedings of

the 3rd international conference on Motion in Games (MIG 2010), pages 230–
241. Springer-Verlag, 2010.

[59] M. Kallmann. Shortest paths with arbitrary clearance from navigation
meshes. In Proceedings of the 9th Eurographics / SIGGRAPH Symposium on

Computer Animation (SCA 2010), 2010.

196 Bibliography

[60] A. Kamphuis and M. Overmars. Finding paths for coherent groups using
clearance. In Proceedings of the 3rd ACM SIGGRAPH/Eurographics Symposium

on Computer Animation (SCA 2004), pages 19–28, Aire-la-Ville, Switzerland,
Switzerland, 2004. Eurographics Association.

[61] A. Kamphuis, M. Rook, and M. Overmars. Tactical path �nding in urban en-
vironments. In Proceedings of the 1st International Workshop on Crowd Simu-

lation, pages 51–60, 2005.

[62] S.-J. Kang, Y. Kim, and C.-H. Kim. Live path: adaptive agent navigation in the
interactive virtual world. The Visual Computer, 26(6-8):467–476, June 2010.

[63] I. Karamouzas, R. Geraerts, and M. Overmars. Indicative routes for path plan-
ning and crowd simulation. In Proceedings of the 4th International Conference

on Foundations of Digital Games, pages 113–120, 2009.

[64] I. Karamouzas and M. Overmars. Simulating human collision avoidance us-
ing a velocity-based approach. In Proceedings of the 7th Workshop on Virtual

Reality Interactions and Physical Simulations (VRIPHYS 10), pages 125–134.
Eurographics Association, 2010.

[65] I. Karamouzas and M. Overmars. Simulating and evaluating the local be-
havior of small pedestrian groups. IEEE Transactions on Visualization and

Computer Graphics, 18(3):394–406, 2012.

[66] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional con�guration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, Aug 1996.

[67] K. Kedem, R. L. andJ. Pach, and M. Sharir. On the union of jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete

and Computational Geometry, 1:59–70, 1986.

[68] J. Kelly, A. Botea, and S. Koenig. O�ine planning with Hierarchical Task
Networks in video games. In Proceedings of the 2008 Arti�cial Intelligence and

Interactive Digital Entertainment Conference, pages 60—-65, 2008.

[69] W. Kerr and D. Spears. Robotic simulation of gases for a surveillance task. In
Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 2905–2910, 2005.

[70] A. Kimmel, A. Dobson, and K. Bekris. Maintaining team coherence under the
velocity obstacle framework. In Proceedings of the 11th International Confer-

ence on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’12,
pages 247–256, Richland, SC, 2012. International Foundation for Autonom-
ous Agents and Multiagent Systems.

[71] S. Koenig and M. Likhachev. Fast replanning for navigation in unknown
terrain. IEEE Transactions on Robotics, 21:354–363, 2005.

Bibliography 197

[72] G. Köster, F. Treml, M. Seitz, and W. Klein. Validation of crowd models in-
cluding social groups. In U. Weidmann, U. Kirsch, and M. Schreckenberg,
editors, Pedestrian and Evacuation Dynamics 2012, pages 1051–1063. Springer
International Publishing, 2014.

[73] V. Kountouriotis, S. Thomopoulos, and Y. Papelis. An agent-based crowd be-
haviour model for real time crowd behaviour simulation. Pattern Recognition
Letters, 44(0):30 – 38, 2014.

[74] J. Laumond. Obstacle growing in a nonpolygonal world. Information Pro-

cessing Letters, 25(1):41–50, 1987.

[75] S. Lavalle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, Iowa State University, 1998.

[76] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[77] S. LaValle and J. Ku�ner. Rapidly-exploring random trees: Progress and pro-
spects. Algorithmic and Computational Robotics: New Directions, pages 293–
308, 2000.

[78] K. Lee, M. Choi, Q. Hong, and J. Lee. Group behavior from video: A data-
driven approach to crowd simulation. In Proceedings of the 6th ACM SIG-

GRAPH/Eurographics symposium on Computer animation (SCA 2007), pages
109–118, 2007.

[79] S. Lemercier, A. Jelic, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-
Rolland, S. Donikian, and J. Pettré. Realistic following behaviors for crowd
simulation. In Computer Graphics Forum, volume 31, pages 489–498, 2012.

[80] J. Liddle, A. Seyfried, B. Ste�en, W. Klingsch, T. Rupprecht, A. Winkens, and
M. Boltes. Microscopic insights into pedestrian motion through a bottleneck,
resolving spatial and temporal variations. arXiv preprint arXiv:1105.1532v1,
2011.

[81] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with Provable
Bounds on Sub-Optimality. In Proceedings of the 16th Conference on Advances

in Neural Information Processing Systems (NIPS 2003). MIT Press, 2003.

[82] W.-Y. Lo, C. Knaus, and M. Zwicker. Learning motion controllers with adapt-
ive depth perception. In Proceedings of the 11th ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (SCA 2012), pages 145–154. Eurographics
Association, 2012.

[83] B. Lowerre. The harpy speech understanding system, 1990.

[84] E. Luczak and A. Rosenfeld. Distance on a hexagonal grid. IEEE Transactions

on Computers, 25:532–533, 1976.

198 Bibliography

[85] E. Masehianm and M. Amin-Naseri. A voronoi diagram-visibility graph-
potential �eld compound algorithm for robot path planning. Journal of Field
Robotics, pages 275–300, 2004.

[86] C. Mata and J. Mitchell. A new algorithm for computing shortest paths in
weighted planar subdivisions (extended abstract), 1997.

[87] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: �nd-
ing shortest paths through a weighted planar subdivision. Journal of the

ACM, 38(1):18–73, 1991.

[88] M. Moussaïd, D. Helbing, and G. Theraulaz. How simple rules determine ped-
estrian behavior and crowd disasters. Proceedings of the National Academy of

Sciences, 108(17):6884–6888, 2011.

[89] M. Moussaïd, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz. The walk-
ing behaviour of pedestrian social groups and its impact on crowd dynamics.
PLoS ONE, 5(4):e10047, 2010.

[90] D. E. Muller and F. P. Preparata. Finding the intersection of two convex poly-
hedra. Theoretical Computer Science, 7:217–236, 1978.

[91] S. Musse and D. Thalmann. A model of human crowd behavior : Group inter-
relationship and collision detection analysis. In D. Thalmann and M. van der
Panne, editors, Computer Animation and Simulation ’97, Eurographics, pages
39–51. Springer Vienna, 1997.

[92] A. N., S. Koenig, and C. A. Tovey. Lazy theta*: Any-angle path planning and
path length analysis in 3d. In Proceedings of the 24th Conference on Arti�cial

Intelligence (AAAI 2010), 2010.

[93] B. Nagy. Finding shortest path with neighbourhood sequences in triangular
grids. In Proceedings of the 2nd International Symposium on Image and Signal

Processing and Analysis (ISPA 2001), pages 55–60. IEEE, 2001.

[94] B. Nagy. Metrics based on neighbourhood sequences in triangular grids. Pure
Mathematics and Applications, 13:259–274, 2002.

[95] B. Nagy. Shortest paths in triangular grids with neighbourhood sequences.
Journal of Computing and Information Technology, 11(2):111–122, 2003.

[96] B. Nagy. Weighted distances on a triangular grid. In Combinatorial Image

Analysis, volume 8466 of Lecture Notes in Computer Science, pages 37–50.
Springer International Publishing, 2014.

[97] R. Narain, A. Golas, S. Curtis, and M. C. Lin. Aggregate dynamics for dense
crowd simulation. In ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09,
pages 122:1–122:8. ACM, 2009.

Bibliography 199

[98] A. Nash. Any-Angle Path Planning. PhD thesis, University of Southern Cali-
fornia, 2012.

[99] R. Oliva and N. Pelechano. Clearance for diversity of agents’ sizes in navig-
ation meshes. Computers & Graphics, 47(0):48 – 58, 2015.

[100] J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian. A synthetic-vision based
steering approach for crowd simulation. ACM Transanctions on Graphics,
29(4):123:1–123:9, July 2010.

[101] S. Paris and S. Donikian. Activity-driven populace: a cognitive approach to
crowd simulation. IEEE Computer Graphics and Applications, 29:34–43, 2009.

[102] S. Paris, J. Pettré, and S. Donikian. Pedestrian reactive navigation for crowd
simulation: A predictive approach. Computer Graphics Forum, 26(3):665–674,
2007.

[103] C. Park, A. Best, S. Narang, and D. Manocha. Simulating high-dof human-like
agents using hierarchical feedback planner. In Proceedings of the 21st ACM

Symposium on Virtual Reality Software and Technology (VRST 2015), pages
153–162, 2015.

[104] J. H. Park, F. A. Rojas, and H. S. Yang. A collision avoidance behavior model
for crowd simulation based on psychological �ndings. Computer Animation

and Virtual Worlds, 24(3-4):173–183, 2013.

[105] S. I. Park, F. Quek, and Y. Cao. Modeling social groups in crowds using com-
mon ground theory. In Proceedings of the Winter Simulation Conference (WSC

2012), pages 113:1–113:12, 2012.

[106] N. Pelechano, J. Allbeck, and N. Badler. Controlling individual agents in high-
density crowd simulation. In Proceedings of the 2007 ACM SIGGRAPH/Euro-

graphics Symposium on Computer Animation (SCA 2007), pages 99–108, 2007.

[107] N. Pelechano, J. Allbeck, and N. Badler. Virtual Crowds: Methods, Simula-

tion, and Control (Synthesis Lectures on Computer Graphics and Animation).
Morgan and Claypool Publishers, 2008.

[108] J. Pettré, J.-P. Laumond, and D. Thalmann. A navigation graph for real-time
crowd animation on multilayered and uneven terrain. In Proceedings of the

1st International Workshop on Crowd Simulation, 2005.

[109] L. C. A. Pimenta, N. Michael, R. C. Mesquita, G. A. S. Pereira, and V. Kumar.
Control of swarms based on hydrodynamic models. In Proceedings of the 2009

IEEE Internation Conference on Robotics and Automation (ICRA 2008), pages
1948–1953, 2008.

[110] I. Pohl. Heuristic Search viewed as Path Finding in a Graph. Arti�cial Intel-
ligence, 1(3):193 – 204, 1970.

200 Bibliography

[111] F. Qiu and X. Hu. Modeling group structures in pedestrian crowd simulation.
Simulation Modelling Practice and Theory, 18(2):190–205, 2010.

[112] S. Rabin. AI Game Programming Wisdom 4. Charles River Media, 2008.

[113] D. Reece, M. Kraus, and P. Dumanior. Tactical movement planning for indi-
vidual combatants. In Proceedings of the 9th Conference on Computer Gener-

ated Forces and Behavioral Representation, 2000.

[114] C. W. Reynold. Flocks, herds, and schools: A distributed behavioral model. In
Proceedings of the 14th annual conference on Computer graphics and interactive

techniques (SIGGRAPH ’87), volume 21, pages 25–34, 1987.

[115] C. Reynolds. Steering behaviors for autonomous characters. In Proceedings

of the 1999 Game Developers Conference, pages 763–782, 1999.

[116] J. L. Rosenfeld, A.and Pfaltz. Distance functions on digital pictures. Pattern
Recognition, 1(1):33–61, 1968.

[117] M. Schuerman, S. Singh, M. Kapadia, and P. Faloutsos. Situation agents:
agent-based externalized steering logic. Computer Animation and Virtual

Worlds, 21(3-4):267–276, 2010.

[118] W. Shao and D. Terzopoulos. Autonomous pedestrians. In Proceedings of the

4th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA

2005), pages 19–28. ACM, 2005.

[119] A. Shoulson, N. Marshak, M. Kapadia, and N. Badler. Adapt: The agent de-
velopment and prototyping testbed. In Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games, pages 9–18, 2013.

[120] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman. An open framework for
developing, evaluating, and sharing steering algorithms. In Proceedings of the

2nd International Workshop on Motion in Games (MIG 2009), pages 158–169,
2009.

[121] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman. Steerbench: A bench-
mark suite for evaluating steering behaviors. Computer Animation and Vir-

tual Worlds, 20(5-6):533–548, 2009.

[122] G. Song and N. Amato. Randomized motion planning for car-like robots with
c-prm. In Proceedings of the 2001 IEEE International Conference on Intellingent

Robots and Systems (IROS 2001), pages 37–42, 2001.

[123] A. Stentz and I. C. Mellon. Optimal and e�cient path planning for unknown
and dynamic environments. International Journal of Robotics and Automation,
10:89–100, 1993.

[124] G. K. Still. Crowd Dynamics. PhD thesis, University of Warwick, 2000.

Bibliography 201

[125] R. Strand. Weighted distances based on neighbourhood sequences. Pattern

Recognition Letters, 28(15):2029–2036, 2007.

[126] X. Sun, S. Koenig, and W. Yeoh. Generalized adaptive a*. In Proceedings of

the 2008 International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2008), pages 469–476, 2008.

[127] Z. Sun and J. Reif. Bushwhack: An approximation algorithm for minimal
paths through pseudo-euclidean spaces. In Proceedings of the 12th Annual

International Symposium on Algorithms and Computation, pages 160–171.
Springer, 2001.

[128] D. Thalmann and S. R. Musse. Crowd Simulation, Second Edition. Springer,
2013.

[129] P. M. Torrens. Moving agent pedestrians through space and time. Annals of
the Association of American Geographers, 102(1):35–66, 2012.

[130] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. In ACM Transac-

tions on Graphics, volume 25, pages 1160–1168, 2006.

[131] K. Trovato. A* Planning in Discrete Con�guration Spaces of Autonomous Sys-

tems. PhD thesis, University of Amsterdam, 1996.

[132] B. Ulicny and D. Thalmann. Towards interactive real-time crowd behavior
simulation. Computer Graphics Forum, 21:767–775, 2002.

[133] J. van den Berg, S. Guy, M. C. Lin, and D. Manocha. Reciprocal n-body colli-
sion avoidance. In Robotics Research, pages 3–19. Springer, 2011.

[134] J. van den Berg, R. Shah, A. Huang, and K. Goldberg. ANA*: Anytime Non-
parametric A*. In Proceedings of the 2011 AAAI Conference on Arti�cial Intel-

ligence, 2011.

[135] W. van der Sterren. Tactical path-�nding with A*. Game Programming Gems,
3:294–306, 2002.

[136] A. van Goethem, N. Jaklin, A. Cook IV, and R. Geraerts. On streams and
incentives: A synthesis of individual and collective crowd motion. In 28th In-

ternational Conference on Computer Animation and Social Agents (CASA 2015),
pages 29–32, 2015.

[137] A. van Goethem, N. Jaklin, A. Cook IV, and R. Geraerts. On streams and
incentives: A synthesis of individual and collective crowd motion. Technical
Report UU-CS-2015-005, Utrecht University, 2015.

[138] W. van Toll, A. Cook IV, and R. Geraerts. Navigation meshes for realistic
multi-layered environments. In Proceedings of the 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2011), pages 3526–3532,
2011.

202 Bibliography

[139] W. van Toll and R. Geraerts. Dynamically pruned a* for re-planning in nav-
igation meshes. In Proceedings of the 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS 2015), pages 2051–2057, 2015.

[140] W. van Toll, A. C. IV, and R. Geraerts. A navigation mesh for dynamic en-
vironments. Computer Animation and Virtual Worlds (CAVW), 23(6):536–546,
2012.

[141] W. van Toll, A. C. IV, and R. Geraerts. Real-time density-based crowd simu-
lation. Computer Animation and Virtual Worlds (CAVW), 23:59–69, 2012.

[142] W. van Toll, N. Jaklin, and R. Geraerts. Towards believable crowds: A generic
multi-level framework for agent navigation. In ASCI.OPEN, 2015.

[143] G. Vizzari, L. Manenti, and L. Crociani. Adaptive pedestrian behaviour for
the preservation of group cohesion. Complex Adaptive Systems Modeling,
1(1):1–29, 2013.

[144] U. Weidmann. Transporttechnik der fussgänger. IVT, Institut für Verkehr-

splanung, Transporttechnik, Strassen-und Eisenbahnbau, 90, 1992.

[145] R. Wein, J. van den Berg, and D. Halperin. The visibility–voronoi complex
and its applications. In Proceedings of the 21st Annual Symposium on Compu-

tational Geometry (SCG 2005), pages 63–72, 2005.

[146] E. Welzl. Constructing the Visibility Graph for n-Line Segments in O(n2)
Time. Information Processing Letters, 20:167–171, 1985.

[147] E. B. Werner and C. G. Rossi. Manual of visual �elds. Churchill Livingstone
New York, 1991.

[148] M. Wolf. Theorizing navigable space in video games. DIGAREC Keynote-

Lectures, 2009/2010.

[149] Q. Wu, Q. Ji, J. Du, and X. Li. Simulating the local behavior of small pedestrian
groups using synthetic-vision based steering approach. In Proceedings of the

12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum

and Its Applications in Industry (VRCAI 2013), pages 41–50. ACM, 2013.

[150] S. Xu and H.-L. Duh. A simulation of bonding e�ects and their impacts on
pedestrian dynamics. IEEE Transactions on Intelligent Transportation Systems,
11(1):153–161, 2010.

[151] A. Yahja, S. Singh, and A. Stentz. An e�cient online path planner for outdoor
mobile robots. Robotics and Autonomous Systems, 32:129–143, 2000.

[152] K. Yu. Finding a natural-looking path by using generalized visibility graphs.
PRICAI 2006: Trends in Arti�cial Intelligence, 4099:170–179, 2006.

[153] G. K. Zipf. Human Behavior and the Principle of Least E�ort. Addison-Wesley
Press, 1949.

Samenvatting

Virtuele omgevingen worden steeds belangrijker voor vele aspecten van de wereld
waarin we leven. Meeslepende virtuele werelden komen veel voor in �lms, compu-
terspellen en online gemeenschappen. Ze zijn ook belangrijk voor andere toepas-
singen dan entertainment, zoals software voor training en educatie, simulaties van
evenementen en evacuaties, planologie en de analyse van menselijke invloed op
ongelukken. Trainings- en educatiesoftware kent vele toepassingen, variërend van
lesgeven met virtuele karakters tot het trainen van politie, brandweer of soldaten
in virtuele scenario’s. Andere toepassingen zijn online plattegronddiensten zoals
Open Street Map, Google Street View en Mapillary.

Voor een geloofwaardige virtuele wereld zijn goede algoritmen nodig voor de na-
vigatie van virtuele karakters. De paden (looproutes) die deze karakters a�eggen
moeten soepel zijn, geen onnodige omwegen bevatten, afstand tot obstakels bewa-
ren, terreinen en speciale gebieden in acht nemen en botsingen tussen karakters
vermijden. Andere onderdelen zijn het coördineren van grote menigtes karakters
in zowel rustige als drukke situaties, en het simuleren van sociaal gedrag in kleine
groepen. Bestaande algoritmen voor padplanning en modellen voor crowd simula-

tion hebben moeite met deze taken, waardoor het nog moeilijk is om diverse soorten
gedrag te modelleren.

Dit proefschrift richt zich op drie computationele taken waar bestaande algorit-
men nog moeite mee hebben: paden plannen in gewogen gebieden, paden volgen

in gewogen gebieden, en het coördineren van drukke virtuele menigtes en sociale
groepen. We laten zien waarom deze taken moeilijk op te lossen zijn met huidige
algoritmen in een raster- of graafrepresentatie van de virtuele omgeving. Ook ont-
wikkelen we nieuwe methodes die deze problemen e�ciënt oplossen in een repre-
sentatie van beloopbare vlakken.

In het eerste deel van dit proefschrift bekijken we het berekenen van een pad in een
2D-omgeving met meerdere soorten gewogen gebieden (weighted regions). Zulke
gebieden stellen een bepaald type terrein voor (zoals ‘weg’, ‘gras’ of ‘water’) of
een bepaalde psychologische invloed op karakters (zoals ‘gevaarlijk’ of ‘aantrekke-
lijk’). Het gewicht van een gebied geeft aan hoe moeilijk of ongewenst het voor
een karakter is om door dit gebied te lopen. Voor een karakter met een verzame-
ling voorkeuren (een gewicht per type gebied) willen we een pad berekenen van
een startpositie naar een doelpositie zodat de gewogen Euclidische lengte wordt

204 Samenvatting

geminimaliseerd. We analyseren de kwaliteit van optimale paden berekend in 8-

neighbor grids (rasters waarin karakters horizontaal, verticaal en diagonaal kunnen
bewegen). We geven een bovengrens van de kosten van een dergelijk pad vergele-
ken met het werkelijke optimale pad, onder de aanname dat elke rastercel slechts
één type gebied bevat. Ook presenteren we een nieuw padplanning-algoritme ge-
naamd Vertex-based Pruning (VBP) dat een A∗-zoekactie op een raster combineert
met een bestaand ε-benaderend algoritme op de exacte gebieden. We laten zien dat
VBP ε-benaderingen van het optimale pad sneller berekent dan bestaande methodes
als de omgeving voldoende groot is, terwijl het nog steeds acceptabele padkosten
garandeert. De paden die VBP oplevert kunnen gebruikt worden als ‘indicatieve
route’: een ruwe richtlijn van het pad dat het karakter hoopt te volgen gedurende
de simulatie.

In het tweede deel van dit proefschrift presenteren we Modi�ed Indicative Routes

and Navigation (MIRAN), een nieuwe methode voor het volgen van een indicatieve
route in een omgeving met gewogen gebieden. De route die als input dient, kan
automatisch berekend zijn met onze nieuwe VBP-methode of met een eenvoudiger
algoritme, of deze kan met de hand getekend zijn door een gebruiker. De MIRAN-
methode gebruikt sampling (een benadering van de route met losse punten) om
een karakter de route op een soepele manier te laten volgen, op basis van diens
persoonlijke voorkeuren (gewichten). Gebruikers kunnen twee parameters instel-
len: de eerste bepaalt hoe dicht de sample-punten bij elkaar liggen en de tweede
geeft aan hoe ver het karakter vooruit mag kijken over de route. De tweede para-
meter bepaalt ook hoeveel afstand het karakter maximaal mag overslaan (oftewel
de grootte van de maximale shortcut). We nemen eerst aan dat het karakter gemo-
delleerd wordt als een punt. Vervolgens breiden we de methode uit naar karakters
met een schijfvorm van willekeurige grootte: we passen de berekeningen aan zodat
de straal van de schijf in acht wordt genomen.

In het derde deel van dit proefschrift ontwikkelen we een nieuw model voor crowd-
simulatie en een nieuwe manier om het loopgedrag van kleine sociale groepen te
simuleren. Net als in de vorige delen zijn onze methodes agent-based (gebaseerd op
berekeningen per individueel karakter), maar we gebruiken ze om e�ciënt grote
aantallen karakters tegelijk te simuleren. Ten eerste introduceren we een nieuw
model voor crowdsimulatie genaamd Stream. Dit model combineert de voordelen
van agent-based en �ow-based modellen door middel van lokale regels per karak-
ter. Het Stream-model geeft signi�cante verbeteringen in de coördinatie en �ow van
een menigte waarvan de dichtheid willekeurig kan veranderen. Stream is geschikt
voor real-time simulaties en gaming-toepassingen. Ten tweede presenteren we een
methode met de naam Social Groups and Navigation (SGN). SGN simuleert sociale
groepjes van karakters die sociale formaties aannemen en wachtgedrag vertonen.
Tot slot laten we zien hoe al onze bijdragen gecombineerd kunnen worden in een
crowdsimulatie-framework gebaseerd op de Explicit Corridor Map. We beschrijven
enkele implementatiedetails van dit framework.

Acknowledgements

First of all, I would like to thank my daily supervisor and co-promoter Roland Ger-
aerts. Roland, who was my daily supervisor throughout the whole four-year period
of my PhD, always had good advice for overcoming problems and an open ear for
questions related to my research and academic work in general. I would also like to
thank Roland for giving me the freedom of doing independent research and letting
me choose my own research topics while still pointing me into the right direction
every now and then. We also shared many exciting conference trips, e.g. to Istanbul
and Los Angeles, which were always great experiences and a lot of fun.

Second, I would like to thank my promoter Marc van Kreveld for giving very fruitful
comments and advice on the thesis, and for helping with improving its overall value
and results. Similar to Roland, Marc always had good advice and an open ear for
questions. I would like to thank you both for providing a very pleasant working
environment throughout the four years of this project.

Next, I would like to thank all members of the reading committee for their valuable
time. Special thanks go to Mark de Berg, who pointed out a �aw in an earlier
version of the proof in Chapter 3, and who gave suggestions on how to �x it. The
�nal version of the proof is based on his suggestions.

Last but not least, I would like to thank all current and former members of the
Virtual Worlds division for the great working environment, the interesting con-
versations during our lunch breaks, all the great drinks&dinner events in the city
center of Utrecht, and the poker nights at Nicolas’, Wouter’s, and Angelos’ place.
Special thanks to Wouter and Arne for the great atmosphere and all the fun we had
in our o�ce. Thanks to Wouter in particular for constantly inventing new sound

noises, and to Arne for not going insane sharing an o�ce with two crazy people ,.

Curriculum Vitae

Norman Jaklin was born on January 9, 1982, in Cologne, Germany. He �nished his
Abitur (pre-university education) at the Kaiserin-Theophanu-Schule in Cologne in
2001. In 2005, he obtained a Vordiplom (Bachelor of Science) in Computer Science –
with Mathematics as a subsidiary subject – at the Rheinische Friedrich-Wilhelms-
Universität Bonn. In 2011, he obtained a Diplom (Master of Science) in Computer
Science at the same university. In his Diplom thesis Manhattan Networks in 3D, he
studied mathematical properties and approximation algorithms of the Manhattan-
Network Problem in 2D and their applicability in 3D. During his studies, Norman
worked as a high-school pupil’s coach for English and Mathematics, as a program-
mer in the Computer Security Group at the Bonn-Aachen International Center for
Information Technology (B-IT), and as a tutor for Computational Geometry at the
University of Bonn. In 2011, he started a PhD at Utrecht University, for which he
completed his thesis in 2016.

	1 Introduction
	1.1 Virtual worlds
	1.2 A five-level agent-navigation planning hierarchy
	1.2.1 Related frameworks
	1.2.2 High-level planning
	1.2.3 Global-route planning
	1.2.4 Route following
	1.2.5 Local movement
	1.2.6 Animation

	1.3 Main contributions of this thesis
	1.3.1 Contributions Part I
	1.3.2 Contributions Part II
	1.3.3 Contributions Part III

	2 Motivation and preliminaries
	2.1 Representing traversable space in virtual worlds
	2.1.1 Grids
	2.1.2 Waypoint graphs and road maps
	2.1.3 Navigation meshes

	2.2 A* and its variants
	2.3 The weighted region problem
	2.3.1 Definition and first approximation algorithm (Mitchell and Papadimitriou, 1991)
	2.3.2 Unsolvability in ACMQ (De Carufel et al. 2012)
	2.3.3 Existing approximation algorithms

	2.4 Crowd simulation

	I Path Planning in Weighted Regions
	3 Grid-paths in weighted regions
	3.1 Related work
	3.2 Region-homotopic paths
	3.3 Path-length analysis of 8-neighbor grid paths in grid-aligned regions

	4 Vertex-based pruning (VBP): A Hybrid Method
	4.1 The Steiner-point method (SPM) by Aleksandrov et al. 1998
	4.2 The VBP method
	4.2.1 Triangle-based pruning
	4.2.2 Edge-based pruning
	4.2.3 Vertex-based pruning

	4.3 Experiments
	4.3.1 The tested scenes
	4.3.2 VBP vs. SPM in small scenes
	4.3.3 Empirical analysis of path differences
	4.3.4 VBP vs. SPM in a large scene

	5 Conclusion Part I

	II Path Following in Weighted Regions
	6 The MIRAN method
	6.1 Related work
	6.2 Preliminaries
	6.3 Method details
	6.3.1 Computing a reference point
	6.3.2 Computing the candidate attraction points
	6.3.3 Choosing the attraction point
	6.3.4 Moving the agent
	6.3.5 Proof of correctness

	6.4 Experiments
	6.4.1 The tested scenes
	6.4.2 MIRAN paths vs. IRM paths
	6.4.3 The impact of and d on path-following behavior
	6.4.4 Performance

	6.5 Limitations

	7 MIRAN for disc-based agents
	7.1 Candidate attraction points for disc-based agents
	7.2 Weight function for disc-based agents
	7.2.1 General concept
	7.2.2 Computation of interval points

	7.3 Results and future extensions

	8 Conclusion Part II

	III Crowd Simulation
	9 The Stream model: coordinating dense crowds
	9.1 Related work
	9.2 Preliminaries
	9.2.1 Agent representation
	9.2.2 Overview of the Stream model

	9.3 Stream behavior
	9.3.1 Computing local density information
	9.3.2 The perceived stream velocity
	9.3.2.1 Perceiving a single agent
	9.3.2.2 Perceiving the local stream

	9.3.3 Incentive
	9.3.3.1 Computing the incentive
	9.3.3.2 Using the incentive

	9.4 Experiments
	9.4.1 Scenarios
	9.4.2 Modeling various agent profiles
	9.4.3 Comparing different collision-avoidance methods
	9.4.4 Testing the effect of streams
	9.4.5 Performance

	9.5 Limitations

	10 Social Group Behavior
	10.1 Related work
	10.2 Preliminaries
	10.2.1 Basic settings
	10.2.2 Overview of the SGN method
	10.2.2.1 SGN initialization
	10.2.2.2 The SGN simulation loop

	10.2.3 Integration of SGN into a crowd simulation framework

	10.3 The Social Groups and Navigation method
	10.3.1 Leader and last member
	10.3.2 Coherence and sociality
	10.3.3 Coordination mode
	10.3.4 Group-walking mode
	10.3.5 Collision avoidance
	10.3.6 Social-force model
	10.3.6.1 Physical-contact force with another agent
	10.3.6.2 Physical-contact force with obstacles
	10.3.6.3 Group force
	10.3.6.4 Differences to the original model

	10.4 Experiments
	10.4.1 Experimental setup
	10.4.2 Effects of SGN on coherence and sociality
	10.4.3 Evacuation times
	10.4.4 Performance

	10.5 Limitations

	11 Combining it all: the ECM crowd-simulation framework
	11.1 The Explicit Corridor Map
	11.2 Implementation details
	11.2.1 Input and output
	11.2.2 Computing navigation meshes
	11.2.3 Algorithms of the planning hierarchy
	11.2.4 Architecture
	11.2.5 Visibility checks

	11.3 Experiments
	11.3.1 Computing visibility polygons
	11.3.2 Computing indicative routes
	11.3.3 Crowd simulation

	11.4 Conclusion and future work

	12 Conclusion Part III
	13 Overall conclusion and future research
	Bibliography
	Samenvatting
	Acknowledgements
	Curriculum Vitae

