
Separating a Walkable Environment into Layers

Arne Hillebrand∗ Marjan van den Akker Roland Geraerts
Han Hoogeveen

Department of Information and Computing Sciences, Utrecht University, the Netherlands

(a) Polygonal Environment (b) Walkable Environment (c) Multi-Layered Environment (d) Navigation Mesh

Figure 1: (a): A polygonal environment or model. (b): The walkable environment for this model. (c): Its multi-layered environment. Polygons
with the same colour are in the same layer. (d): By using the multi-layered environment we can create, for example, a navigation mesh.

Abstract

A multi-layered environment (MLE) [van Toll et al. 2011] is a rep-
resentation of the walkable environment (WE) in a 3D virtual en-
vironment that comprises a set of two-dimensional layers together
with the locations where the different layers touch, which are called
connections. This representation can be used for crowd simulations,
e.g. to determine evacuation times in complex buildings, or for
finding the shortest routes. The running times of these algorithms
depend on the number of connections.

Finding an environment with the smallest number of connections,
is an NP-Hard problem [Hillebrand et al. 2016]. Our first algorithm
tackles this problem by using an integer linear program which is
capable of finding the best possible solution, but naturally takes a
long time. Hence, we provide two heuristics that search for MLEs
with a low number of connections. One algorithm uses local search
to gradually improve the found solution. The other one, called the
height heuristic, is very fast and gives good solutions in practical
environments.

Keywords: multi-layered environment, optimization

Concepts: •Mathematics of computing→ Simulated annealing;
Integer programming; •Theory of computation→ Computational
geometry;

∗Corresponding author. E-mail: A.Hillebrand@uu.nl
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
MiG ’16,, October 10 - 12, 2016, Burlingame, CA, USA
ISBN: 978-1-4503-4592-7/16/10...$15.00
DOI: http://dx.doi.org/10.1145/2994258.2994271

1 Introduction

Evacuation planning and crowd simulations for safety purposes are
becoming more and more important in modern society. To per-
form such simulations in a soccer stadium for example, we need its
underlying polygonal environment (PE), which is a common for-
mat used by architects [Whyte et al. 2000] and 3D modelling tools.
A PE is a collection of polygons in R3 which can be processed
through a pipeline to mould it in an appropriate format (see Fig. 1).
Fig. 1(a) shows that such a PE usually contains unnecessary details
for simulations. We only need a filtered version of the PE that con-
tains the polygons that are traversable by agents. This type of envi-
ronment is called a WE. Examples of polygons that are not needed
in the WE are polygons that are too steep, too close to a ceiling or
polygons for which there is not enough clearance for an agent to
stand. An example of a WE is shown in Fig. 1(b). Polygons in a
WE can overlap or be connected. Two polygons overlap when they
share at least one point when projected on the ground plane, and the
point is not on an edge of both polygons. Two polygons P and Q
are connected when they do not overlap but share exactly one edge
eP,Q. When they are connected, it is possible for a virtual point
agent to move from P to Q and vice versa.

On a WE we want to run algorithms to e.g. construct visibil-
ity graphs [Lozano-Pérez and Wesley 1979] or to create naviga-
tion meshes [Snook 2000]. Visibility graphs can be used for find-
ing shortest paths in the environment, and navigation meshes en-
able fast path planning queries that are used for crowd simulations.
However, such algorithms currently only exist for two-dimensional
environments. These algorithms can be extended to layered two-
dimensional environments by using a MLE, see Fig. 1(c). An MLE
is a decomposition of the WE in layers, such that every layer can be
embedded in the plane. When two polygons P andQ share an edge
eP,Q and do not overlap but are in different layers, eP,Q connects
the two layers. This type of edge is called a connection.

Definition 1 (Multi-Layered Environment, [van Toll et al. 2011])
An MLE for a given WE consists of a set L = {L1, ..., Ll} of
two-dimensional layers and a set C of connections, such that:

• No layer Li (i = 1, . . . , l) contains overlapping polygons;
• Every polygon in the WE is assigned to exactly one layer Li

(i = 1, . . . , l);

101

http://dx.doi.org/10.1145/2994258.2994271

(a) MLE (b) MICLE

Figure 2: Two MLEs for the same WE. Polygons with the same
shade of grey are in the same layer. The red edges are connections.
(a): An MLE with two layers and four connections. (b): An MLE
with three layers and only two connections. This MLE is a MICLE.

• When two polygons P andQ are connected, but are in different
layers, the connection between P and Q is part of the set C;

• Every layer Li (i = 1, . . . , l) forms a single connected compo-
nent, i.e. for any two polygons P , Q in Li we can walk from P
to Q without ever leaving layer Li.

When we use this definition of an MLE, it is rarely the case that
there exists only one possible MLE for a WE. Take for example the
MLEs given in Fig. 2. The MLE in Fig. 2(a) consists of two layers
and has four connections, whereas the MLE depicted in Fig. 2(b)
only has two connections. The MLE depicted in Fig. 2(b) is a min-
imally connected multi-layered environment (MICLE) for this WE.

This is the most useful type of MLE because subsequent operations
can benefit from having a low number of connections. For example,
Van Toll et al. [2011] show that constructing a navigation mesh for
an MLE can be done inO(k×n logn) time, where k is the number
of connections in an MLE and n is the number of obstacle vertices
used to describe the boundaries of the individual layers of the MLE.
An example of such a navigation mesh can be seen in Fig. 1(d).

In this paper we will focus on the second step in this pipeline, that
is, separating a WE into layers with a low number of connections.

1.1 Related work

There are several applications and algorithms that are already using
some form of an MLE. However, the MLEs that they use are often
of poor quality. They do not cover all of the walkable space or
contain a high number of connections. For example, Rodriguez and
Amato [2011] use an MLE to find a strategy to efficiently clear a
building. They assume that their MLE is supplied. For an MLE they
create a roadmap representation. The different layers correspond
to subgraphs of the roadmap, and the connections are the edges
connecting the different subgraphs. Van Toll et al. [2011] use an
MLE to create a multi-layered navigation mesh, which allows for
fast path planning queries. One strength of this type of MLE is that
the representation of the corresponding WE is exact. However, they
do not supply methods to find an MLE either.

Deusdado et al. [2008] use a discretized height map to automat-
ically extract walkable surfaces from a PE. The locations of the
connections are determined by comparing the height information
of different walkable surfaces. Oliva and Pelechano [2013] over-
lay the environment with a three-dimensional grid and mark each
grid cell positive when it contains walkable geometry. These grid
cells are grouped into layers which are then used to create a multi-
layered navigation mesh. Pettré et al. [2005] create multiple eleva-
tion maps of a PE by using the graphics card. From these elevation
maps, slopes that are too steep are filtered and the elevation maps
are joined, resulting in a WE. The downside of these techniques is
that they are mostly part of a larger algorithm, and do not offer any

(a) WE (b) WEG

Figure 3: A walkable environment and its corresponding graph
representation. (a): The walkable environment. (b): Vertices are
added for every polygon in the walkable environment. Edges (blue)
are added for connected polygons and overlaps are annotated (red).

easy means to obtain the constructed MLE. Furthermore, the result-
ing MLE is only an approximation of the WE and does not cover
all of the WE.

Instead of extracting an MLE from a PE or WE, Jiang et al. [2009]
propose a method which models the environment in simple blocks
that can be described in two dimensions. The blocks are linked
together in a floor plan-like fashion. When an environment is de-
scribed this way, which it rarely is, an MLE is easy to extract since
the layers and connections are explicitly defined.

1.2 Our contributions

To our knowledge, we are the first who try to extract MLEs of high
quality from a WE. In Section 2 we will formally define how to
find a MICLE. In Section 3, we will describe three different algo-
rithms for extracting MLEs. The first algorithm is an Integer Linear
Program. It is guaranteed to find the MLE with a minimal number
of connections, but it can take a very long time. The second al-
gorithm is a local search algorithm using simulated annealing. It
is much faster than the Integer Linear Program, but generally finds
solutions with a lower quality. The third algorithm is a heuristic
that uses the height information of each polygon. It is by far the
fastest algorithm, but the quality of the solutions is largely depen-
dent on how level the different floors are in the environment. The
algorithms from Section 3 are tested in Section 4. These results
are discussed in Section 5. We conclude that in most situations the
height heuristic is the algorithm with the best performance.

2 Multi-Layered Environments

We first convert the WE into a graph G = (V,E,O). In this graph,
a vertex is added to V for every polygon in the WE. An undirected
edge (v, w) is added to E whenever the polygons corresponding to
the vertices v and w are connected in the WE. When two polygons
with corresponding vertices v′ and w′ overlap, the unordered pair
(v′, w′) is added to O. This graph is called the walkable environ-
ment graph (WEG) and an example of it can be seen in Fig. 3. It is
also possible to assign weights to the edges of the WEG, resulting in
a weighted WEG. For a weighted WEG we haveG = (V,E,O,w).
Here, w is a function that maps every edge e ∈ E to a real num-
ber. Using the WEG, the problem of finding a MICLE can now be
formulated as follows:

Problem 1 (Finding a MICLE) Given WEG G = (V,E,O) of
WE W . Finding a MICLE is now the same as finding the cut set
C ⊆ E for which:

• ∀v, w such that (v, w) ∈ O: v and w are in different graph
components for the graph G′ = (V,E \ C);

• |C| is minimal.

102

When we are using a weighted WEG, the size of the cut setC is de-
fined as |C| = w(C) =

∑
e∈C w(e). When |O| = 1, we have the

s-t cut problem, which can be solved using the max-flow min-cut
theorem [Ford and Fulkerson 1956]. If |O| > 1, we have an in-
stance of the multi-commodity minimal-cut (MULTICUT) problem
[Schrijver 2003]. Unfortunately, finding a MICLE has been proven
to be an NP-Hard problem [Hillebrand et al. 2016].

3 Algorithms for Finding an MLE

Since finding a MICLE is an NP-Hard problem, we search for an
MLE with a small number of connections. In this section, we will
describe three different types of algorithms. Instead of minimizing
the number of connections between layers, these algorithms will
solve an equivalent problem. We will search for sets of layers L
in a WEG, such that the sum of internal edges Ii for the layers is
maximized. Here, Ii is the cumulative weight of the internal edges
of layer Li, i.e. the cumulative weight of the edges of the sub-graph
induced by the vertices in layer Li. These two problems are equiv-
alent since connections in an MLE are non-internal edges. There-
fore, by maximizing the cumulative weight of the internal edges,
we minimize the weight of the connections.

All these algorithms use a weighted WEGG = (V,E,O,w). First,
we will describe how to find MICLEs using Integer Linear Pro-
gramming and Brand-and-Price [Barnhart et al. 1998]. While this
technique can find an optimal solution, this can take a very long
time. Next, we will describe a local search approach, using simu-
lated annealing [Ĉerný 1985]. Although local search does not of-
fer any guarantees with respect to optimality, we expect that this
technique is able to find reasonable solutions efficiently. The third
method, called the Height Heuristic, does not solely depend on the
WEG when searching for a solution. It is designed around the as-
sumption that the different floors are level in most buildings, and
that they roughly correspond to layers in an MLE.

3.1 (Integer) Linear Program

In the Integer Linear Programming (ILP) framework, a layer Li

is described using two parameters. Mi is a vector of length |V |,
with Mi,v = 0 whenever the polygon represented by vertex v is
not part of layer i, and 1 otherwise. The other parameter is Ii, the
cumulative weight of the internal edges of layer i. Whenever the
set of all possible, feasible layers is given and has size n, the ILP
for finding a MICLE can be formulated as follows:

Maximize:
∑n

i=1 xiIi
Subject to:∑n

i=1 xiMi,v = 1 ∀v ∈ V (1)
xi ∈ {0, 1} 1 ≤ i ≤ n (2)

Here, xi is a so-called decision variable that is set to 1 when
layer Li is part of the final solution. Constraint 1 guarantees that
a vertex will be part of exactly one of the selected layers, and
Constraint 2 ensures that a layer is selected completely or not at all.
When Constraint 2 is relaxed to 0 ≤ xi, we have the corresponding
LP-relaxation, since xi ≤ 1 is enforced by Constraint 1.

To solve the given ILP, it would be necessary to determine all
O(2|V | − 1) possible combinations of layers for a WE. Since this
number is so high, we will employ a technique called column gen-
eration [Desaulniers et al. 2006] to solve the LP-relaxation, which
we will use in our Branch-and-Price approach. This technique al-
lows us to start searching for a solution while not knowing all layers
in advance. Instead, it allows for the addition of new layers after
first solving the LP-relaxation with a smaller set of columns. Using
the concepts of shadow price πv for Constraint 1 (i.e. the cost for

strengthening Constraint 1) and reduced cost, we can search for lay-
ers that increase the solution value. The reduced cost for a new layer
L0 is I0 −

∑
v∈V πvM0,v . Only when the reduced costs are posi-

tive, which means that the value I0 is bigger than
∑

v∈V πvM0,v , it
is profitable to introduce this new found layer. Finding such a layer
with maximum reduced cost is called the pricing problem.

3.1.1 Solving the pricing problem

We will use another ILP to solve the pricing problem. The objec-
tive of the pricing problem is to maximize I0 −

∑
v∈V πvM0,v .

To encode this in our ILP, we will introduce two new decision
variables. First, we have xv,w ∈ {0, 1} for all edges in E. The
value of xv,w is 1 if the edge (v, w) is an internal edge of the layer.
I0 can now be defined as

∑
(v,w)∈E xv,ww((v, w)). The second

decision variable, yv , is used to determine if a vertex v is part of
the new layer. The variable yv has the same role in the pricing
problem as M0,v in the master problem. With these variables, we
can solve the pricing problem by using the following ILP.

Maximize:
∑

(v,w)∈E xv,ww((v, w))−
∑

v∈V yvπv

Subject to:
−1 ≤ 2xv,w − yv − yw ≤ 0 ∀v ∈ V (3)
yv + yw ≤ 1 ∀(v, w) ∈ O (4)
yv ∈ {0, 1} ∀v ∈ V
xv,w ∈ {0, 1} ∀(v, w) ∈ E

Constraint 3 is needed to ensure that the edge (v, w) ∈ E
can only be counted as an internal edge if both v and w are part of
the layer. The feasibility of layer L0 is guaranteed by Constraint 4,
which encodes the overlaps from the WEG. We can search for new
columns with positive reduced cost by using this ILP. However,
this ILP does not guarantee that the found layer forms a single
connected component. Therefore, we search for the connected
components of a layer found by this ILP. Each individual connected
component in a layer is now introduced as a new column.

3.1.2 Branch-and-Price

We will use Branch-and-Price [Barnhart et al. 1998] and Branch-
and-Cut [Padberg and Rinaldi 1991], known as Branch-Price-and-
Cut, to solve the ILP given in Section 3.1. We first solve the LP-
relaxation using column generation as usual. If the resulting solu-
tion is integral, we are finished. However, if the current solution is
fractional, we need to continue our search for the optimal solution.
We will branch on constraints that we will introduce in our prob-
lem, rather than on variables. The constraint that we will introduce
will force an edge (v, w) to be cut or not to be cut. To accomplish
this we will introduce the constraint yv + yw ≤ 1 (if (v, w) is to be
cut) or yv = yw (if (v, w) is not to be cut) to the pricing problem.
In the master problem, we force all variables xi with Mi,v = 1
and Mi,w = 1 to zero when (v, w) is to be cut. After branching we
once again solve the new LP-relaxation to optimality using column-
generation. Using these techniques, we can find an optimal solution
if enough time is available.

3.2 Local search

In local search, we start with a random valid solution. We try to
iteratively improve this solution using local changes, while keeping
track of the best solution encountered thus far. Whenever a local
change increases the number of internal edges, the change is al-
ways accepted. However, when it decreases the solution value, the
change is accepted according to the simulated annealing scheme
[Ĉerný 1985]. In this scheme, the chance of accepting a solution
that is not an improvement is dependent on how bad the change is,

103

and on a parameter T called temperature. The chance of accepting
bad changes decreases over time.

Every solution found during the search process assigns every vertex
to exactly one layer. We also guarantee that all layers remain valid
during the entire process, i.e. without overlaps. We use three dif-
ferent functions for creating the local changes. The details of these
methods are given later.

MERGE Choose a layer Li randomly. Randomly pick another
layer Lj it is connected to. If Li has no conflict with
Lj , a trivial merge is performed. Otherwise, an instance
of min-cut max-flow [Ford and Fulkerson 1956] is solved
for these two layers only;

MOVE Move xmembers of layer Li to neighbouring layer Lj in
such a way that the resulting layers remain feasible;

SPLIT Split a layer into two new layers by assigning certain ver-
tices to a set s and other vertices to a set t and solve an
instance of min-cut max-flow, separating all vertices in
the set s from all the vertices in the set t.

All the neighbourhood operations are defined on one or two layers
and always return one or more layers. Whenever the MERGE op-
eration is called, it checks whether the merge is trivial. We say a
merge is trivial whenever the two layers Li and Lj have no over-
lap. When this is the case, we simply merge the two layers. When
the merge is not trivial, we will attempt to redistribute the layers,
instead of actually merging the two layers. To accomplish this, we
first create the sub-graph G′ induced by the members of the layers
Li and Lj . Next, a super source s and a super sink t are added.
Edges are added between s and the vertices of layer Li that overlap
vertices of Lj , and vertices of layer Lj that overlap vertices of Li

are connected with edges to t. The capacities of these edges are
set to infinity and the weight to one, ensuring that these edges will
never be cut. Solving the minimal s-t cut problem for the sub-graph
G′ will give us a locally optimal redistribution of the vertices in Li

and Lj . If the newly found L′i and L′j are the same as Li and Lj ,
then the change is rejected.

Note that the MERGE operation will never increase the number of
connections. Whenever a trivial merge can be performed, the num-
ber of internal edges will increase. When the merge is not trivial,
a minimal set of edges needed to separate all overlapping vertices
contained within the layers Li and Lj was found. Since we found
the minimal set of edges separating Li and Lj in the sub-graph, it
will always decrease the number of cuts needed, unless that current
cut was already minimal. This is a locally optimal solution, but
does not guarantee global optimality.

The MOVE operation takes two possibly overlapping layers Li and
Lj that are connected. The operation tries to move x members
from Li to Lj . This allows for both an increase and decrease of the
number of cuts in the current solution. It is an important operator
since it can move the current solution away from a local optimum.

The SPLIT algorithm takes as input a single layer Li and splits it
into two or more layers. For this we first select sources and sinks
at random and connect them to a super source s and super sink t,
respectively. Next, we use a minimal s-t-cut algorithm to separate
s from t, giving us the cut-set E′. Next, we find the connected
components in the sub-graphG′ induced by the vertices of Li, with
edges inE′ removed fromG′. The resulting connected components
represent the different layers.

3.3 Height Heuristic

The last method is the Height Heuristic. This heuristic tries to
quickly group polygons that are roughly on the same height. The

height of a polygon is defined as the distance between the ground
plane and the centroid of a polygon. The idea is that such polygons
usually correspond to polygons on the same floor of a building. The
cluster height is the average height of all polygons in that cluster.

The algorithm consists of two distinct phases, called CLUSTER and
LOCALMIN. During the CLUSTER phase, polygons are clustered
using their height information. We start by creating a list in of
|V | clusters, one for each vertex in G, and an empty list out. The
clusters in in are sorted on their cluster height. We remove the
lowest two clusters K and K′ in in, and repeat the following steps
until in is empty:

1. If K and K′ overlap, we add K to out and make K′ the new
K. The lowest element in in is removed and becomes K′;

2. If K and K′ are within a predefined range, initially 0, K′ is
merged into K. The next lowest element in in is removed and
becomes the new K′;

3. If K and K′ do not overlap and are not within the prede-
fined range, K is added to out and K and K′ are updated
as described in step 1. We keep track of the shortest distance
between non-overlapping, out-of-range clusters, in a variable
newRange; newRange is initially ∞. If the difference in
cluster height between K and K′ is less than newRange, we
set newRange to this value.

When newRange = ∞, we return the clusters in out and create
connected components from the height clustered polygons. Other-
wise, we set range = newRange, and swap the contents of in
and out before repeating the procedure described above. We start
by merging all clusters that are at exactly the same height, that is,
we start with range set to 0.

The clusters found in the CLUSTER phase are first converted to
connected layers. These layers are moved towards a local mini-
mum using an adaptation of the MERGE sub-step of local search in
the LOCALMIN phase. This operation returns the changed layer(s),
as well as all the neighbouring layers of the changed layer(s). Dur-
ing the algorithm, we keep track of layers that can still be changed
using the MERGE operation. At the start of the algorithm, this set
consists of all the layers, called the open-set. In each iteration of
the algorithm, we randomly remove one of the members Li of the
open-set. Next, we select all layers that are in the open-set and that
Li is connected to. We perform the MERGE operation for Li and
each of these layers. If the MERGE increases the internal weight of
the connections, the returned layers are added to the open-set. This
process is repeated until the open-set becomes empty. We will al-
ways reach this state, since in each iteration of the main loop, only
one of three things can happen. First, a trivial merge may be possi-
ble for the layers Li and Lj . Therefore, the number of connections
in the current solution must drop, as well as the number of layers.
Second, if a trivial merge is not possible, the vertices of the two
layers may have been redistributed, as described in Section 3.2.
If the number of internal edges of the candidate layers is higher
than the number of internal edges currently in Li and Lj , then we
have found a solution that requires fewer connections. Third, it is
possible that no changes were performed, and therefore no layers
were added to the open-set. Since we remove one layer from the
open-set in each iteration, and only add layers when the number of
internal edges increases, the process must be finite.

4 Experiments

We have implemented the algorithms described in Section 3 in
C++. For our linear programming solution, we used the SCIP li-
brary [Achterberg 2009]. All our experiments were performed on
a machine with an Intel Xeon E5-2690 v3 cpu clocked at 2.6 GHz

104

Table 1: The tested environments. Column T. gives the type of en-
vironment. V stands for “real” virtual environments, e.g. game
levels. R stands for real world environments. Environments of type
T are for a specific test. A 3in column Tri. means that the environ-
ment is triangulated.

Environ. T. Tri. |V | |E| |O| |O|
|V |

As oilrig V 3 2077 2399 10717 5.16

Halo V 3 179 184 346 1.93

Cliffsides V 3 748 764 162 0.22

Hexagon V 3 2368 2419 20207 8.53

Library R 7 298 420 775 2.60

Tower R 7 5932 8033 116983 19.72

Station 1 R 3 206 209 1026 4.98

Station 2 R 3 82 86 115 1.40

Parking lot T 7 59 66 141 2.39

City T 7 73001 86148 2415492 33.09

Tower 10 T 7 5932 8033 116152 19.58

Tower 20 T 7 5931 8032 105140 17.73

Tower 40 T 7 5931 8032 76021 12.82

with 32 GB of DDR4 ECC RAM. However, all our experiments
only used a single thread. The OS and compiler that were used are
Ubuntu 15.10 (64 bit) and g++ version 5.2.1, respectively.

The details of the used environments are given in Table 1. The
environments As oilrig, Library and Parking lot were taken from
[Saaltink 2011], Station 1 and Station 2 were provided by Movares,
an engineering and consultancy company. The environments Halo,
Cliffsides and Hexagon were taken from the Google Sketchup
warehouse1. The Tower environment was created by the authors,
based on a student flat in the Netherlands. The remaining City and
different Tower environments were created for specific tests. The
City environment was created to test how good the different algo-
rithms scale. The environments with the name Tower x are ver-
sions of the Tower environment that are tilted by x degrees. These
environments were included to test the height heuristic to a larger
extent, since it is designed with the underlying assumption that the
different floors of a building are level.

Besides the size of these environments (which we can see in column
|V |), there are two other important aspects of the environments.
The first one is the ratio |O||V | , which is an indication of how layered
the environment is. The second aspect is what types of geometric
primitives were used to model these environments. Besides testing
our algorithms on a variation of synthetic environments (the envi-
ronments of type T), we also tested our algorithms on models of
real buildings (R) and on game levels (V).

We also implemented the graph reduction operations described in
[Hillebrand et al. 2016]. The reason for this is that we wanted more
variation in the underlying WEG. We applied the operations on all
the environments except City, reducing the WEGs of this environ-
ment simply took too much time. A short description of these op-
erations can be found in Appendix A.

The resulting relative sizes of the WEGs can be seen in Table 2 in
Appendix B. We ran the experiments for the algorithms described
in Section 3 on both the original WEGs and the reduced WEGs. An
individual run was allowed to last no longer than an hour. All ex-
periments were repeated 20 times. When performing local search,
one of the three operations was picked uniformly at random. The

1https://3dwarehouse.sketchup.com/model.html?id=
{13c3078fa52d14554b9e177bc9ee06a9, 2ac949d235d65acb46697ff0ff-
0b9b2c, 33b2c337108275568c09573a9753f4fd}

Table 2: The relative change of |V |, |E| and |O| of the WEGs after
applying the graph reduction rules. The experiments were repeated
20 times and d was set to 1 for d-REMOVE.

Environ. |V | |E| |O| t (ms)
As oilrig 0.72 0.76 0.26 4658.15
Halo 0.51 0.53 0.22 13.05
Cliffsides 0.08 0.08 0.14 21.15
Hexagon 0.41 0.40 0.05 2975.75
Library 0.83 0.87 0.39 76.30
Tower 0.96 0.97 0.43 149869.25
Station 1 0.57 0.57 0.15 20.70
Station 2 0.38 0.39 0.19 1.00
Parking lot 0.94 0.95 0.39 1.80
Tower 10 0.98 0.98 0.42 139265.20
Tower 20 0.97 0.98 0.41 144794.40
Tower 40 0.95 0.96 0.40 114833.45

cool down factor was set to 0.9 and the starting temperature was
determined using [Ben-Ameur 2004].

5 Results

The results of the experiments are included in Appendix B due to
space limitations. For a select number of environments, we have
shown their found MLE in Fig. 6. The experiments were designed
to test the following:

1. The dependence of running time on the number of vertices,
edges and overlaps;

2. The quality of the solutions found by the different algorithms;
3. And finally, the (in)dependence of the algorithm on the actual

geometry of the environment.

5.1 Speed dependent on size

We have tested our algorithms on environments with different sizes,
as can be seen in Table 3. The height heuristic has proven to be sta-
tistically significantly faster, as can be seen in Table 4(a). From the
same table, we can also conclude that reducing the WEG also sig-
nificantly improves the speed of the local search algorithm. How-
ever, when we also include the time needed for performing these
graph reductions (see Table 2), the local search becomes signifi-
cantly slower for the As oilrig, Hexagon and Tower environments.

As was expected, our ILP did not finish within an hour for most
environments. It is not always the case that it performed faster on
a reduced WEG. For the two samples we have, it was statistically
significantly slower (α = 0.001) for the parking lot environment,
but faster for the Station 2 environment.

5.2 Quality of MLE

The ILP will always give the best result when it is given enough
time, and for that reason, we will leave it out of this discussion.
For the other algorithms, we refer the reader to Table 4(b). From
this table, we can see that the height heuristic is outperformed by
local search when we just consider the number of connections. In-
terestingly, the use of reduced WEGs negatively impacted the re-
sults for the height heuristic for the environments Station 1, park-
ing lot, Tower 20 and Tower 40. We think that this is partially
due to the higher geometric dependence of this algorithm (see also
Section 5.3). As part of the graph reduction algorithms, several

105

https://3dwarehouse.sketchup.com/model.html?id=

polygons can be placed in fixed groups, resulting in non-planar re-
gions. For local search, it only statistically significantly influenced
the results for the Station 1 environment.

5.3 Geometric independence

The Tower 10, 20 and 40 environments were rotated in such a
way that they allowed for the same MLE. Unfortunately, both local
search and the height heuristic found statistically significant worse
solutions for the rotated environments (α = 0.01). The influence
on local search seems to be less profound however, with only a rel-
ative increase of approximately 10 per cent, versus an increase of
at least 50 per cent for the height heuristic. This test did not only
rotate the environment, since the WEG was generated after rotating
the environment. Therefore, a small difference in the found MLEs
was to be expected. However, we think that the large decrease of the
quality for the height heuristic is partially caused by the underlying
assumptions that the different layers are level.

6 Conclusion and future work

In this article, we have presented three different algorithms for find-
ing MLEs with a low number of connections. One of these algo-
rithms, the ILP, is too slow for any practical applications. The other
two algorithms, however, can be used to obtain an MLE from a WE.
The height heuristic is very suitable for ‘traditional’ environments,
e.g. environments for which the different layers are level. When
high quality MLEs are more important than processing time, the
local search implementation is a better choice.

When using local search, applying the graph reductions from
[Hillebrand et al. 2016] can be beneficial for smaller to medium
environments. It is hard to know beforehand if using the reductions
will give a performance boost.

These algorithms nicely fit in a pipeline for processing three-
dimensional environments for use in games and simulations. The
first step of this pipeline is part of our current research. The first
results of this research can be seen in Figs. 1(a) and 1(b).

We are also currently exploring the possibility of adding soft-
constraints to our methods. One such constraint could be that con-
nections in an MLE should always start and end in obstacles. This
constraint is required for generating the navigation mesh described
in [van Toll et al. 2011]. For this purpose we are currently exploring
triangulating the WE. Another soft-constraint could be preferring
short connections over long connections. For instance, wide con-
nections allow for larger visibility between different layers. This
can influence the performance of cross-connection nearest neigh-
bour queries that take visibility into account.

In conclusion, we think this research can help speed up currently
available algorithms that use MLEs. We also expect that more al-
gorithms that are currently restricted to the plane will be lifted to
MLEs as well.

References

ACHTERBERG, T. 2009. Scip: solving constraint integer programs.
Mathematical Programming Computation 1, 1, 1–41.

BARNHART, C., JOHNSON, E., NEMHAUSER, G., SAVELS-
BERGH, M., AND VANCE, P. 1998. Branch-and-price: Col-
umn generation for solving huge integer programs. Operations
Research 46, 3, 316–329.

BEN-AMEUR, W. 2004. Computing the initial temperature of sim-
ulated annealing. Computational Optimization and Applications
29, 3, 369–385.

ĈERNÝ, V. 1985. Thermodynamical approach to the traveling
salesman problem: An efficient simulation algorithm. Journal
of Optimization Theory and Applications 45, 41–51.

DESAULNIERS, G., DESROSIERS, J., AND SOLOMON, M. 2006.
Column generation, vol. 5. Springer Science & Business Media.

DEUSDADO, L., FERNANDES, A. R., AND BELO, O. 2008. Path
planning for complex 3D multilevel environments. Proc. 24th
Spring Conf. on Computer Graphics, 187–194.

FORD, L., AND FULKERSON, D. 1956. Solving the transportation
problem. Management Science 3, 1, 24–32.

HILLEBRAND, A., VAN DEN AKKER, M., GERAERTS, R., AND
HOOGEVEEN, H. 2016. Performing multicut on walkable en-
vironments. In 10th Annual Int. Conf. on Combinatorial Opti-
mization and Applications, 2016. To appear.

JIANG, H., XU, W., MAO, T., LI, C., XIA, S., AND WANG, Z.
2009. A semantic environment model for crowd simulation in
multilayered complex environment. ACM Symposium on Virtual
Reality Software and Technology, 2015, 191–198.

LOZANO-PÉREZ, T., AND WESLEY, M. A. 1979. An algorithm
for planning collision-free paths among polyhedral obstacles.
Communications of the ACM 22, 10, 560–570.

OLIVA, R., AND PELECHANO, N. 2013. NEOGEN: Near optimal
generator of navigation meshes for 3D multi-layered environ-
ments. Computers & Graphics 37, 5, 403–412.

PADBERG, M., AND RINALDI, G. 1991. A branch-and-cut algo-
rithm for the resolution of large-scale symmetric traveling sales-
man problems. SIAM review 33, 1, 60–100.

PETTRÉ, J., LAUMOND, J.-P., AND THALMANN, D. 2005. A
navigation graph for real-time crowd animation on multilayered
and uneven terrain. First Int. Workshop on Crowd Simulation 47,
2, 81–90.

RODRIGUEZ, S., AND AMATO, N. M. 2011. Roadmap-based level
clearing of buildings. In Lecture Notes in Computer Science,
vol. 7060 LNCS, 340–352.

SAALTINK, W. 2011. Partitioning polygonal environments into
multi-layered environments. Master’s thesis, Utrecht University.

SCHRIJVER, A. 2003. Combinatorial Optimization - Polyhe-
dra And Efficiency, vol. 24 of Algorithms and Combinatorics.
Springer.

SNOOK, G. 2000. Simplified 3D movement and pathfinding using
navigation meshes. In Game Programming Gems, M. DeLoura,
Ed. Charles River Media, 288–304.

VAN TOLL, W., COOK, A., AND GERAERTS, R. 2011. Navigation
meshes for realistic multi-layered environments. In Int. Conf. on
Intelligent Robots and Systems, 2011, 3526–3532.

WHYTE, J., BOUCHLAGHEM, N., THORPE, A., AND MCCAF-
FER, R. 2000. From cad to virtual reality: modelling approaches,
data exchange and interactive 3d building design tools. Automa-
tion in Construction 10, 1, 43–55.

106

