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Abstract—Path planning and crowd simulation are important
computational tasks in computer games and applications of
high social relevance, such as crowd management and safety
training. Virtual characters (agents) need to autonomously find
a path from their current position to a designated goal position.
This is usually solved by running the A* algorithm on a grid
or a navigation mesh. However, in many modern applications,
strictly traversing the resulting path is not sufficient. Agents
need to be able to deviate from these paths, e.g. to avoid each
other or react to dynamic changes in the environment. Multiple
levels of planning are necessary to efficiently simulate realistic
behavior, and the underlying data structures and algorithms
should support those levels. Many existing crowd simulation
frameworks do not have this flexibility.

In this paper, we propose a five-level hierarchy for agent
navigation in virtual environments. The five levels are high-level
planning, global route planning, route following, local movement,
and animation. The three center levels concern geometric plan-
ning and require a navigation mesh that represents the navigable
space of the environment. We describe an efficient and flexible
navigation mesh for 2D and multi-layered 3D environments. We
also present our crowd simulation software that uses this mesh;
we outline its architecture and show that the framework is easily
extendible. Finally, we show that our software can simulate large
autonomous crowds in real-time.

I. INTRODUCTION

Path planning and crowd simulation are fundamental AI
problems in computer games, and they are becoming increas-
ingly important for serious applications such as crowd man-
agement, evacuation studies, and safety training. In these ap-
plications, virtual characters (or agents) need to autonomously
find and traverse paths through the environment. Agents should
act in a realistic manner: their trajectories must be short and
smooth, there should not be any collisions between agents, and
the agents are typically expected to mimic human behavior.
Furthermore, the simulation should be efficient even if the
crowd is very large or dense. In short, agents need to perform
multiple tasks that reach beyond a simple path planning algo-
rithm. As such, a crowd simulation system requires multiple
levels of planning.

In this paper, we propose a generic five-level hierarchy
for solving agent navigation problems, and we present our
algorithms and implementations of the three center levels.
A preliminary version of the hierarchy has been outlined in
previous work [1]. We improve upon this work by outlining
gaps in existing frameworks, by emphasizing the need for
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Fig. 1. A five-level hierarchy for path planning and crowd simulation systems.
The geometric levels, which can be solved using our algorithms and software,
require an efficient navigation mesh of the environment.

a surface-based representation (a navigation mesh) of the
environment, by describing the architecture of our generic
crowd simulation software, and by showing the software’s
functionalities and efficiency in more detail.

Figure 1 shows an overview of the hierarchy. Using a single
agent as an example, the levels can be summarized as follows:

• High-level planning uses AI techniques to translate a
semantic action (e.g. ‘go home’) to one or more geometric
queries (‘find a path from position s to position g’).

• Global planning computes an indicative route, i.e. a path
from s to g that should be roughly followed.

• The three lower levels update the agent in every step of
the simulation loop. Path following lets the agent choose
a preferred velocity such that it follows the indicative
route. Note that a velocity is a 2D vector that encodes
both speed and direction.

• Local movement computes a velocity that deals with local
hazards, e.g. to prevent collisions with other agents, while
remaining close to the preferred velocity. The simulation
then applies this velocity through time integration.

• Finally, animation handles the visual movement of the
agent, down to its 3D skeleton representation.

This paper focuses on the geometric aspects of planning,



Fig. 2. Example of a crowd simulation in a university-like environment. This
simulation was generated using our software in combination with Unity3D.

i.e. the tasks imposed by levels 4, 3, and 2. To solve these
tasks efficiently, we argue that a navigation mesh is necessary.

II. RELATED FRAMEWORKS

Path planning in the context of game AI has been studied
extensively [2], and all aspects of crowd simulation are active
research topics [3]. We will refer to related work on specific
aspects in Section III.

Several frameworks exist for crowd simulation and analysis
in serious applications, such as training and evacuation studies
[4]–[9]. One of these uses our ECM software as a black
box for geometric planning [7]; thus, our software is already
being used in the simulation industry. Most other simula-
ton frameworks require more manual work, as they do not
automatically compute an efficient navigation data structure.
In the entertainment industry, the Unity3D game engine has
recently adopted the Recast and Detour systems for automatic
navigation meshes and agent simulation [10], whereas Golaem
Crowd [11] has shifted its focus to high-quality plug-and-play
crowds for entertainment applications. Massive [5] is used for
crowd generation in many movies and games.

In the research community, SteerSuite [12] is used for
simulating and evaluating local movement. ADAPT [13] is
a platform for developing agent behavior with an emphasis
on animation. SimPed and NOMAD are models for passenger
flows, based on real-world observations [14], [15]. The work
closest to our own is Menge [16], a system in development
that uses a multi-level hierarchy similar to ours [1].

Our work differs in that it presents a more generic solution
for the geometric aspects of path planning and crowd simula-
tion. First, our navigation mesh has many advantages, such as
a small memory footprint, fast query times, independence of
agent sizes, and support for dynamic environments. Second,
we treat route following as a separate level for better flexibility.
Third, we include specialized algorithms for route planning
and route following in weighted regions.

III. A MULTI-LEVEL PLANNING HIERARCHY

As mentioned, a crowd simulation system comprises more
than just path planning, which highlights the need for multiple
levels of planning. In this section, we further describe the five
levels of planning proposed in Figure 1. We also list the most
important related work in each level.

A. High-Level Planning

At the top of the hierarchy, high-level planning (level
5) translates the desired semantic behavior of a agent to
geometric path planning problems. First, an agent’s abstract
task such as ‘take the train to work’ can be converted to a list
of more concrete tasks, e.g. ‘go to the train station, buy a train
ticket, go to the correct platform, enter the train’, and so on.
Based on this plan, the agent should compute an ordered list
of goal positions [17].

High-level planning is a research topic of its own, involving
techniques such as STRIPS [18] and Hierarchical Task Net-
works [19]. Cognitive decision-making models have also been
applied to crowd simulation [17], [20]. In the remainder of this
paper, we focus on geometric planning, and we deliberately
treat high-level planning as a black box. Hence, our geometric
software framework can be plugged into any simulation system
that produces specific start and goal positions for an agent.

B. Global Route Planning

Next, global route planning (level 4) uses the agent’s
current goal position to compute a geometric route through the
environment. We refer to the result as an indicative route, since
it is a preliminary indication of how the agent should move.
Having an indicative route that is followed roughly (instead
of a path that is followed exactly) yields greater flexibility in
the lower levels of the hierarchy. An indicative route can be
any curve through the walkable space. In practice, it is often a
piecewise linear curve given by a sequence of bending points.

The A* search algorithm [21] is a valuable method for
solving global planning problems: it computes an optimal
(e.g. shortest) route between two arbitrary query points in any
graph structure. To use this algorithm for crowd simulation,
a simplified representation of the environment is required.
Section IV will show why a navigation mesh is most suitable.

It is common to look for a short route through the en-
vironment, or a route that stays on the left or right side of
the walkable space while keeping some distance to obstacles
[22]. Routes can also be computed based on other criteria.
For instance, one could map crowd density information onto
the graph to let agents prefer routes that are less congested,
which automatically spreads a crowd over multiple routes
[23]. Alternatively, visibility information can be used to plan
stealthy routes along which an agent is not seen by others
[24]. Linear programming techniques can simulate global
coordination between groups of agents [25]. The environment
can also contain weighted regions for which an agent has
personal preferences. For example, a pedestrian might prefer to
walk on the sidewalk while avoiding roads, puddles or muddy
terrain. Planning optimal global routes in such environments
is computationally difficult, but provably good approximating
techniques exist [26]. See Figure 3 for another example.

C. Route Following

Route following (level 3) ensures that the agent follows the
indicative route πind smoothly. The goal of this level is to



compute a preferred velocity vpref for the agent in each time
step of the simulation.

Many researchers and software systems do not treat route
following as a separate level. However, we believe that route
following is crucial for the following main reasons:

• The indicative route is generally not smooth, and it is of-
ten computationally expensive to smoothen it beforehand.

• Modern collision avoidance algorithms (as described in
the next subsection) require a preferred velocity as input.
Unless the agent can walk towards its goal in a straight
line, we need an algorithm that chooses a desired walking
direction at any point in time.

• Due to the presence of other agents, an agent is often not
located exactly on πind. A route following algorithm can
define how the agent should gradually move back onto
the desired route.

• The virtual environment may contain weighted regions
that are less or more attractive to traverse. A route
following algorithm can take this into account, e.g. to let
an agent cut corners based on its personal preferences.

Two recent algorithms for route following are based on
attraction points: in each simulation step, they choose a point
patt on the indicative route towards which the agent wants to
move. The preferred velocity is then computed as the vector
that takes the agent to patt at its preferred walking speed.
This last step is analogous to one of the ‘steering behaviors’
described by Reynolds [27], who was also among the first to
acknowledge route following as a separate process.

The first algorithm, the Indicative Route Method (IRM)
[28], defines patt as the farthest point along πind that lies
inside the largest obstacle-free disk containing the agent’s
position. When more free space is available, patt lies farther
along the route and the amount of smoothing increases.

The successor of IRM, called Modified and Indicative
Routes and Navigation (MIRAN) [29], defines a set of candi-
date attraction points along πind and chooses patt as the best
candidate according to the agent’s personal region preferences.
In other words, the amount of smoothing and route shortening
depends on the local terrain costs for that particular agent.
A user-controlled parameter determines how far along the
route the candidate attraction points are allowed to lie, which
controls how closely the agent will follow the route. Figure 3
shows an example of this method.

D. Local Movement

At the local movement level (2), the agent might temporarily
deviate from its route to resolve local collisions with other
agents. This is generally referred to as collision avoidance.

In early collision avoidance algorithms, agents exerted at-
tractive and repulsive forces, and physical laws of motion
yielded new velocities for each agent [27], [30]. A disadvan-
tage of these models is that they are inherently reactive, instead
of letting the agents actively choose how to move based on
the movement of other agents.

Hence, more recent algorithms are based on velocity selec-
tion [31]–[33]. These algorithms let an agent pick the best

Fig. 3. Path planning and following in a forest (green) with tree obstacles
(black), puddles (blue), fallen trees (brown), and a spot with a panoramic view
(light gray). For two agents (adult and child), we compute an indicative route
(solid and dashed black, respectively) on a grid that uses personalized region
weights. The smoothed paths (solid and dashed red) are computed using the
MIRAN method.

speed and direction from a sampled range of options (i.e.
candidate velocities), based on a cost function. The cost of
a candidate velocity is based on the difference to the agent’s
preferred velocity, and on the predicted collisions with other
agents based on their current movement. In the end, the
agent chooses a velocity vnew that avoids collisions while
being similar to vpref . When all agents have computed a new
velocity, their positions are updated using time integration [28]
and the next simulation step begins.

Collisions are usually only predicted for a small number
of neighbors within the agent’s field of view. Finding these
neighboring agents is a computationally expensive step of
the simulation loop. A data structure such as a kd-tree is
suitable for answering nearest-neighbor queries [34]. Since
the distribution of agents in the environment is constantly
changing, this query structure is typically rebuilt in each
simulation step. Our own software does not use a kd-tree,
but a grid with square cells of 10 × 10 meters; agents only
need to consider the agents in their surrounding grid cells.

E. Animation

Finally, the animation level (1) produces visual output
by animating and translating the agent’s 3D model in the
environment [35]. This is relatively simple if the 3D motion
clips are available. Producing smooth and physically correct
animations without requiring such data is an active research
topic that is outside the scope of this paper.

Note that the animation and the simulation usually have dif-
ferent framerates. Crowd simulations often use a fixed timestep
of 0.1s (i.e. 10 frames per second) [28], whereas smooth
animation requires a much higher framerate. We therefore
assume that the animation level uses a separate loop. Whenever
a simulation step finishes and all agent positions have been
updated (in the simulation model only), the animation layer is
notified and visually brings the agents to their new positions.

F. Communication between layers

It is important to note that the planning process of our
hierarchy is not purely serial. Events in the lower levels may



cause an agent to reconsider its global plans. For instance,
when an agent has reached its goal position, it returns to
the global planning or high-level planning level to determine
its next action. Another example is re-planning: if a part of
the environment turns out to be too crowded, or a section
of the indicative route is unexpectedly blocked by a dynamic
obstacle, an agent may choose to reconsider its route and take
a detour.

IV. ENVIRONMENT REPRESENTATION

To facilitate the geometric steps of the planning hierarchy,
we need a convenient representation of the virtual environ-
ment. The environment’s original 3D geometry is not suitable:
performing queries for thousands of agents in 3D would be
too expensive. Instead, we require a simplified representation
for navigation tasks, which makes use of our assumption that
agents are constrained to walkable surfaces. We will argue
that a navigation mesh is the best choice for efficient real-
time solutions in levels 4, 3, and 2 of the hierarchy.

In the remainder of this paper, we assume that the walkable
environment is a set of connected 2D layers; each layer is a
planar surface with polygonal obstacles. From this point on,
we will also simply refer to this as ‘the environment’.

A. Related work

Representations of a walkable environment exist in three
categories: traditional graphs, grids, and navigation meshes.

Traditional graphs represent the environment by a set of
vertices and edges. They are a popular choice for high-
dimensional motion planning problems in robotics [36], [37]:
these problems are difficult to represent in an exact manner,
and a working solution is often preferred over a natural-
looking one. Graphs are less suitable for crowds of agents
on walkable surfaces: agents would need to either follow the
edges exactly (which leads to collisions between agents), or
perform expensive geometric tests to check how they can
deviate from an edge.

Grids subdivide the environment into regular cells such
as squares. They are intuitive and easy to implement [38].
However, grids have resolution problems: a coarse grid (with
few cells) does not capture the environment’s details, whereas
a fine grid (with many cells) quickly becomes too costly to
store and query.

By contrast, navigation meshes efficiently subdivide the
walkable space into polygonal regions. A global path in a
navigation mesh can be found by performing A* search on
the dual graph, which consists of one vertex per region and
one edge for each pair of adjacent regions. The result is a
sequence of regions to move through, such that agents can use
a strip of free space to locally adjust their movements during
the simulation steps. In other words, navigation meshes also
support the route following and local movement levels of our
suggested hierarchy.

Many navigation meshes exist for 2D environments [22],
[39], [40], and for multi-layered 3D environments in which
multiple 2D layers are connected [10], [41]–[43]. In general,

(a) Explicit Corridor Map
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Fig. 4. A simple environment with obstacles (shown in gray). (a) The ECM
is the medial axis (blue) annotated with closest-obstacle information (orange).
This subdivides the walkable space into polygonal regions. (b) A path along
the medial axis induces a corridor (light blue) due to the ECM’s annotations.
Within the corridor, we can define any indicative route from s to g; two
examples are shown in black.

navigation meshes represent the enviroment more adequately,
they are more scalable to large environments, and they are
flexible enough to support complex and crowded situations.

B. The Explicit Corridor Map

We have developed a navigation mesh called the Explicit
Corridor Map (ECM) [22], [42]. An example is shown in
Figure 4a. The ECM is based on the medial axis, which is
the set of all points that have at least two distinct equidistant
closest obstacle points in the environment. It is tightly related
to the generalized Voronoi diagram with obstacle polygons
being the corresponding Voronoi sites [34]. The medial axis
is a graph in which all edges run through the middle of the
walkable space. Each vertex of this graph has at least three
different nearest obstacle points, or it lies at a non-convex
obstacle corner. Each edge of the medial axis consists of a
sequence of line segments and parabolic arcs, depending on
the type of obstacles to the left and right. For a 2D environment
with n obstacle vertices, the medial axis has O(n) complexity
and can be constructed in O(n log n) time [22].

The ECM is an annotated medial axis: it stores the left
and right closest obstacle points for each edge section. This
partitions the environment into polygonal walkable regions.

The ECM has many features that make it well-suited for
our framework and for crowd simulation in general:

• It is a sparse graph with only O(n) vertices and edges.
Hence, it requires little storage, and global paths can be
extracted efficiently using e.g. A* search.

• It can be constructed in O(n log n) time, so it scales well
to larger environments.

• It represents the exact geometry of the walkable envi-
ronment. This resolves the issues that are inherent to
approximated representations such as grids.

• Its regions are non-overlapping, which makes many
queries and algorithms easier.

• For any point in the free space, the ECM cell containing
it can be found in O(log n) time, after which the nearest
obstacle can be found in O(1) time. This makes collision



checking with static obstacles very efficient. In one
simulation step, an agent either stays in the same cell
or moves to an adjacent one, so point location queries
are rarely needed. Hence, on average, collision checking
with obstacles takes constant time per agent.

• It enables path planning for agents of any size, using only
a single data structure. Because the ECM stores clearance
information, A* can determine in real-time whether an
agent is small enough to traverse an edge. Most other
navigation meshes artificially inflate the obstacles and
work well for only one agent size.

• It can produce a variety of indicative routes, e.g. routes
that stay on the left and right side of the walkable space,
or short paths with a preferred amount of clearance [22].
Figure 4b illustrates this.

• It can be efficiently updated in response to insertions
and deletions of obstacles [44], such that it allows crowd
simulation in dynamic environments.

• It is well-defined for multi-layered 3D environments [42]
that consist of multiple connected 2D layers. Any 2D
algorithm that uses the ordering of ECM edges (e.g.
dynamic updates, visibility queries, or computing short
paths with clearance) will work trivially in these envi-
ronments.

In short, the ECM is a generic basis for efficient path
planning and crowd simulation.

V. CROWD SIMULATION SOFTWARE

In this section, we describe our crowd simulation software
framework based on the ECM navigation mesh. Our software
can be applied to the geometric planning problems induced
by a semantic high-level planner. The framework is written
in C++ using Visual Studio 2013, but its code is platform-
independent and compiles successfully on Linux as well.

A. Input and Output

The environment is assumed to be given in a simple XML
file format that describes the geometry of each 2D layer. Per
layer, the geometry can consist of walkable areas (polygons on
which agents can walk), obstacles (non-walkable polygons that
overrule walkable areas), and openings (walkable polygons
that overrule obstacles). This combination of elements makes
the environment easy to define. An example is shown in Figure
5a. Layers can also contain connections; a connection is a
line segment that connect the walkable space of two adjacent
layers. Figure 5b shows a multi-layered environment with
connections. Finally, each layer can contain weighted regions:
polygons with a certain type (e.g. ‘grass’ or ‘road’) to which
agents can associate a personal weight. These weights are
stored in separate agent profiles: XML blocks that describe all
agent properties required for a simulation, such as the radius,
the preferred walking speed, and the algorithms to use for
global planning, path following, and collision avoidance.

A computed ECM is saved as an XML file that describes
all vertices, edges, and closest-obstacle annotations. Running
a simulation in our framework requires a navigation mesh,

a set of agent profiles, and the environment. All results (the
environment, the ECM, or the state of the simulation at any
point in time) can also be exported to a vector file for Ipe [45].

(a) 2D
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C12
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Fig. 5. Constructing an environment. (a) Users can define the walkable space
of a layer in terms of walkable areas (light gray), obstacles (dark gray),
and openings (yellow). The medial axis of the combined walkable space is
shown in blue. (b) Multi-layered environments consist of 2D layers Li and
connections Cij . The layers are drawn in different colors for clarity.

B. Computing Navigation Meshes
Our software can compute the ECM of a walkable environ-

ment. For a 2D environment, we first convert the geometry to
a set of disjoint non-walkable polygons, by applying Boolean
operations using the OpenGL tessellator [46]. Despite being
part of the OpenGL library, this tessellator does not require
any discretized rendering.

The resulting polygons are sent to an ECM generator of
choice. Three such generators have been implemented:

• The first implementation renders an approximated
Voronoi diagram on the GPU [47], which is converted
to an ECM on the CPU [22]. It requires the user to set
the rendering resolution, e.g. at 20 pixels per meter. See
Figure 6a for an illustration.

• The second implementation uses Vroni [48], a library that
is widely used in geometry-related research. It computes
a topologically correct Voronoi diagram for a set of
line segments (i.e. the contours of the walkable space).
From the result, we extract the medial axis, add the
ECM’s closest-obstacle annotations, and filter out graph
components that lie inside the obstacle space. Figure 6b
shows an example.

• The third implementation works similarly to the second,
but it uses the Voronoi diagram functionalities of the
open-source Boost library [49].

Ideally, Boost and Vroni are preferred, because they do
not depend on a resolution parameter. However, since these
exact methods respond to every imprecision in the input, their
resulting ECMs may contain unwanted details. Additional fil-
tering steps (e.g. filling small openings, merging line segments
that are close together, and resolving intersections between
segments) are needed to achieve robustness for arbirtary envi-
ronments.

For multi-layered 3D environments, we use an iterative
algorithm that first computes the 2D ECM for each layer



(a) GPU-based (b) Exact

Fig. 6. Two ways to generate the ECM. (a) Using rendering techniques, we
can approximate the Voronoi diagram on the GPU frame buffer. (b) External
libraries such as Boost and Vroni can compute the Voronoi diagram, which
we convert to an ECM. Graph elements inside obstacles are filtered out in a
post-processing step.

and then stitches these ECMs together to obtain a continuous
multi-layered navigation mesh [42]. Since this navigation mesh
locally has the same properties as in a single layer, all 2D
algorithms (e.g. visibility queries, global path planning, and
dynamic updates) trivially work in the multi-layered ECM as
well. The construction algorithm consists only of a sequence
of 2D steps, so any of the generators described above can be
used.

The ECM generator can either return the navigation mesh as
an XML file or keep it in memory, so one could immediately
start a simulation instead of loading the file again.

C. Algorithms of the Planning Hierarchy

For global planning, we have implemented A* to compute
shortest paths on the medial axis. The resulting path can be
converted to various types of indicative routes: short paths with
a preferred amount of clearance, or paths with side preference
(e.g. for staying on the left and right side of the free space). We
have also included a re-planning algorithm that recomputes the
medial axis path efficiently after an obstacle has been inserted
or deleted.

When weighted regions are present, agents can perform A*
search on a weighted grid instead. At the time of writing, an
improved method for weighted regions is being integrated into
the framework [26].

For path following, our framework includes both IRM [28]
and MIRAN [29]. At the local movement level, we have
implemented two recent velocity-based collision avoidance
algorithms by Moussaı̈d et al. [33] and Karamouzas et al. [31].
We have also included the popular ORCA collision-avoidance
library [32] in our framework.

D. Architecture

We will now highlight a number of details concerning
the architecture of our software. This discussion focuses on
aspects that make the framework modular and efficient.

Modularity. For each of the three geometric levels in the
hierarchy, any algorithm can be plugged in as long as it
implements the required abstract methods. For example, all

route following implementations should compute the preferred
velocity for a given agent, but the programmer can decide
the internal details. We use the factory design pattern so that
new implementations can easily be added. Users can assign
any combination of algorithms to an agent (e.g. short global
paths with clearance, MIRAN for path following, and RVO for
collision avoidance) using a settings file. A similar architecture
is used for the ECM generators described in Section V-B, so
that users can easily switch between implementations.

Sequence of simulation loops. Instead of performing all
computations at once for each agent, we subdivide a simulation
step into multiple loops. We first compute the preferred
velocity of each agent; next, we compute the actual velocity
of each agent; finally, we update the agents’ positions. This
ensures that the order in which the agents are stored does
not matter: the first agent in the ordering uses the exact same
information as the last agent, and the result is deterministic.

Multi-threading. Each of the loops in a simulation step can
easily be parallellized, because a single agent only needs to
read properties of the environment or neighboring agents.
Hence, the calculations for different agents are completely
independent. We use basic OpenMP instructions [50] to auto-
matically divide multiple agents over multiple threads, without
having to lock parts of the code to prevent conflicts and
deadlocks between threads.

API / Library. We have also built the framework as a
Windows library (DLL) with a number of basic API functions,
e.g. for loading an environment, computing the ECM, adding
an agent, et cetera. The API function that performs a single
simulation step fills an array of wrapper objects (C structs)
that contain the new positions and orientations of each agent,
and it returns a pointer to this array. If an external program
is linked to our DLL and defines the exact same wrapper
object, both programs can share the array. Using this tech-
nique, we have linked our DLL to the Unity3D game engine
to display moving crowds in 3D. The Pedestrian Dynamics
crowd analysis software [7] uses our framework in a similar
fashion. This software was used for various crowd simulations
in preparation for real-life events, such as crowded sports
stadiums and King’s Day in Amsterdam.

VI. EXPERIMENTS

In this section, we demonstrate the capabilities of our
software using two large environments: City, a 2D footprint
of a virtual city, and Station, a multi-layered model of a train
station in The Netherlands. Both environments and their ECMs
are shown in Figure 7. Details of the environments can be
found in Figure 8.

All experiments were performed on a Windows 7 PC with
a 3.20 GHz Intel i7-3930K CPU, an NVIDIA GeForce GTX
680 GPU, and 16 GB of RAM. In general, only one CPU
core was used, except in the final experiment which shows
the benefit of multi-threading.

A. Generating the ECM
We have computed the ECM for both environments using all

three implementations. For the GPU-based method, we used



(a) City (3D) (b) City (2D)

(c) Station (terminal layer)

(d) Station (platform layer)

Fig. 7. The two environments used in our experiments. The medial axis is
shown in blue; closest-point annotations are shown in orange. For the Station
environment, only the two main layers are shown. Layer connections are
displayed in red.

a resolution of 4000 × 4000 pixels. All computations were
repeated 10 times. The results are shown in the last three
columns of Figure 8. This table shows that our Vroni-based
implementation is the fastest: on average, it computes the ECM
of City in 84 ms, and the ECM of Station in 368 ms. Hence,
even for large and multi-layered environments, the ECM is
generated well within a second, which allows our framework to
be integrated into a modelling tool with interactive feedback.

B. Dynamic Updates

Next, we have dynamically inserted 100 obstacles into both
environments at random free positions. After an insertion, the
ECM is updated along with its point-location data structure,
such that agents can use the updated navigation mesh in
future simulation steps. For simplicity, we only added square
obstacles measuring 2 × 2 meters, although the insertion
algorithm supports any convex polygon that does not intersect
existing geometry [44]. Figure 10a shows the obstacles and

the resulting ECM for City.
The insertion times (for updating both the ECM and the

point-location structure) are shown in Table 9. On average, a
insertion took 3.70 ms in City and 1.25 ms in Station. The
running times in City are higher because this environment is
more complex, meaning that a dynamic update affects more
ECM cells on average. These results indicate that the ECM
can efficiently model dynamically changing environments,
e.g. with bridges that may collapse, parked vehicles that
temporarily block roads, et cetera. More experiments can be
found in a previous publication [44].

C. Computing Visibility Polygons

For any point p in the walkable space, our software can also
compute the 2D visibility polygon V (p), i.e. the area that is
visible from p, assuming all surfaces are flat. In multi-layered
environments, the polygon may lie on multiple layers, so this
is an approximation of 3D visibility. The visibility polygon
can be used to model what agents can visually perceive, e.g.
to let them respond to an event in the environment when they
see it. This polygon is computed by traversing the ECM cells
in an ordered manner; hence, the running time depends on the
number of cells that V (p) intersects.

We computed the visibility polygon for 1, 000 random query
points in both environments. This algorithm takes 0.15 ms
in City and 0.10 ms in Station on average. Thus, the ECM
framework can easily answer visibility queries for many agents
in real-time. Figure 10b shows a number of visibility polygons
in the City environment.

D. Computing Indicative Routes

Next, we have computed global indicative routes for 1, 000
pairs of random start and goal positions per environment. To
compute such a route, we first perform A* search on the ECM,
which yields a shortest path along the medial axis. We then
extract an indicative route through the corridor around this
path, as explained in Figure 4b.

In Section IV-B, we stated that there are many options for
computing an indicative route through a corridor. Since these
options have comparable complexity, showing only one option
is sufficient for giving a general indication of global planning
times. For this experiment, we have used the shortest route
[22] with a preferred clearance of 0.5 m.

On average, global planning takes 1.17 ms in City (σ =
0.70) and 0.85 ms in Station (σ = 0.47). The computation
time for a single indicative route is roughly proportional to the
number of vertices on its ECM route. This explains the high
standard deviations, since random query points yield paths of
different lengths. Examples of indicative routes in City are
shown in Figure 10c.

E. Crowd Simulation

To show the efficiency of our crowd simulation software,
we have generated increasingly large crowds of agents in
our environments. Figure 10d shows a crowd in the City
environment.



We measured the running time of each simulation step
as long as all agents were still traversing a path, i.e. up to
and including the step in which the first agent reached its
goal. All agents received random start and goal positions,
with a minimum 2D Euclidean distance of 50 meters between
start and goal to ensure that the agents did not reach their
goal too quickly. Note that we excluded the time required
for computing the indicative routes; this aspect was already
covered in the previous experiment.

We ran all simulations using fixed timesteps of 0.1 seconds,
which is common in crowd simulation software [28]. Thus,
whenever these steps take at most 100 ms to compute, our
simulation runs in real-time. In line with real-life measure-
ments [51], we used an agent radius of 0.24 meters and a
preferred walking speed of 1.4 m/s. For path following, we
used MIRAN [29] with a sampling distance of 1 m and a
shortcut parameter of 5 m. We used the vision-based collision
algorithm by Moussaı̈d et al. [33] because it yields the best
results in many scenarios. However, since collision avoidance
is inherently the most expensive phase (because it requires
agents to look for other agents), we have run this experiment
both with and without collision avoidance.

We have also performed all simulations with and without
multi-threading. As described in Section V-D, a step of the
simulation loop consists of multiple subtasks: computing the
preferred velocities of all agents, computing the actual veloci-
ties to avoid collisions, and updating all positions using these
velocities. We have used OpenMP to divide the workload of
each subtask over 8 threads. Note that the three loops are still
executed in sequence, to maintain consistency among agents.

We choose to report the results of City only, since the
results for Station are comparable and the City environment is
physically larger, i.e. it supports larger crowds.

Without Collision Avoidance. When collision avoidance is
disabled, the running time of a simulation step scales linearly
with the number of agents, as indicated by the red line in
Figure 11a. For example, with 100, 000 agents, a step took 82
ms on average. With one million agents, it is worth noting that
the framework used 2.3GB of memory in this scenario, which
is a small memory footprint considering the size of the crowd.
A crowd of this size cannot be simulated in real-time yet, but
multi-threading techniques and hardware improvements could
make this possible in the near future.

Using 8 parallel threads greatly improves the running times,
as indicated by the green line in Figure 11a. The simulation
does not become 8 times as fast, because not the entire
simulation step can be parallellized, e.g. the three subtasks
need to be performed sequentially. Still, we achieve a speed-
up factor of 3 to 4 for large crowds. For instance, simulating
200, 000 agents now takes 50 ms per step on average. Future
work will show how the number of threads influences the
improvement ratio.

With Collision Avoidance. Figure 11b shows the running times
for the same scenarios with collision avoidance. Note that this

figure intentionally has a different scale on both axes. We
could not model the largest crowds because the environment
became too full; simulating up to a million agents would only
make sense in a much larger environment.

A multi-threaded simulation with 10, 000 agents requires 63
ms per step on average. The computation time now appears
to scale quadratically with the number of agents. This is most
likely due to the grid used for nearest-neighbor queries, which
has cells of a fixed size. If large clusters of agents appear in
one cell, agents need to evaluate many potential neighbors. A
data structure such as a kd-tree could overcome this problem,
although such a structure would need to be rebuilt in each
simulation step. We leave a comparison of these data structures
for future work.

In conclusion, the ECM framework can simulate tens of
thousands of agents in real-time, including collision avoidance.
Of course, many simulations will include more steps than the
ones we measured, such as global (re-)planning and high-level
planning. Also, if real-time visualization is desired (such as in
a computer game or an interactive simulation), less time is
available for the simulation itself. The details depend on the
application at hand.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have suggested a five-level hierarchy for
solving agent navigation problems in games and simulations.
By treating each level separately, we subdivide a complex
problem into more manageable subproblems.

We have presented our Explicit Corridor Map (ECM) frame-
work as an implementation of the three center levels, which
comprise the geometric aspects of navigation: global planning,
route following, and local movement. The ECM is a navigation
mesh that has many advantages over classical graph or grid
representations. For instance, it enables fast and flexible global
path planning due to an underlying sparse graph, it supports
agents of all widths using only one data structure, and it
allows fast collision checking with obstacles due to its cell
decomposition. Experiments show that our software allows
many operations at interactive rates, and that it can simulate
large crowds in complex 2D and multi-layered environments
in real-time.

Our framework is general enough to support various future
extensions and improvements. One possible extension is to
take agents of different heights into account. For instance, big
vehicles may not fit through small tunnels that regular agents
can use. Furthermore, future versions of the framework will
allow the simulation of small groups of agents [52] and high-
density crowds with improved coordination.

We believe that our flexible and extensible framework
provides a comprehensive set of techniques for researchers,
game developers, and crowd simulation engineers.
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Environment Geometry ECM ECM construction time (ms)
#Obstacles #Vertices Size (m) #Vertices #Edges #Annotations Vroni Boost GPU

City 184 2098 500× 500 1444 1623 6310 84 [1.3] 141 [1.7] 554 [4.6]
Station 568 1800 153× 111 660 768 2804 368 [4.4] 381 [5.2] 1266 [8.1]

Fig. 8. The experimental environments and their ECMs. The Geometry columns show the number of obstacles, their combined number of vertices, and
the width and height of the environment (in meters). The ECM columns show the complexity of the ECM: the number of vertices, edges, and points with
closest-obstacle information. The last three columns show the construction time for the ECM using all three implementations. Running times were averaged
over 10 runs; the standard deviations are shown between square brackets.

Environment Dynamic insertions (ms) Visibility (ms) Indicative routes (ms)

City 3.70 [0.38] 0.15 [0.06] 1.17 [0.70]
Station 1.25 [0.21] 0.10 [0.07] 0.85 [0.47]

Fig. 9. Results of three experiments. Standard deviations are shown in square brackets. The Dynamic insertions column displays the time to dynamically
insert a square obstacle into the ECM, averaged over 100 obstacles. The Visibility column displays the time to compute a visibility polygon, averaged over
1, 000 random positions. The Indicative routes column denotes the time to compute a short indicative route with clearance, averaged over 1, 000 pairs of
random start and goal positions.

(a) Dynamic updates (b) Visibility (c) Indicative routes (d) Crowd

Fig. 10. Experiments in the City environment. (a) We have dynamically inserted 100 square obstacles (shown in black) at random positions. The updated
medial axis is shown in blue. (b) Visibility polygons. Query points are shown in black; their visibility polygons are shown in different colors. (c) Examples
of 500 indicative routes (shown in blue) between random start and goal positions, computed by performing A* on the ECM and computing a short route
within the resulting corridor. (d) A crowd of 5, 000 agents, shown as orange disks. Agents have been enlarged for illustrative purposes.
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(a) Without collision avoidance
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(b) With collision avoidance

Fig. 11. Running times of crowd simulations in the City environment. The horizontal axis shows the number of agents (×1, 000); the vertical axis shows the
average running time of a simulation step, which models 100 milliseconds of simulation time. (a) Without collision avoidance, the running time is proportional
to the number of agents. Multi-threading improves the results by a factor of 3 to 4. (b) With collision avoidance, the running time increases at a higher rate.
Multi-threading allows us to simulate over 10, 000 agents in real-time.
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