
Way to go - A framework for multi-level planning in games

Norman Jaklin, Wouter van Toll and Roland Geraerts

Utrecht University, Department of Information and Computing Sciences

Abstract

Path planning is one of the classical computational
tasks in video games. Virtual characters need to au-
tonomously find a path from their current position to a
designated goal position. This is usually solved by run-
ning the A* algorithm on a grid or a navigation mesh.
However, in many modern games, strictly following the
resulting path is not sufficient. More levels of plan-
ning are necessary to efficiently simulate realistic and
advanced behavior, and the underlying data structure
should support those levels. In this paper, we discuss a
five-level hierarchy of planning in games. Furthermore,
we present a framework that provides solutions for the
three center levels: global route planning, route follow-
ing, and local planning. It uses an efficient and flexible
navigation mesh based on the exact geometry of the en-
vironment. Our framework can be extended to solve ad-
vanced path planning problems in future games. When
used as an interface for higher-level semantic planning
systems, it provides a comprehensive set of techniques
for game developers and path planning researchers.

Introduction - the different levels of planning
Similarly to domains such as graphics, animation, or physics
simulation, the field of path planning in video games has in-
creased in complexity over the last decades. This aspect of
game AI has been studied extensively (Rabin 2002). It might
seem that path planning problems have been solved by algo-
rithms such as A* (Hart, Nilsson, and Raphael 1968). How-
ever, in modern games, path planning is still limited with
respect to an ever-increasing demand for new features that
enhance player immersion. In addition, even when solving
allegedly simple tasks such as letting a character reach a goal
position, some games still suffer from flaws due to approxi-
mated graph-based representations of the navigable space.

A* is a valuable method to find global shortest paths in
any graph structure. In simple cases, one could use a recti-
linear grid, which does not lead to any information loss if
the game world consists of rectilinear tiles. A* on a basic
graph also works well if the game does not require any ad-
vanced features such as visually convincing and smooth tra-
jectories, clearance from obstacles, collision avoidance be-
tween characters, path planning in environments with mul-
tiple height levels, reacting to dynamic changes in the envi-
ronment, dealing with characters of various sizes, or taking

Figure 1: Autonomous virtual characters in a multi-layered
3D environment using the Explicit Corridor Map (ECM)
(van Toll, Cook IV, and Geraerts 2011)

other environmental factors into account, e.g. different ter-
rain types or crowd density information.

Modern games, however, do require such advanced fea-
tures. Viewed from this perspective, computing a global
shortest path from a start to a goal position is only one aspect
in a multi-level hierarchy of planning systems. We propose
five levels of planning that a modern video game might re-
quire. Figure 2 shows this five-level hierarchy.

At the top of the hierarchy, high-level planning (5) trans-
lates the desired semantic behavior of a character to geomet-
ric path planning problems. For example, the character could
have an abstract task such as ‘steal a stash of gold’. This can
be converted to a list of more concrete tasks, e.g. ‘enter the
village, find character X, plunder its chest full of gold and
leave the village without being seen’. Based on this plan, the
character should compute an ordered list of goal positions.
High-level planning is a research topic of its own, involving
techniques such as STRIPS (Fikes and Nilsson 1971) and Hi-
erarchical Task Networks (Kelly, Botea, and Koenig 2008).

Next, the global route planning level (4) uses the list of
goal positions to compute geometric routes through the envi-
ronment. This is where a classical method such as A* might
be used, provided that the underlying graph structure does
not yield any drawbacks with respect to the tasks at hand.

The three lower levels update the character in every step
of the simulation. On the route following level (3), the global
routes are being traversed. Depending on the application,
this can be either a strict and simple following routine, or
an advanced method that creates visually convincing tra-



High-level planning

Global route planning

Simulation step

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

Level 5

Level 4

Level 3

Level 2

Level 1

(event management,
action planning, . . . )

Figure 2: The five-level hierarchy of planning in games.

jectories while take other parameters such as terrain types
into account. On the local movement level (2), the character
might temporarily deviate from its global route to resolve
local collision avoidance with other characters or to react to
dynamic changes in the environment. Finally, the animation
level (1) handles the actual animation down to the skeleton
representation of the character model.

This planning process is not purely serial: events in the
lower levels may cause a character to reconsider its global
plans. For instance, if a part of the environment turns out to
be too crowded, a character may choose to take a detour.

In this paper, we present an efficient and flexible frame-
work for levels 4, 3, and 2, i.e. the levels that concern ge-
ometric path planning. We deliberately treat the high-level
planning phase as a black box, and we argue that our frame-
work can be plugged into any game AI system that follows
the suggested hierarchy.

The Explicit Corridor Map framework
The core of our framework is a navigation mesh called the
Explicit Corridor Map (ECM) (Geraerts 2010). We assume
that the environment consists of polygonal obstacles. The
ECM is based on the medial axis, which is the set of all
points that have at least two distinct closest obstacle points
in the environment. The medial axis is closely related to the
Voronoi diagram, which is a fundamental data structure in
the field of computational geometry (de Berg et al. 2000).

Figure 3 shows an example. The medial axis can be seen
as a special type of waypoint graph in which all edges run
through the middle of the free (or traversable) space. For
each vertex of this graph (shown as big black discs), there
are either at least three different nearest obstacle points, or
the vertex is placed in a non-convex corner of an obstacle.
An edge of the medial axis consists of a sequence of line
segments and parabolic arcs, depending on the type of ob-
stacles to the left and right. For a 2D environment with n
obstacle vertices, the medial axis has O(n) complexity and

Figure 3: A 2D environment with obstacles (shown in gray).
Its ECM is the medial axis (blue) annotated with closest-
obstacle information (orange) at a selection of points. This
subdivides the traversable space into polygonal regions.

can be constructed inO(n log n) time. Alternatively, one can
use graphics hardware to robustly approximate the structure
(Hoff III et al. 1999).

The ECM is an annotated medial axis: it stores the left
and right closest obstacle points for each edge section. This
partitions the environment into a set of polygonal walka-
ble regions. Recently, we have extended the medial axis and
the ECM to multi-layered 3D environments (van Toll, Cook
IV, and Geraerts 2011). An example of a crowd in a multi-
layered ECM is shown in Figure 1.

The ECM has many features that make it well-suited
for our framework. All space is represented with respect
to the exact geometry of the environment. This resolves
the issues that are inherent to approximated representations
such as grids or waypoint graphs. Furthermore, the ECM
is space-efficient and supports time-efficient extraction of
global paths with any desired amount of clearance from ob-
stacles. It therefore supports characters with arbitrary sizes.
The ECM is well-defined for both 2D and multi-layered 3D
environments. In addition, we have shown that the ECM can
be efficiently updated in response to insertions and deletions
of obstacles (van Toll, Cook IV, and Geraerts 2012a). Fi-
nally, the concept of the ECM is general enough to allow for
many extensions and advanced planning methods that build
upon it, as will be illustrated in the next section.

Contributions to the planning hierarchy
Our framework comprises methods and techniques that pro-
vide efficient real-time solutions for the second, third and
fourth levels of the hierarchy. Hence, it can be applied to ge-
ometric planning problems induced by a semantic high-level
planner. We will now discuss the contributions in detail.

Global route planning
A global route planner should compute an indicative route
from the character’s start s to its goal position g. Formally,
an indicative route can be any curve πind : [0, 1] → R2

through the free space of the environment. In practice, we
implement such a route as a sequence of points connected
by straight-line segments that do not intersect any static ob-
stacles. The concept of using an indicative route for path



g

s

Figure 4: In the ECM, a path along the medial axis (blue)
induces a corridor (light blue) due to its closest-obstacle an-
notations. Within the corridor, we can define any indicative
route from s to g; two examples are shown in black.

planning has first been introduced in the Indicative Route
Method (Karamouzas, Geraerts, and Overmars 2009).

There are various approaches to compute a global indica-
tive route. For instance, we have implemented A* on the
ECM to find shortest paths along the medial axis. This is
generally more efficient than performing A* on a grid due
to the sparseness of the ECM structure. Furthermore, with
the clearance information stored in the ECM, characters of
all sizes can use the same graph without having to inflate the
obstacles in a preprocessing step.

The optimal route through the ECM does not have to be
the shortest; optimality can also be based on other criteria.
For instance, we have shown how to map crowd density in-
formation onto the regions induced by the ECM (van Toll,
Cook IV, and Geraerts 2012b). By using density information
in the A* algorithm, characters can prefer paths with little
expected delay. In practice, they will plan detours around
congested areas, and the crowd will automatically spread
over multiple routes of different homotopy classes.

Performing A* on the ECM always yields a corridor,
which is a sequence of medial axis edges plus a description
of the surrounding free space. A corridor represents a subset
of the free space in which valid indicative routes that belong
to the same homotopy class are contained. We can therefore
create various indicative routes from s to g, e.g. a route that
stays on the left or right side of the corridor, or the shortest
route in the corridor with a preferred amount of clearance to
obstacles (Geraerts 2010). Figure 4 illustrates this concept.

We have also created a method to find stealthy global
paths with limited exposure to other characters, i.e. a path
that lets the character stay unseen by other moving charac-
ters as much as possible. To this end, we computed visibility
information on the GPU and mapped it onto an extended
version of the ECM (Schager and Geraerts 2010).

Only recently, we added various terrain types to our vir-
tual environments. Those can be used to ensure that a charac-
ter plans its global route based on a set of individual terrain
preferences. For example, a pedestrian might prefer to walk
on the sidewalk while avoiding roads, puddles or muddy ter-
rain. We refer the reader to Figure 6 for an example.

Lastly, we have developed a planning approach based

Figure 5: We have used an extended ECM to plan stealthy
paths based on visibility information.

on linear programming (Karamouzas, Geraerts, and van der
Stappen 2012). It coordinates an entire crowd consisting of
one or more independent groups of characters. The method
efficiently computes the most promising paths in both time
and space and yields an optimal distribution of the groups
members over these paths. Thus, the characters’ average
traveling time is minimized. The computed space-time plan
is then combined with an agent-based steering method to
handle collisions and generate the final motions of the char-
acters. The method runs at interactive rates and is able to
solve complex planning problems involving one or multiple
groups in gaming or crowd simulation applications.

The result of the global planning level serves as input to
the route following level, which we will discuss next.

Route following
In this level, an indicative route πind is given. The character
is supposed to follow the route, but it is allowed to deviate
from it. Our framework is built to switch between different
path following methods. Our methods use the concept of an
attraction point patt that lies on πind to generate smooth
paths. In each step of the simulation, the character picks a
new patt, which directly leads to a preferred velocity vpref
for the character in the current step. The direction of vpref
is the vector from the character’s current position to patt; its
magnitude is the character’s preferred speed.

We implemented two different path following meth-
ods that use attraction points. Firstly, the Indicative Route
Method (Karamouzas, Geraerts, and Overmars 2009) uses
the clearance information provided by the ECM. It defines
patt as the last point along πind that intersects the character’s
clearance disk. When more free space is available, patt lies
farther along the route and larger parts of πind are skipped,
i.e. the amount of smoothing increases.

Secondly, we have introduced a more general path follow-
ing method named MIRAN (Jaklin, Cook IV, and Geraerts
2013 to appear), in which the user can control the charac-
ter’s look-ahead distance and its eagerness to take shortcuts.
Furthermore, MIRAN lets characters plan their paths with re-
spect to their individual terrain preferences. In other words,
the amount of smoothing and route shortening depends on
the local terrain costs for that particular character. Figure 6
shows an example of this method.



Figure 6: A path (gray) in a forest (green) with obstacle
trees (black), puddles (blue), fallen trees (brown) and a spot
with a panoramic view (light gray). Two characters (adult
and child) follow automatically computed indicative routes
(solid and dashed black). The smoothed paths (solid red for
the adult, dashed red for the child) are computed with our
MIRAN method. Both the indicative routes and the paths
are based on the characters’ terrain preferences.

The local movement level is the last remaining one before
the actual animation on the skeleton level is handled. We
will now discuss in what way our framework covers it.

Local movement
In a virtual crowd, the characters may need to adjust their
velocities to avoid collisions with other characters. The task
of the local movement level in our framework is to compute
an actual velocity v for each character, based on its preferred
velocity vpref and other crowd members in its vicinity.

Many solutions for this collision avoidance problem are
available. Early algorithms defined repulsive forces between
characters (Helbing and Molnár 1995). Modern methods
prevent future collisions based on the perceived veloci-
ties of other characters, while deviating from vpref as lit-
tle as possible. Our framework includes one such approach
(Karamouzas and Overmars 2010), but it can support any
other velocity-based algorithm, such as the popular RVO
library (van den Berg, Lin, and Manocha 2008). Note that
collision detection for static obstacles is trivial in our frame-
work, because the ECM explicitly stores the nearest obstacle
for any point in the free space.

Conclusion and future work
We have given an overview of our framework that covers the
three center levels of a five-level planning hierarchy. Those
levels comprise the geometric aspects of planning in games
and can be combined with higher-level planning systems.

Our framework is general enough to support various fu-
ture extensions and improvements. One possible extension
is to take characters of different heights into account. For
instance, big vehicles may not fit through small tunnels
that regular characters can use. Another extension could be
visibility-based planning, e.g. letting characters re-plan their
paths based on the dynamic changes they can perceive visu-

ally. Finally, we could extend the MIRAN method so that it
does not only affect the global planning and path following
levels of the hierarchy, but also the local movement level,
e.g. by including terrain-based collision avoidance.

As we have shown, our framework is flexible and enables
future extensions. We therefore believe that it provides a
comprehensive set of techniques for game developers and
path planning researchers.

Acknowledgements
This research has been supported by the COMMIT
project (http://www.commit-nl.nl/) and the COMMANDS
project in cooperation with the European Design Center
(http://www.edc.nl/) and the Netherlands Forensic Institute
(http://www.forensicinstitute.nl/). The authors are part of the
Institute of Information and Computing Sciences, Utrecht
University, 3584 CC Utrecht, the Netherlands.

References
de Berg, M.; van Kreveld, M.; Overmars, M.; and Schwarzkopf,
O. 2000. Computational Geometry: Algorithms and Applications.
Springer-Verlag, second edition.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2(3/4):189–208.
Geraerts, R. 2010. Planning short paths with clearance using Ex-
plicit Corridors. In IEEE International Conference on Robotics and
Automation, 1997–2004.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics 4(2):100–107.
Helbing, D., and Molnár, P. 1995. Social force model for pedestrian
dynamics. Physical Review E 51(5):4282–4286.
Hoff III, K.; Culver, T.; Keyser, J.; Lin, M.; and Manocha, D. 1999.
Fast computation of generalized Voronoi diagrams using graphics
hardware. In International Conference on Computer Graphics and
Interactive Techniques, 277–286.
Jaklin, N.; Cook IV, A.; and Geraerts, R. 2013 (to appear). Real-
time Path Planning in Heterogeneous Environments. Computer An-
imation and Virtual Worlds.
Karamouzas, I., and Overmars, M. 2010. Simulating human col-
lision avoidance using a velocity-based approach. In Workshop on
Virtual Reality Interactions and Physical Simulations, 125–134.
Karamouzas, I.; Geraerts, R.; and Overmars, M. 2009. Indicative
routes for path planning and crowd simulation. In International
Conference on Foundations of Digital Games, 113–120.
Karamouzas, I.; Geraerts, R.; and van der Stappen, A. 2012. Space-
time group motion planning. In Workshop on the Algorithmic Foun-
dations of Robotics, 227–243.
Kelly, J.; Botea, A.; and Koenig, S. 2008. Offline planning with Hi-
erarchical Task Networks in video games. In Artificial Intelligence
and Interactive Digital Entertainment Conference, 60–65.
Rabin, S. 2002. AI Game Programming Wisdom. Charles River
Media.
Schager, E., and Geraerts, R. 2010. Stealth-based path planning in
corridor maps. In Computer Animation and Social Agents.
van den Berg, J.; Lin, M.; and Manocha, D. 2008. Reciprocal Ve-
locity Obstacles for real-time multi-agent navigation. In IEEE In-
ternational Conference on Robotics and Automation, 1928–1935.



van Toll, W.; Cook IV, A.; and Geraerts, R. 2011. Navigation
meshes for realistic multi-layered environments. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 3526–
3532.
van Toll, W.; Cook IV, A.; and Geraerts, R. 2012a. A navigation
mesh for dynamic environments. Computer Animation and Virtual
Worlds 23(6):536–546.
van Toll, W.; Cook IV, A.; and Geraerts, R. 2012b. Real-time
density-based crowd simulation. Computer Animation and Virtual
Worlds 23(1):59–69.


