
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2011; 22:59–78

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.387

RESEARCH ARTICLE

Combining path planners and motion graphs
B. J. H. van Basten*, A. Egges and R. Geraerts

Center for Advanced Gaming and Simulation, Utrecht University, PO Box 80.089, 3508 TB Utrecht, The Netherlands

ABSTRACT

Natural locomotion of virtual characters is very important in games and simulations. The naturalness of the total motion
strongly depends on both the path the character chooses and the animation of the walking character. Therefore, much work
has been done on path planning and generating walking animations. However, the combination of both fields has received
less attention. Combining path planning and motion synthesis introduces several problems. In this paper, we will identify
two problems and propose possible solutions. The first problem is selecting an appropriate distance metric for locomotion
synthesis. When concatenating clips of locomotion, a distance metric is required to detect good transition points. We have
evaluated three common distance metrics both quantitatively (in terms of footskating, path deviation and online running
time) and qualitatively (user study). Based on our observations, we propose a set of guidelines when using these metrics
in a motion synthesizer. The second problem is the fact that there is no single point on the body that can follow the path
generated by the path planner without causing unnatural animations. This raises the question how the character should
follow the path. We will show that enforcing the pelvis to follow the path will lead to unnatural animations and that our
proposed solution, which uses path abstractions, generates significantly better animations. Copyright © 2011 John Wiley
& Sons, Ltd.

KEYWORDS

computer animation; distance metrics; motion capture; motion synthesis; path planning

*Correspondence

B.J.H. van Basten, Center for Advanced Gaming and Simulation, Utrecht University, PO Box 80.089, 3508 TB Utrecht, The Netherlands.
E-mail: basten@cs.uu.nl

1. INTRODUCTION

Natural movement of characters is crucial in games and
simulations. In many virtual environments characters need
to walk from a point A to a point B. The quality of this
movement highly depends on both the path that the charac-
ter chooses and the walking animation itself. If a character
collides with the environment or the animation suffers from
foot skating the motion of the character will not be perceived
as realistic.

Basically, this problem can be considered a motion plan-
ning problem. The posture of an articulated character with
n rotational degrees of freedom can be described by an
n + 3 dimensional vector q = (tx, ty, tz, θ1, . . . , θn)T where
t = (tx, ty, tz)T is the global root translation. We will define
the (n + 3)-dimensional space as the configuration space C
of the character. Note that one pose of the character corre-
sponds to a point in this space. The problem can then be
defined as follows: given a character A (represented as a
point) moving in a configuration space C amidst a collec-
tion of fixed rigid obstacles B, and a start configuration s
and goal configuration g for A, find a continuous path P
from s to g avoiding contact with B. An important addi-

tional constraint is that the resulting animation also needs
to be perceived as natural.

Planning such whole-body motions in configuration
space is very difficult. In general, humanoid articulated
characters have many degrees of freedom and therefore
the configuration space is very high-dimensional. Next to
that, these dimensions can also be highly dependent and
the dynamics of human motion are hard to encapsulate in
constraints and optimization functions.

Therefore, in practice the problem is often simplified by
separating the path planning and animation. First, a path
planner generates a smooth, collision-free path Pplan. Then
the animation system generates a walking animation that
drives the character to follow the pathPplan as closely as pos-
sible. Figure 1 shows an example of such a two-step process.
The Corridor Map Method [1] is used as path planner and
a motion graph approach is used as motion synthesizer [2].

Combining a path planner with an animation system
seems a trivial task. There are, however, some major issues
that none of the existing methods address. In this paper,
we will give an overview of various (combinations of) path
planning and animation systems and we will address two
problems that arise when choosing a decoupled approach.

Copyright © 2011 John Wiley & Sons, Ltd. 59

Combining path planners and motion graphs B. J. H. van Basten et al.

Figure 1. Motion synthesis techniques such as a motion graph can generate locomotion along a smooth obstacle-free path.

Our provided solutions can easily be incorporated in a
motion synthesizer. Since the integration can be done in
the preprocessing phase, it will not affect the performance
of the motion synthesizer. Note that the results presented in
this paper are not only useful for motion graph based ani-
mation systems but for any motion synthesizer that depends
on a path that a character needs to follow.

1.1. Choosing Posture Distance Metrics

In general, when concatenating two animations it is neces-
sary that the end postures of the first animation resembles
the beginning postures of the second animation. Typi-
cally, posture distance metrics are used to automatically
determine these resembling clips of motion. However, no
research has been done on the effect of the distance met-
ric on the generated animation in terms of foot skating,
path deviation and online running time. Foot skating and
path deviation are crucial in the domain of locomotion, the
running time is important for real-time applications. The
experiments we have carried out will provide insight into
the effect of using a given distance metric to generate loco-
motion along a path by using a motion synthesizer. Based
on our evaluations, we propose a set of guidelines for using
distance metrics in a motion synthesizer. These guidelines
can then be used construct motion synthesis systems that are
better adapted to the needs of animators and researchers.

1.2. Preventing Unnatural Pelvis Oscillation

The path generated by a path planning algorithm is a para-
metric curve that represents a simplification of the path the
character needs to follow. Generally it is not clear which
(body) part of the character should follow this path. In many
systems the path is interpreted as the desired trajectory of

the projection of the pelvis on the plane. However, when
one takes a closer look at the trajectory of the pelvis during
locomotion it appears that the pelvis oscillates during such
a motion. When the motion synthesizer forces the pelvis to
closely follow the desired path one loses this natural oscilla-
tion or wiggle, resulting in an unnatural motion. We provide
a solution to the loss of oscillation by using path abstrac-
tions instead of the pelvis trajectory. This will lead to more
natural animations while still being able to enforce path
constraints.

2. RELATED WORK

In this section we will give an overview of related work
in both path planning as well as computer animation. The
section concludes with an overview of work that combines
both fields.

2.1. Path Planning

Introduced in 1968, the A*-algorithm is one of the first
planners [3]. This planner is still popular because of its
simplicity and ability to find the shortest path in a grid of
free cells covering the environment. Nevertheless, resulting
paths tend to have little clearance to the obstacles and can
be aesthetically unpleasant, so care must be taken to smooth
them.

Like the A*-algorithm, the Potential-Field method [4]
operates on a grid. Nevertheless, smooth paths can be pro-
duced by following the direction of the steepest descent of
the potential toward the goal. While it is possible to com-
pute a potential without local minima [5], the computation is
rather expensive, and, hence, may compromise the real-time
performance.

60 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

B. J. H. van Basten et al. Combining path planners and motion graphs

Roadmap-based methods, such as Visibility graphs [6],
Rapidly-exploring Random Trees [7] and Probabilistic
Roadmap Methods (PRM) [8,9], do not have local min-
ima and usually ensure that a path can be found if one
exists. These methods build a roadmap graph which rep-
resents the free space in the environment. Because this
graph can be constructed off-line, real-time performance
can be achieved when a path is extracted from this graph. In
addition, their strength is that they can be applied to prob-
lems with many degrees of freedom. Nevertheless, they lack
flexibility because they output a fixed path extracted from
a one-dimensional graph. In addition, the paths are jerky.
While optimization algorithms exist, they are still too slow
for real-time performance [10].

Recently, the concept of path planning inside corridors
has been introduced [1,11--13]. Such a corridor is defined as
a sequence of empty disks. Because the union of these disks
is two-dimensional, corridors facilitate creating collision-
free smooth paths with a certain amount of minimum
clearance to the obstacles. Such a path minimizes the chance
that the animated character collides with obstacles in the
environment.

When a global path has been derived, the character locally
has to manoeuvre around dynamic obstacles and other char-
acters. Often a local planner (for example based on forces
[14] or geometric techniques [15]) is needed to steer the
character along this global path. Singh et al. [16] developed
a framework to evaluate such steering techniques.

2.2. Animation

Generating animations of human walking has received a
lot of attention during the past decades. There are several
classes of techniques, each having its own advantages and
disadvantages (see Welbergen et al. [17] for an overview
of different animation techniques). An excellent survey on
generating locomotion has been written by Multon et al.
[18]. The techniques can be classified into three classes.
Procedural techniques generate locomotion from scratch
by using algorithms based on empirical and biomechani-
cal concepts. These techniques offer a high-level control,
yet in general are not perceived as realistic. One procedu-
ral technique we would like to mention is the locomotion
system by Boulic et al. [19] that explicitly calculates the
pelvis oscillation using biomechanical models. Physics-
based techniques simulate locomotion using dynamics and
physical properties of the body. These techniques yield
realistic animations, but offer less control than procedu-
ral techniques and can be computationally expensive. A
third class comprises example-based approaches. Exist-
ing motions are reused to generate a clip of locomotion.
Often these motions are recorded by using motion cap-
ture systems. Basically, there are two main example-based
techniques. Motion concatenation techniques stitch clips
of motion together [2,20,21]. Often, all possible good tran-
sitions between motions are precomputed and stored in a
graph-like structure such as a motion graph [2]. Motion

parameterization techniques interpolate between existing
motions to generate motions corresponding to a specific
abstract parameter [22--24] such as the end-effector posi-
tion. The former yields more natural animations while the
latter offers a higher level of control. Combinations of
motion parameterization and concatenation have also been
investigated [25].

2.2.1. Distance Metrics.

To automatically concatenate or parameterize motions,
a notion of resemblance is crucial. For example, to tran-
sition from one motion M1 to a motion M2, the end of
motion M1 should resemble the beginning of motion M2.
Various distance metrics can be used to detect these transi-
tion points [2,20,21]. Distance metrics for character poses
are also important in many other fields and techniques,
such as parametric motion graphs [25], but also in motion
retrieval systems [26,27], performance analysis [28], time
(or motion) warping [25], and transition generation [29].
Quite a few different metrics have been proposed, such as
metrics based on joint angles [21], principal components
[30,31] and point clouds [2]. We would also like to mention
the metric proposed by Li et al. [32], which measures the
effort needed to perform a transition. Similarly, Rose et al.
[33] present a transition-generating algorithm that tries to
minimize the joint torque. Ikemoto et al. [29] present a
multi-way transition-generating technique that blends the
source and target motion with intermediate motions deter-
mined by searching in a clustered space. To achieve this
clustering, they use the distance metric by Kovar et al. [2]

Although many distance metrics exist, there is little
known about how they compare to each other. Until now, a
metric is compared only with an improved version of itself.
Usually this improvement means optimizing the weights
for specific joints to generate better transitions. For exam-
ple, Matsunaga et al. [34] present a dynamics-based weight
assignment scheme. The weight for a specific body part is
based on the displaced mass and encountered friction of
that body part during a transition. This weight assignment
scheme is used to set the weights of the distance metric
presented by Kovar et al. [2] resulting in less foot skating.
Wang et al. [35] present an evaluation of the distance metric
of Lee et al. [20]. They compare two sets of weights for this
metric. The first set contains the original weights, as stated
in the original distance metric paper, the second set contains
automatically determined weights by solving a least-square
minimization, after selecting some good and bad blends.
They use a cross-validation and a user study to show that
their set of weights results in a better set of blends.

2.2.2. Evaluation of Motion.

Much work has been done on evaluating generated
motions. Safonova et al. [36] analyze the correctness of
interpolated motion and present some simple modifica-
tions such that, in some constrained situations, the resulting
motions adhere to physical constraints. For example, when

Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd. 61
DOI: 10.1002/cav

Combining path planners and motion graphs B. J. H. van Basten et al.

one wants to blend two jumping motions of a character,
linearly interpolating the center of mass of the character
instead of the root position will result in a center of mass
that has linear momentum, as should be the case during
flight. Reitsma et al. [37] observe by user studies that errors
in horizontal velocity and added accelerations are easier
observed by humans than errors in vertical velocity and
added decelerations. Ikemoto et al. [29] also evaluate tran-
sitions by foot skating and by evaluating the zero moment
point (ZMP). The ZMP is the point on the ground plane at
which the moment of the ground reaction forces is zero. In
a physically valid motion, this point should be on or within
the support polygon.

Ren et al. [38] present a tool to evaluate the naturalness of
animations using a set of statistical models based on natural
example data. However, their test set of unnatural motions
only contains motion transitions based on a joint-angle met-
ric. Reitsma et al. [39] present quality metrics to evaluate the
(global) quality of motion graphs. Two of these quality met-
rics represent the coverage of the environment and to what
extent the resulting path is close to the shortest path. These
metrics are approximated by embedding the entire motion
graph in a 4D grid. This scheme resembles our path devi-
ation criterion, but it is limited to a fixed environment (i.e.,
an environment that is fully known beforehand). We also
look at foot skating and we perform a qualitative analysis
of blends that can benefit any environment.

2.3. Combination of Path Planning and
Animation

Some research has been conducted on combining path plan-
ning and character animation. Choi et al. [40] create a map
of footprints based on a probabilistic roadmap. They search
this roadmap to find a collision-free path after which dis-
placement mapping is used to adjust the motions to fit the
target footprints. Sung et al. [41] also plan a path by using a
probabilistic roadmap technique and generate a motion (by
using a motion graph variant) which approximately follows
the path. This motion is then adjusted to follow the path
more accurately. Lau and Kuffner [42] precompute paths
and motion clips based on a motion database and search
over this graph-like structure for navigation and synthesis.
This method implicitly uses the animation data to define
the navigation space. Efforts have been made to speed up
the search process by precomputing the possible positions
that are reachable for the character by using a motion graph
[43]. Srinivasan et al. [44] present a conceptually similar
work. In Pettré et al. [45,46], the path planning and ani-
mation techniques are separated which means another path
planner can be used to achieve similar results. They use
a PRM to compute the path and interpolate motion clips
to generate the character animation. Circular arcs are used
to represent the root trajectory. Kamphuis et al. [47] also
separate the path planner from the animation system. They
assume the existence of a collision-free path. Then the ani-
mation technique based on the work of Pettré et al. [45] is

used to generate an animation along the path. However, spe-
cific cyclic motion clips, such as walk cycles, are required
to generate natural looking motions. Safonova and Hodgins
[48] use a large parametric motion graph to follow a user-
based (or automatically determined) sketch of path. This
technique provides greater accuracy because it allows for
interpolating two paths (or motions) in the motion graph and
employing a global search over this enhanced graph. Some
aspects of this technique (blend in corresponding contact
phases, globally minimizing energy) might reduce the loss
of oscillation, but it might not totally solve the problem.
This is a computationally expensive offline technique that
ideally is applied in a fixed environment.

There are also techniques that do not decouple the path
planning and animation. Treuille et al. [49] concatenate
animations of individual walk cycles. The next cycle is
selected such that it safely moves the character to the goal
and yields a good transition from the previous step. They
train their controller using reinforcement learning. Unfortu-
nately, although their technique is very fast, no guarantees
can be made over the global optimality of the path that the
character follows.

Attempts have been made to plan whole-body movement
from scratch using techniques from robotics. For humanoid
robots, the motion does not need to be natural [50], but
for computer animation of virtual humans this is a require-
ment. Zhang et al. [51] present such a technique for static
manipulation tasks in highly constrained environments. A
sampling-based planner is used to generate an initial motion
after which motion capture data are used to improve the
naturalness of the motion. Unfortunately, generating natu-
ral locomotion from scratch is not yet feasible using these
kinds of approaches.

3. MOTION SYNTHESIS

Motion synthesizers typically concatenate clips of motion.
For our experiments, we will use the standard motion graph
as described by Kovar et al. [2]

A motion graph is a directed graph whose edges cor-
respond to clips of motion. We can create a trivial motion
graph where the original motions are single edges. To seam-
lessly blend from one motion M1 to another motion M2 (or
to add an edge between the corresponding edges) a dis-
tance metric is required to determine the good transition
points. To incorporate dynamic properties of the motion,
these distance metrics are often applied on a window of
frames.

Because a motion is fundamentally the same when rotated
about the vertical axis and translated in the plane, the
motions in the database need to be aligned. We use the
closed-form alignment function described in Reference [2].
The distance metric then determines the distance between
all pairs of frames in the database, resulting in a distance
matrix. Examples of these distance matrices for each of the
three distance metrics are shown in Figure 2. Only local
minima in this matrix are considered as transitions. Finally,

62 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

B. J. H. van Basten et al. Combining path planners and motion graphs

Figure 2. Distance matrices for the point cloud, joint angle and PCA metric. The distance is indicated by color (high distance = dark,
low distance = light).

the graph is pruned by using the largest strongly connected
component, which avoids dead-ends.

On-line path synthesis is performed by an incremental
branch-and-bound algorithm. While the traversed distance
of the motion is smaller than the length of the path, a branch-
and-bound algorithm is employed, checking the search
space n frames around the current node looking for the
path that follows the path best. When an edge sequence
of n frames is determined, the first m frames are selected
and the node at frame m is picked as the new starting point
for another search. For a more elaborate explanation on the
motion graph and the branch-and-bound search algorithm,
we refer the reader to the original article [2].

We would like to stress that motion concatenation algo-
rithms consist of more components than just the distance
metric. Several choices for parameters have to be made, as
already indicated by Lamouret et al. [52] For example, one
needs to choose which motions should be in the database
as well as the duration of a transition [53]. In this paper,
we only focus on the distance metric. The settings for all
the other relevant parameters are motivated in the sections
describing the experimental setups.

4. QUALITY MEASURES

We will use several quality measures to quantify the results
of the techniques we propose. These measures will be
described in this section.

4.1. Foot Skating

To measure foot skating, one needs to determine when the
foot is planted. Simply checking the height of the foot with
respect to the ground is insufficient. Motion capture data
always contains some noise and artifacts due to targeting.
When swinging the foot forwards when walking, the foot
may come very close to (or even hit or penetrate) the ground
[54]. Some techniques also incorporate the velocity of the
foot, which is small during a foot plant. However, foot skat-
ing can introduce a large velocity so these methods will

not detect all foot plants. Also, more advanced techniques
exist, such as machine learning classifiers [54]. To avoid
the issues that occur when using a height-based or velocity-
based detector, we use a foot plant detection algorithm based
on both height and time. First, the height-based test deliv-
ers us a set of foot plants. In addition to the height-test, we
only accept foot plants if the foot plant occurs in a group of
adjacent frames. We observed that this method works well
in the case of walking animations. After determining the
foot plants, the foot skating per frame is determined by cal-
culating the sum of the distance between the ankle, subtalar
and toe at that frame and the previous frame for both legs.
The total foot skating is then defined as the sum of the foot
skating over all frames.

4.2. Path Deviation

The resulting path of the animation P′ is the projection of the
root on the plane. We reparameterize the paths on traversed
distance d and integrate the squared planar distance of the
actual animation trajectory P′ with length l and the desired
path Pplan. So, for an animation M the path deviation edev(M)
is defined as

edev(M) =
∫ l

d=0

∥∥P ′(d)−Pplan(d)
∥∥2

4.3. Wave Measures

It is known that the pelvis oscillates during walking [55].
This oscillation of the pelvis can be considered as a wave.
Such a wave has a certain wavelength and amplitude. Note
that the phase is not a good quality measure, for it depends
on the foot that the animation starts with, which is dependent
on the starting node in the motion graph.

The goal of our proposed solution is that the pelvis in the
generated motions oscillates the same way as in the recorded
motions. Therefore these techniques should yield motions
with similar wavelength and amplitude. In contrast, the stan-
dard motion graph branch-and-bound algorithm implicitly

Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd. 63
DOI: 10.1002/cav

Combining path planners and motion graphs B. J. H. van Basten et al.

Table 1. The measurements of the recorded motions for the
three test paths.

Measure Straight Low curve High curve

Foot skating (cm) 0.20 0.28 0.39
Amplitude (cm) 3.91 3.55 4.51
Wavelength (cm) 57.83 55.31 49.06
Amplitude dev. (cm) 0.55 0.78 1.10
Wavelength dev. (cm) 1.33 3.73 6.44

tries to minimize the oscillation and thus should have a
different outcome of wavelength and amplitude. We will
determine the average wavelength and amplitude of the
curvature function κ of the pelvis trajectory. It is straightfor-
ward to determine the average wavelength and amplitude
of the wiggle of κ. Let E be the set of local extrema of
the curvature function κ(t). Then the wavelength w of two
successive points ei, ei+1∈E is determined as two times
the distance between those points w(ei, ei+1) = 2d(ei, ei+1).
Then the average of all measured wavelengths is calculated
by µwave = 1

n−1

∑n−1
i=1 w(ei, ei+1) where n is the number of

extrema in E. The amplitude of the wiggle is calculated
in a similar way. First, the amplitude of a local extrema
ei is defined as amp (ei) = |κ(ei)|. Then the average of all
amplitudes is calculated by µamp = 1

n

∑n

i=1 amp (ei).
Ideally, one would expect that the wavelength and ampli-

tude of the pelvis in a generated motion should have an equal
variance as in original motion. Therefore we will also mea-
sure the standard deviation σwave and σamp of the wavelength
and amplitude. In Table 1 we show the wave and footskate
measurements of the recorded motions corresponding to a
straight path, low curvature path and high curvature path.
Using these measured values, we can compare generated
motions with real motions.

4.4. Online Running Time

The online running time is measured as the time needed
by the branch-and-bound algorithm. Building up the graph
is not taken into account, since this can be done during
pre-processing. The running time of the branch-and-bound
algorithm is an especially important measure for interactive
applications, where motion needs to be generated on-the-
fly. Running times are on a Pentium Intel DualCore 2.4 GHz
with 1 GB of RAM.

5. CHOOSING POSTURE DISTANCE
METRICS

In this section we will describe the first problem, namely
selecting the best posture distance metric. As already said,
to minimize the visual artifacts that can be introduced
by blending two clips, transitions should only be added
between frames that “resemble” each other. Therefore, a
distance metric is required that quantifies the resemblance

between frames/poses. Many different metrics exist, and
the behavior and properties of a particular metric have a big
influence on where transitions are added, and thus also on
the quality of resulting motions. However, little is known
about how the use of a given distance metric influences
a motion synthesizer when generating locomotion along a
path. In this section, we will analyze the effect of using a dis-
tance metric in a motion graph both quantitatively and quali-
tatively. The quantitative analysis is in terms of foot skating,
path deviation and online running time. The qualitative anal-
ysis is done by a user study, where users rate the quality of
blends corresponding to different distance error values.

5.1. Posture Distance Metrics

In this section, we will discuss the three metrics that are
evaluated in this paper.

5.1.1. Joint Angles.

The most basic distance metric is based on calculating
the difference between joint angle values and optionally,
a number of derivatives such as velocity and acceleration.
Several researchers have used this metric or a variation on
it. For example, Arikan et al. [21] compare animations by
evaluating the joint position, joint velocity, torso velocity,
and torso acceleration. For a given frame/pose i, let us define
pi∈R3 as the global (root) position and qi,k∈S3 as the unit
quaternion describing the orientation of a joint k∈ the joint
set J. We will evaluate the metric by Lee et al. [20] The
distance between a frame a and a frame b is defined as
follows

d(a, b) + νd(ȧ, ḃ)

where d(a,b) describes the weighted differences of joint
angles and global position, and the second term d(ȧ, ḃ) rep-
resents the weighted (Euclidean) differences of the joint
velocities. The constant ν defines the influence of veloc-
ity on the total distance. The joint angle differences are
calculated as follows

d(a, b) = ‖pa−pb‖2 +
∑
k∈J

wk

∥∥log(q−1
b,kqa,k)

∥∥2

The first term describes the squared difference between
the global (root) positions of frame a and b. The second term
describes the weighted sum of the orientation differences.
Note that because of the Euclidean summing operation, the
orientations need to be written in a suitable format, in this
case the exponential map [56].

5.1.2. Geometrical.

The distance metric that was used in the original motion
graph paper by Kovar et al. [2] was based on point clouds.
For each frame, a point cloud is constructed, which, ide-
ally, is a simplification of the character’s mesh. To account
for velocity and acceleration differences, the authors com-
pare a window of frames. The final distance is the minimal

64 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

B. J. H. van Basten et al. Combining path planners and motion graphs

weighted sum of the squared distances between point clouds
given an arbitrary rotation about the vertical (y) axis and
translation on the (x,z) plane

d(a, b) = min
θ,x0,z0

∑
i

wi(ai−Tθ,x0,z0bi)
2

where a and b are the two point clouds, and the linear trans-
formation Tθ,x0,z0 rotates a point around the y-axis by θ

degrees and then translates it by (x0, z0). The index i is over
the number of points in the point cloud. This optimization
has a closed form solution, for which we refer the reader to
Reference [2].

5.1.3. Principal Components.

Several authors have proposed to use principal compo-
nents as a representation of posture [30,31]. A principal
component analysis (PCA) is performed on the rotations of
the skeleton joints. Postures can then be compared in prin-
cipal component space. The advantage of this approach is
that dependencies between joints are taken into account in
the distance metric. Since PCA is ideally applied to linear
spaces, the rotations are expressed in the exponential map
representation. Suppose that the frames are represented by
an N-dimensional vector of Principal component (PC) val-
ues. The distance between two frames a and b is then defined
as the weighted Euclidean distance between the two vectors
(wi is the weight of variable i)

d(a, b) =

√√√√ N∑
i=0

wi(ai−bi)2

Forbes et al. [31] have shown that not the entire set of
PC values need to be used for calculating this distance, but
only the most important ones. By using a reduced number of
PCs, a more efficient distance calculation can be achieved,
although the conversion from and to the exponential map is
still required.

5.2. Experimental Setup

We evaluate the three different distance metrics discussed in
the previous section on a qualitative and a quantitative level.
In the following sections, we will discuss these evaluations
in more detail.

5.2.1. Choosing Weights.

One of the major difficulties of configuring a distance
metric is the assignment of weights to joints or body parts.
Larger weights will result in a larger influence of these parts
on the distance value. In this section we will describe the
weight configuration of the metrics. The weights for the
three metrics described in this section hold for all frames in
the window.

For the joint-angle distance metric, we use the weight
set determined by Wang et al. [35] instead of the man-

ually determined weights proposed in the original work
[20]. Furthermore, we do not take into account the differ-
ence in absolute root position (the first term in the distance
function), because this is only useful in fixed environments.
Second, considering the fact that we only use forward walk-
ing motions, we set the weight ν for the joint velocity very
low (0.0001). The joint velocity serves primarily to distin-
guish between forward and backward motions [20], yet we
consider only forward walking motions with roughly the
same velocity in our database.

For the point-cloud metric, we mimic the approach of
Matsunaga et al. [34] by assigning a higher weight to joints
which displace a lot of mass and which are in contact with
the environment. Because we mainly deal with locomotion
animation, the feet are the only body parts that are in contact
with the environment. Since they also carry almost all body
mass, our weight scheme assigns a high weight to the feet,
and this weight decreases when going up the articulated
body (until the root). The hips, knees, ankles, subtalars, and
feet have a weight of 0.6, 0.7, 0.8, 0.9, and 1.0, respectively.
The other joints have a weight of 0.5. Note that it is not
possible to have an exact equal weight set for the joint-
angle and point-cloud metric because both metrics work on
another posture representation. Therefore there exists no
one-on-one mapping between weights.

Finally, the PC weights are defined as the values of the
Eigen vector of the PC matrix [30], since these values cor-
respond to the occurrence in the data of each PC value. We
use all principal components, although it is also possible to
use less [31].

For both experiments, we have evaluated the distance
metrics over a window of 10 frames.

5.2.2. Quantitative Evaluation.

We evaluate the three metrics using three quality mea-
sures: foot skating, path deviation, and on-line graph search
time. For each distance metric, we will generate a number
of different motion graphs. Each motion graph is evaluated
using a long test path (33 meters). This path is a “zigzag”
and requires both straight locomotion and curved locomo-
tion. Especially in the case of locomotion, the curvature of
the path greatly influences how the outcoming motion is
constructed.

We evaluate the graphs of four different complexities. We
define this motion graph complexity as a triple (N,E,K) con-
sisting of the number of nodes, edges, and keyframes that
comprise the graph. These numbers are listed in Table 2.
The three different metrics result in graphs with a different
node-edge-frame ratio. We have tried to match the graph
complexities as closely as possible. After creating these
graphs, the branch-and-bound algorithm described above
generates the animations according to the path. The starting
node in the graph is randomized. For the search algorithm,
we set n to 80 and m to 25, as proposed in the original paper.
Recall that n is the number of frames we look ahead and m
is the number of frames we select from the n frames to add
to the animation. Initially, we align the animation with the

Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd. 65
DOI: 10.1002/cav

Combining path planners and motion graphs B. J. H. van Basten et al.

Table 2. The complexities of the graphs based on the 3 metrics.

Metric # edges # nodes # frames

Geom I 271 167 1420
Geom II 644 352 3532
Geom III 1013 493 5894
Geom IV 1263 542 7911

Angular I 253 160 1508
Angular II 632 365 3331
Angular III 1017 516 5720
Angular IV 1264 582 7535

PCA I 258 161 1437
PCA II 638 352 3498
PCA III 1024 479 6096
PCA IV 1268 534 8027

first segment of the test path, so that the character does not
need to turn around before being able to follow the path. All
quantitative measures are measured over 20 executions of
the branch-and-bound algorithm for each path. No motion
editing or correction is done after generating the animations
with the branch-and-bound algorithm.

To evaluate the metrics, we use a database that con-
tains five animations of locomotion containing in total 832
frames. Each animation is a clip of locomotion with a spe-
cific curvature (straight ahead, left and right curves, and
tight left and right curves). Although this is a fairly small
database, the content is sufficient for the paths we use as
query.

5.2.3. Qualitative Evaluation.

We perform an on-line user study (251 participants) to
evaluate the quality of blends occurring between different
motions. The goal of this study is to gain insight in the mean-
ing of a given distance value. By having a better view on
what a certain distance value means, one can more easily set
correct parameters in a motion synthesizer. The participants
are visitors of graphics and game-related Internet forums
[57,58]. In the user study, we present the users 40 clips of
locomotion of approximately 5 seconds out of a pool of
50 motions. The pool of motions consisted of 45 blends of
the motions described above corresponding to different dis-
tance values from all three distance metrics. Next to these
45 blends, the pool contained five original motions of 5 sec-
onds to obtain a ground truth. These clips are presented in
random order.

The blends occur at random moments (between 1 and 4
seconds) in the shown animations. As already mentioned,
all blends are over 10 frames, using SLERP for the rotation
and linear interpolation for the root translation. No motion
editing has been done on the resulting animations. We use
the same geometric model for all clips, because the geomet-
ric model influences the perception of the viewer [59]. The
subjects are asked to grade the motion realism of the clips
on a scale of 1 to 10. Our hypothesis is that there should be a
strict inverse proportional relationship between the distance
and the grade of the subject.

The thresholds we select for the pool are the upper limit
of the first 0.5, 1.0, 2.0, 8.0, and 32.0% of the distances of
the frames in the database. We have not opted for a uni-
form selection of the transitions between a distance of 0
and the maximum distance, because this would result in
mostly blends with high distances, which are not interest-
ing for our study. We want to focus primarily on the lower
distances, where the distinction between blend and original
motion becomes less obvious. An additional advantage of
our proposed selection scheme is that it applies to all met-
rics. Note that a presented movie is a sample for all three
metrics, for we can determine the distance between the two
blended frames. A screenshot of the on-line questionnaire
can be seen in Figure 3.

5.3. Results

In this section we will present the results from the quanti-
tative and qualitative evaluations of the distance metrics.

5.3.1. Path Deviation.

The resulting animations of the quantitative analysis were
35--40 seconds long. As was expected, the coarsest graphs
(complexity I) result in animations with a high path devia-
tion. We see that the path deviation of the graph constructed
using the point-cloud metric is higher than the graph con-
structed using the joint-angle metric (see Table 3). The main
reason for this difference is that the point-cloud metric is
geometry-based. A point cloud built over a curved locomo-
tion differs from one built over a straight locomotion. This
is primarily due to the fact that the point cloud is built over
a window of frames. This problem also occurs when we
require a blend to an animation consisting of locomotion
at a much higher velocity, where the point cloud gener-
ated for the faster animation will be much more stretched
out. Decreasing the window size will not resolve this issue.
When looking at the difference of a single posture from a
straight locomotion and a single posture of a curved loco-
motion, it appears that the upper body is slightly twisted. In
case of a joint-angle based metric, this will affect the angles
of a small number of joints. In case of the point-cloud metric,
it will affect a large set of points, mostly in the upper body.
The result of this difference is that the point-cloud metric
results in a graph with more self-blends: blends going from
and to the same animation. The point-cloud metric prefers
blends from and to animations of locomotion with the same
curvature, resulting in generated animations that show more
path deviation.

The path deviation from the PCA-based graph is also
often higher than the joint-angle based graph. Like the

Table 3. The path deviation (in cm2) for the graphs.

Path d. I II III IV

Geom 2034946.2 160938.4 78837.7 67054.7
Angular 1485244.7 82974.5 75676.1 50273.2
PCA 1274669.5 163120.6 82585.6 54404.1

66 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

B. J. H. van Basten et al. Combining path planners and motion graphs

Figure 3. A screenshot of the on-line questionnaire.

point-cloud metric, the graphs generated with the PCA met-
ric contain more self-blends. This is because the weight set
of the joints in the PCA metric is different from the weight
set of the joint-angle metric. Many weights in the weight
scheme of [35] are set to zero, whereas they can be non-zero
in case of the PCA. We evaluated the influence of the joints
in the PCA metric by multiplying the transposed (absolute)
PCA matrix (consisting of Eigenvectors) with the Eigen-
values. After normalizing the weights such that the sum of
the weights equals the sum of weights determined by [35] it
turns out that some joints greatly influence the PCA metric,
such as the spine joint, whereas they have been assigned
zero weight in Wang’s weights. The PCA metric, however,
assigns a high influence to the shoulder and elbow joints,
similar to Wang’s weight set.

In conclusion, when low path deviation is an impor-
tant concern in an animation system, the joint-angle metric
seems to be the best choice.

5.3.2. Foot Skating.

We measured the foot skating of the results of the four
graphs per metric. The results are shown in Table 4. The

point-cloud based graph results in the least foot skating,
followed by the PCA-based graph. This is clearly an advan-
tage of a metric in the geometrical domain. The fact that
the PCA metric performs better than the joint-angle metric
might again be due to the fact that the PCA assigns tighter
weights than the joint-angle metric.

The number of edges in a graph is limited by the local
minima in the distance matrix. Our observation is that the
joint-angle metric introduces a lot less local minima. Hence,
to generate a large graph, more local minima need to be
added to be able to generate enough edges. This can be
done by decreasing the window size, since the window acts
as a low-pass filter on the distance matrix. However, reduc-
ing the window size might result in more foot skating. In
conclusion, if low foot skating is crucial, the point-cloud
metric performs best.

Table 4. The foot skating (in cm) for the graphs.

Skating I II III IV

Geom 1608.17 1604.40 1829.22 1975.81
Angular 1664.72 1987.65 2482.57 3174.35
PCA 1528.57 1895.00 2088.76 2340.05

Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd. 67
DOI: 10.1002/cav

Combining path planners and motion graphs B. J. H. van Basten et al.

Table 5. The time (in seconds) needed for the branch-and-bound
algorithm.

Time I II III IV

Geom 2.16 9.94 41.15 125.53
Angular 2.65 3.86 14.91 21.53
PCA 0.58 5.49 41.98 80.86

5.3.3. Running Time.

We also looked at the running time of the branch-
and-bound algorithm for each distance metric. The
branch-and-bound algorithm runs much slower on the
point-cloud generated graph than the graphs generated by
the other two metrics. Table 5 shows that the joint-angle
metric is often faster than the other two metrics.

We have found a few possible explanations for the slow-
down of the point cloud-cloud metric. The point-cloud
metric results in a graph that contains highly connected sub-
graphs where the search algorithm mostly resides. We have
observed a correspondence between the average out-degree
of the encountered nodes in the search algorithm and the
running time. The average out-degree of the encountered
nodes in the search algorithm on the point-cloud based
graph is higher than the average out-degree of the nodes
encountered in graphs generated by the other two metrics.

Also, the occurrence of small local cycles can increase
the time needed for a search. The search space can grow
rapidly if the search returns to the starting node early in the
process. For the graphs generated by the PCA and point-

cloud metric, the average length of the shortest path from
each node to itself (excluding the empty path) is around 8--9
edges, whereas it is around 10--11 for the graph based on
the joint-angle metric.

Another observation was that most transitions are clut-
tered at certain pieces of motions in case of the PCA
and point-cloud. For example, for all interblends (blends
between different animations and hence, different cur-
vature) in the point-cloud based graph, only 4% was
transitioning to animation 5 (tight left curve). For the
interblends of the PCA based graph 13% was transition-
ing to animation 5 and for the interblends of the joint-angle
based graph 19% were transitioning to animation 5. We also
observed this clutter of transitions in the distance matri-
ces (of which examples are shown in Figure 2) where they
correspond to local minima. For completeness, the branch-
ing factor of the branch-and-bound algorithm did not differ
much between the graphs generated by the three metrics.

5.3.4. User Study.

In this section, we will discuss the results of our user
study. Surprisingly, we did not find a strictly inverse
proportional relationship between the distance metric and
the grade of the subject. There appears to be a plateau for
all three metrics at the smaller distances, as can be seen in
Figures 4--6. The red lines (indicating a grading of 7.65)
represent the ground truth. Note that it is not possible to
plot all relations in a single graph, for there is no 1-on-1
mapping between the distance metrics.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Distance

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

G
ra

de

Figure 4. The relation between the distance from the PCA metric and the average grade given by the subjects. Vertical bars denote
0.95 confidence interval.

68 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

B. J. H. van Basten et al. Combining path planners and motion graphs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

Distance

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

G
ra

de

Figure 5. The relation between the distance from the joint angle metric and the average grade given by the subjects. Vertical bars
denote 0.95 confidence interval.

0.0 400.0 800.0 1200.0 1600.0 2000.0 2400.0 2800.0 3200.0 3600.0 4000.0 4400.0

Distance

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

G
ra

de

Figure 6. The relation between the distance from the point cloud metric and the average grade given by the subjects. Vertical bars
denote 0.95 confidence interval.

Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd. 69
DOI: 10.1002/cav

Combining path planners and motion graphs B. J. H. van Basten et al.

We have performed a post hoc analysis (Tukey, p = 0.05)
on the results to determine the sequential significance
between the distances. For the point cloud metric, the
only significant decrease is found from the thresholds
2018 to 3105. Indicating that the perceptual plateau ends
somewhere in that bin. These two thresholds correspond
to motion graphs with complexities (N = 701, E = 2923,
K = 22980) to (N = 715, E = 3208, K = 25704) where N,
E, and K are the number of nodes, edges, and keyframes,
respectively.

For the PCA metric, the first two significant decreases of
grading is found from 0.650 to 0.842 and 0.842 to 1.117,
indicating bin 5 to 6 and 6 to 7. The perceptual plateau ends
somewhere between 0.65 and 0.842. These two thresholds
correspond to motion graphs with complexities (N = 606,
E = 1544, K = 10118) to (N = 663, E = 1852, K = 12645).
As for the joint angle metric, the first significant decreases
of grading is found from 1.402 to 2.2395 and 2.2395 to
2.994, indicating bin 5 to 6 and 6 to 7. The perceptual
plateau ends somewhere between 1.402 and 2.2395. These
two thresholds correspond to motion graphs with complex-
ities (N = 528, E = 1053, K = 5961) to (N = 606, E = 1341,
K = 8094).

The plateau implies that in some cases more complex
graphs can be constructed with a higher threshold, without
sacrificing blend quality, as long as the selected threshold
is on the plateau.

None of the grades, given for the metrics, approached
the grade given for the ground truth animations. Ideally,
humans should not be able to distinguish between computer-
generated animations and motion captured animations.
An animation Turing test has already been proposed by
[60]. Our work contains such a Turing test: the computer-
generated blends for the smallest distances did not get a
grade as high as the one given for the ground truth. Thus, the
blends generated by all metrics with our selected thresholds
and weights did not pass the Turing test.

6. PREVENTING UNNATURAL
PELVIS OSCILLATION

As already shown by the previous problem, a generated
animation can not always be guaranteed to exactly follow
a planned path. Errors may occur due to curvature limits in
the motion database. If a path planner generates a path with
a high curvature that is not present in the motion database,
the character might not exactly follow the path. A possible
solution for this type of problem is to apply a path editing
technique [61]. However, this assumes that we know what a
path actually represents: the path Pplan generated by a path
planning algorithm is a parametric curve that represents a
simplification of the path the character needs to follow. Gen-
erally it is not clear which (body) part of the character should
follow this path. In many systems the path is interpreted as
the desired trajectory of the projection of the pelvis on the
plane. However, when one takes a closer look at the tra-
jectory of the pelvis during locomotion it appears that the

pelvis oscillates during such a motion. Early experiments
in biomechanics already showed that the center of mass
oscillates both horizontally and vertically during locomo-
tion [55]. When the motion synthesizer forces the pelvis
to closely follow the desired path one loses this natural
oscillation or wiggle, resulting in an unnatural motion. Not
enforcing the path constraint will lead to path deviation,
but over-enforcing the path constraint leads to unnatural
motion.

In this section, we propose a solution to this problem by
using a path abstraction. We will show that using an abstract
path Pabstract instead of the traditional pelvis trajectory will
lead to more natural motions while still being able to enforce
path constraints. We propose several ways of obtaining an
abstract path from an existing animation and we will com-
pare their advantages and limitations. Path abstractions can
easily be incorporated in motion synthesizers. Because it
can be done in the preprocessing phase, it will not affect the
performance of the motion synthesizer.

We can approach this problem from two sides. We could
incorporate the pelvis oscillation in the paths of a path plan-
ner, but this has some major drawbacks. The oscillation is
highly dependent on the character and we would need to
know in which phase of the locomotion cycle we want to
begin. For example, we would need to know which foot
we will swing first. Therefore we do not change the path
but we change the representation of the character motions
in the database. We do not try to force the pelvis to fol-
low the presented path, but an abstraction of the character
motion.

The motion graph search algorithm is the only component
of the path planning and animation system that needs to be
changed, not the motions, motion graphs or paths. Again,
we use the standard search algorithm for motion graphs [2].
While the traversed distance of the motion is smaller than
the length of the path, this branch-and-bound algorithm is
employed, checking the search space n frames around the
current node looking for the motion clip that follows the
path Pplan best. To find the motion clip that follows the path
best often the projected trajectory of the pelvis on the plane
is compared to the query path Pplan. This results in losing the
natural oscillation of the pelvis as explained in the previous
sections. In our method, when selecting a new motion clip
from the graph, we compare the the query path Pplan with a
path abstraction Pabstract instead of the pelvis trajectory.

6.1. Path Abstraction Techniques

In this section we will present the four path abstraction
techniques. Although most of them act as a low-pass fil-
ter, the resulting path abstraction does not need to be the
same. We will denote Pwiggle as the original oscillating pelvis
trajectory projected on the ground plane, Pabstract is the tra-
jectory of the path abstraction. Note that all path abstraction
techniques basically remove the local pelvis oscillation. We
will show in subsection “Results” that applying these path
abstraction techniques on the database, as described in the

70 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

B. J. H. van Basten et al. Combining path planners and motion graphs

previous section, will result in animations that exhibit a
natural pelvis oscillation in terms of amplitude and wave-
length (see subsection “Wave Measures”).

6.1.1. Joint Combination (JC).

When examining recorded motion, it appears that there
is no joint without oscillation. We cannot choose a par-
ticular joint as indication of the character’s global motion,
although the combination of several joints might be interest-
ing. While the trunk is a good indication of the character’s
direction [62], the position of the trunk still suffers from an
oscillation. Fortunately, some joints appear to follow a path
that resembles the mirrored version of the pelvis path. These
are the feet, ankles and knees. We will determine Pabstract by
interpolating the trajectories of these joints.

6.1.2. Joint Orientation Extrema (JOE).

We have observed that the global path roughly follows
the midpoints of two consecutive local extrema of the pelvis
trajectory. Since extrema are easily determined in monotone
functions we will transform the non-monotone path such
that it is x-monotone. We can then determine extrema by
finding zero-crossings of the first derivative. Pabstract is then
determined by connecting the midpoints of the segments
between consecutive extrema.

6.1.3. Gaussian Smoothing (GS).

The third path abstraction method is Gaussian smoothing.
It is suitable for smoothing arbitrary curves and is used in
image processing to filter out high frequency distortions.
The wiggle of the pelvis can be viewed as such a distortion of
the global path of the character. An approximation of Pabstract

is obtained by applying Gaussian smoothing to the path of
the pelvis. The pelvis trajectory Pwiggle is represented by two
parametric functions x(t) and y(t) where t indicates the path
length. These are both convolved with a one-dimensional
Gaussian kernel Gσ(t) of standard deviation σ.

Gσ(t) = 1

σ
√

2π
e((−t2)/(2σ2))

X(t) is defined as the convolution of x(t) with Gaussian
kernel Gσ(t) for some value of σ: X(t) = Gσ(t) ⊗ x(t). Y(t)
is defined similarly.

Differentiation commutes with convolution, so X(t)′ =
G′

σ(t) ⊗ x(t), and X(t)′′ = G′′
σ(t) ⊗ x(t), where G′

σ(t) and
G′′

σ(t) are the first and second order derivatives of the Gaus-
sian kernel. X(t) and Y(t) represent a smoothed version of
Pwiggle with a smoothing factor of σ. X(t) and Y(t) can be
used as an approximation for Pabstract.

A problem with any averaging filter is that the resulting
path is shrunk toward the center of its supporting circle.
Each point is filtered by using its neighbors that in both
directions curve toward the center of the supporting cir-
cle. A solution to this problem was provided by Lowe[63].
He states that the shrinkage is dependent on the amount of

Figure 7. We can remove the oscillation of the pelvis (black) by
applying a Gaussian filter (white).

smoothing and the local curvature. We can use the known
value ofσ and the measured curvature of the smoothed curve
to compensate for the degree of shrinkage that must have
occurred. Since we do not actually know the value of the
original curve radius r, we need to use the second derivative
of the smoothed curve X. Given σ and the measured curva-
ture of the smoothed path the shrinkage �x at a point t is
defined as

�x(t) = r(1−e(−σ2)/(2r2)))

where r is numerically determined using the second deriva-
tive of the smoothed function

X′′(t) = e(−σ2/(2r2))

r

A lookup table is constructed that maps the second deriva-
tive of convolution X′′(t) on the shrinkage error value �x.
Intermediate values are linearly interpolated. For each point
on the path the appropriate error value is looked up and
subtracted from the smoothed coordinate value. Several
solutions exist to convolve the Gaussian kernel when it
extends beyond the end of the path. We will use the method
of Rosin [64] where the path is extended by 3σ at both
ends by duplicating and reflecting the path (see Figure 7 for
Gaussian filtering on the pelvis oscillation). We use a σ of
0.75 meter, corresponding to one step cycle.

6.1.4. B-Spline (BS).

For the last path abstraction method, we follow the idea
of Gleicher [61]. He uses a uniform cubic B-Spline with
six knots located at uniform intervals in the trajectory of
the pelvis. It can be interesting to see how well this method
performs in comparison to the already proposed methods.

Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd. 71
DOI: 10.1002/cav

Combining path planners and motion graphs B. J. H. van Basten et al.

Given a set of control points P, for each segment i we
determine the trajectory of Pabstract using

Pi(t) = [t3t2t1]
1

6




−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0







pi−1

pi

pi+1

pi+2




for t∈[0, 1].

6.2. Experimental Setup

To evaluate the result of each path abstraction technique
we compare the generated animations with real recorded
motions. We have motion-captured a human walking along
three paths: a straight path, a low curvature path and a
high curvature path. We manually extracted the test paths
and used them as input to the motion graphs. This allows
us to compare the generated animations with the original
recorded motions. We will generate motions using the five
different path abstraction techniques (including the stan-
dard pelvis-based method). Note that we do not change the
motions in the database, but we change the representation.
In the branch-and-bound algorithm we do not compare the
pelvis trajectory to the query path, but to the path abstrac-
tions. In total we have five different versions of the search
algorithm, each corresponding to a different path abstrac-
tion technique. Since the transition threshold of the motion
graph greatly influences the quality of the resulting ani-

Table 6. The complexities of the graphs for different thresholds

Threshold # nodes # edges # frames

0.5 79 114 653
1.0 295 528 2874
1.5 475 925 5202
2.0 566 1300 8046
2.5 599 1468 9403
3.0 611 1563 10235
3.5 613 1584 10425

mation, we will use seven different threshold values. We
will use a common joint-angle based distance metric [65].
For each threshold a different motion graph is constructed.
The properties of the graphs for the seven thresholds are
described in Table 6. These thresholds vary from a really
small graph, which barely allows for following a path at all,
to a large graph which is able to strongly enforce the pelvis
to follow the path. For all thresholds each technique will
generate 40 animations per test path. We build up a motion
graph using five recorded walking motions of varying cur-
vature (done by the same human as the test paths). The total
number of frames was 683.

As said, we will use seven different transition thresh-
olds, ranging from 0.5 to 3.5. Each threshold will lead to a
different motion graph. The higher the threshold the more
transitions are allowed and the denser the resulting motion
graph will be. In Table 6 the number of edges, nodes and
frames per graph are shown.

 BS
 GS
 JC
 JOE
 Standard0.5 1.0 1.5 2.0 2.5 3.0 3.5

Threshold

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Fo
ot

sk
at

in
g

Figure 8. The average foot skating for each method and technique over all paths. Vertical bars denote standard error of mean.

72 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

B. J. H. van Basten et al. Combining path planners and motion graphs

6.3. Results

In this section we will discuss the results of the techniques
separately for each quality measure. To analyze the tech-
niques statistically, we employ three repeated measures
ANOVA, one for each quality measure. Whenever signif-
icant effects have been found, post hoc analysis (Tukey,
p = 0.05) was performed for pair-wise comparison. For
some examples of resulting motions of the path abstrac-
tion techniques, we refer the reader to the accompanying
demo video.

6.3.1. Foot Skating.

We found an effect of technique on foot skating
(F (4, 156) = 367.40, p < 0, 001). The foot skating for
each method and technique over all paths is depicted in
Figure 8. On the horizontal axis the seven thresholds used
during the graph creation ranging from 0.5 to 3.5 are shown.
Pairwise comparison showed that the standard method gen-
erates significantly more foot skating (over all paths and
thresholds) than all other techniques (all p < 0.001) and
the GS method generates significantly less (all p < 0.01).
We have observed that for the high curvature path, the foot
skating of all techniques is lower than the foot skating of
recorded motion. This is mainly because the motion graph
is not able to generate animations with such a high curva-
ture. It is known that there are not many transitions in the
graph going to animations with such a high curvature [65].

Figure 10. Two resulting pelvis trajectories (red) for the query
paths (black). As can be clearly seen, the Gaussian smoothing
path abstraction (below) preserves the natural oscillation of the

pelvis whereas the standard method (top) does not.

6.3.2. Amplitude.

We found an effect of technique on the absolute differ-
ence of the amplitude of the resulting animations and the
original recordings (F (4, 156) = 630.32, p < 0, 001). The
amplitude difference for each technique over all paths and
thresholds is depicted in Figure 9. It is clear that the path
abstraction techniques are able to preserve the wiggle with
a similar amplitude as the recorded motion, as their dif-
ference is significantly smaller (all p < 0.001) (see Figure
10). Overall, the amplitude differences from the GS and JC
method are significantly smaller than the other techniques
(all p < 0.004). We have observed that for the standard
method the amplitude decreases as the threshold increases
and becomes much smaller than the amplitude of recorded
motions. This typically illustrates the problem of loss of
oscillation. For the high curvature path we have observed
that the amplitudes of all the path abstraction techniques
are at a similar level as the recorded motion, except for
the threshold of 0.5. This is because the motion graph is
quite small and is unable to correctly follow the path and
often generates straight locomotion, which has a smaller
amplitude than curved locomotion.

BS GS JC JOE Standard

Methods

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
m

pl
itu

de
 d

iff

Figure 9. The overall average amplitude difference for each technique. Vertical bars denote standard error of mean.

Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd. 73
DOI: 10.1002/cav

Combining path planners and motion graphs B. J. H. van Basten et al.

 BS
 GS
 JC
 JOE
 Standard0.5 1.0 1.5 2.0 2.5 3.0 3.5

Threshold

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
m

pl
itu

de

Figure 11. The standard method is not able to preserve the pelvis oscillation. Vertical bars denote standard error of mean.

 BS
 GS
 JC
 JOE
 Standard0.5 1.0 1.5 2.0 2.5 3.0 3.5

Threshold

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

W
av

el
en

gt
h

di
ff

Figure 12. The wavelength difference for each technique over all paths. Vertical bars denote standard error of mean.

Figure 11 typically illustrates the problem of loss of
oscillation. Here we see the decrease of amplitude for the
standard method for the straight path, whereas the amplitude
of the other methods remains intact.

6.3.3. Wavelength.

We found an effect of technique on the absolute dif-
ference of the wavelength of the generated animations
and recorded motions (F (4, 156) = 317.35, p < 0.001).

74 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

B. J. H. van Basten et al. Combining path planners and motion graphs

Overall, the path abstraction techniques result in motions
whose wavelength is closer to natural values than the stan-
dard method (all p < 0.001), as is illustrated in Figure 12.
For the standard method the wavelength decreases as the
threshold increases for straight and low curvature paths. In
contrast, the wavelength for the path abstraction techniques
remains stable and close to natural values. For the high cur-
vature path we see different results; in contrast to the straight
and low curvature path the path abstraction techniques do
not perform significantly better.

We observed that the standard deviation of amplitude and
wavelength for all path abstractions differs from the stan-
dard deviations of recorded motions. However, the standard
deviation of the wavelength of the standard method contin-
uously increases as the threshold increases, whereas for the
path abstraction it remains stable for all thresholds.

7. CONCLUSION

We investigated two problems that arise when combining
path planners and motion synthesizers.

We have performed an evaluation of three different dis-
tance metrics on a quantitative as well as qualitative level.
We have shown that each metric has its advantages and
disadvantages. The joint-angle metric results in graphs that
generate animations with the least path deviation. In case of
path planning in highly constrained areas, this is a nice prop-
erty, because collisions with obstacles should be avoided.
Second, the search on a graph generated by the joint-angle
metric is the fastest, which is particularly useful in interac-
tive applications. The point-cloud based graph results in the
slowest search, yet in the least foot skating. Unfortunately,
the path deviation is the highest. The PCA metric results
in a faster synthesis and a lower path deviation compared
to the point-cloud metric. It introduces less foot skating
than the joint-angle metric, yet more path deviation. It is
also slightly slower, but one does not need to set weights.
Following these guidelines, an animator can make a bet-
ter choice in selecting the right metric for the animation
he wants to create. We have also shown that in some cases
a more complex graph may be constructed with a higher
threshold, while not sacrificing blend quality. Especially at
lower metric distances, humans do not significantly grade
these blends as being less natural.

We have also seen that defining what the path of the
character means is very important. Like many motion syn-
thesizers, the standard version of the motion graph uses
the pelvis trajectory as an approximation of the path of the
character. The standard motion graph method induces sig-
nificantly more foot skating. Also the levels of the amplitude
and wavelength of the oscillation show that the standard
method is not able to preserve the oscillation of the pelvis.
This translates to a far less natural looking animation for
the standard method in comparison to the path abstraction
techniques. Of the different abstraction techniques, the joint
combination method is the easiest to implement, but it gives
less good results than other path abstraction techniques. The

results could be improved by further investigating possi-
ble joint combinations. The Joint Extrema method is useful
because there are no parameters that need to be set. How-
ever, this method will only work for motions where a clear
oscillation is present. The B-spline-based method might
suffer from corner cutting. This obviously depends on the
placement of the knots. Overall, we found that the Gaussian
smoothing filter gives the best results for foot skating and
oscillation preservation. In the accompanying demo video
we show different results for both the standard method and
the Gaussian smoothing technique.

8. FUTURE WORK AND
CHALLENGES

Many parameters influence the resulting behavior of a met-
ric. The performance of the metrics for foot skating and
path deviation may be affected by choosing other parameter
values. Also, some artifacts in the synthesized animations
can be corrected in post-processing. For example, high path
deviation can be solved in a later stage by using a path
editing technique [61]. Foot skating can also be removed
[66] as a post-processing step. However, adapting motions
may introduce other unnatural artifacts. We plan to evaluate
metrics for other actions than locomotion, such as fight-
ing, manipulation, dancing and so on. In these cases other
evaluation measures would be important, such as physical
correctness of jumps or end-effector position. The limitation
of our path abstraction techniques is that we only consider
planar locomotion. For other types of (loco)motions, the
oscillation will be different or even absent. Most of the
path abstraction techniques we presented might therefore
not work anymore. Also, our database consisted of anima-
tions recorded from a single person. It might be interesting
to incorporate humans of varying gender and height.

Many challenges arise in combining path planning and
animation. First of all, the search space for planning full
body movement through an environment is very large.
Decoupling of path planning and animation is already a
rigorous step in which one ignores many dependencies
between the path planning and body movement. This decou-
pling introduces many problems. As we already have seen,
there is no compatibility between the path of a path planner
and the motion of a character. What part of the charac-
ter needs to follow the path? Such questions need to be
answered. The determined path can have a big influence on
the required animation. When the path planner determines
a path up a flight of stairs other animations are needed than
when the path remains planar.

Every animation technique has only a certain space of
motions it can generate. Ideally, a path planner should
take those restrictions into account. For example, some
path planners are able to cope with dynamic obstacles
such as other characters. To avoid dynamic obstacles
we need an animation system that is highly responsive
such that the direction of character animation can be
instantly adapted. When an animation system has a low

Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd. 75
DOI: 10.1002/cav

Combining path planners and motion graphs B. J. H. van Basten et al.

responsiveness, dynamic obstacles might not be avoided.
A path planner can also augment a generated path with
additional information to assist the animation system. For
example, clearance information can be incorporated into the
path. This allows an animation system to select animations
that are collision-free.

Motion parameterization (see “Related Work” section)
offers a higher level of control than motion concatenation. In
highly constrained environments, for example a narrow pas-
sage, the character might need to follow the path exactly. For
a highly situated walk engine, a concatenation of parameter-
ized walk cycles followed by editing the abstracted pelvis
path might be a promising approach.

Nevertheless, we expect a tighter coupling between path
planners and motion synthesis techniques to generate natu-
ral motions in games and simulations.

ACKNOWLEDGEMENTS

This research has been supported by the GATE project,
funded by the Netherlands Organization for Scientific
Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie). Part of this research has
been funded by the Metaverse1 project.

REFERENCES

1. Geraerts R, Overmars MH. The corridor map method: a
general framework for real-time high-quality path plan-
ning. Computer Animations and Virtual Worlds 2007;
18(2): 107--119.

2. Kovar L, Gleicher M, Pighin F. Motion graphs. In SIG-

GRAPH, ACM Press, New York; 2002; 473--482.
3. Hart PE, Nilsson NJ, Raphael B. A formal basis for the

heuristic determination of minimum cost paths. IEEE

Transactions on Systems Science and Cybernetics 1968;
4: 100--107.

4. Barraquand J. Automatic motion planning for com-
plex articulated bodies. 1991. Technical Report, Paris
Research Laboratory.

5. Connolly CI, Grupen RA. Harmonic control. In IEEE

International Symposium on Intelligent Control, 1998;
503--506.

6. Latombe J-C. Robot Motion Planning. Kluwer: Heidel-
berg, Germany, 1991.

7. Kuffner JJ, LaValle SM. RRT-connect: an efficient
approach to single-query path planning. In IEEE Inter-

national Conference on Robotics and Automation, 2000;
995--1001.

8. Kavraki LE, Švestka P, Latombe J-C, Overmars MH.
Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on

Robotics and Automation 1996; 12: 566--580.

9. Barraquand J, Kavraki LE, Latombe JC, Li TY, Motwani
R, Raghavan P. A random sampling scheme for path plan-
ning. International Journal of Robotics Research 1997;
16: 759--774.

10. Geraerts R, Overmars MH. Creating high-quality paths
for motion planning. International Journal of Robotics

Research 2007; 26: 845--863.
11. Kamphuis A, Overmars MH. Finding paths for coherent

groups using clearance. In Eurographics/ACM SIG-

GRAPH Symposium on Computer Animation, 2004;
19--28.

12. Pettré J, de Heras Ciechomski P, Maı̈m J, Yersin B, Lau-
mond J-P, Thalmann D. Real-time navigating crowds:
scalable simulation and rendering. Computer Animation

and Virtual Worlds 2006; 17: 445--455.
13. Karamouzas I, Geraerts R, Overmars MH. Indicative

routes for path planning and crowd simulation. In The

Fourth International Conference on the Foundations of

Digital Games, 2009; 113--120.
14. Karamouzas I, Heil P, van Beek P, Overmars MH.

A predictive collision avoidance model for pedestrian
simulation. In Motion in Games, Second International
Workshop, MIG 2009, Zeist, The Netherlands, Novem-
ber 21-24, 2009. Volume 5884 of Lecture Notes in
Computer Science, Egges A, Geraerts R, Overmars
MH (eds). Springer-Verlag: Berlin, Heidelberg, 2009;
41--52.

15. Boulic R. Relaxed steering towards oriented region
goals. Lecture Notes in Computer Science 5277, MIG

2008, 2008; 176--187.
16. Singh S, Kapadia M, Faloutsos P, Reinman G. Steer-

Bench: a benchmark suite for evaluating steering
behaviors. Computer Animation and Virtual Worlds

2009; 20: 533--548.
17. van Welbergen H, van Basten BJH, Egges A, Ruttkay

Zs, Overmars MH. Real Time Animation of Virtual
Humans: A Trade-Off Between Naturalness and Con-
trol. Eurographics Association: Munich, 2009; 45--
72.

18. Multon F, France L, Cani-Gascuel MP, Debunne G.
Computer animation of human walking: a survey. The

Journal of Visualization and Computer Animation 1999;
10(1): 39--54.

19. Boulic R, Thalmann NM, Thalmann D. A global human
walking model with real-time kinematic personification.
The Visual Computer 1990; 6(6): 344--358.

20. Lee J, Chai J, Reitsma PSA, Hodgins JK, Pollard NS.
Interactive control of avatars animated with human
motion data. In SIGGRAPH, ACM Press, New York,
2002; 491--500.

21. Arikan O, Forsyth DA. Interactive motion generation
from examples. In SIGGRAPH, ACM Press, New York,
2002; 483--490.

76 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

B. J. H. van Basten et al. Combining path planners and motion graphs

22. Wiley DJ, Hahn JK. Interpolation synthesis of articulated
figure motion. IEEE Computer Graphics Application

1997; 17(6): 39--45.
23. Park SI, Shin HJ, Shin SY. On-line locomotion genera-

tion based on motion blending. In SCA 02: Proceedings

of the 2002 ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation, New York, 2002; 105--
111.

24. Kwon T, Shin SY. Motion modeling for on-line loco-
motion synthesis. In SCA 05: Proceedings of the 2005

ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, New York, 2005; 29--38.
25. Heck R, Gleicher M. Parametric motion graphs. In I3D

07: Proceedings of the 2007 Symposium on Interactive

3D Graphics and Games, ACM Press, New York, 2007;
129--136.

26. So CKF, Baciu G. Entropy-based motion extraction for
motion capture animation: motion capture and retrieval.
Computer Animated Virtual Worlds 2005; 16(3--4): 225--
235.

27. Tang JKT, Leung H, Komura T, Shum HPH. Emulat-
ing human perception of motion similarity. Computer

Animated Virtual Worlds 2008; 19(3--4): 211--221.
28. Chua PT, Crivella R, Daly B, et al. Training for physical

tasks in virtual environments: Tai chi. In VR 03: Proceed-

ings of the IEEE Virtual Reality 2003, IEEE Computer
Society, Washington, DC, 2003; 87.

29. Ikemoto L, Arikan O, Forsyth D. Quick transitions with
cached multi-way blends. In I3D 07: Proceedings of

the 2007 Symposium on Interactive 3D Graphics and

Games, ACM, New York, 2007; 145--151.
30. Egges A, Molet T, Magnenat-Thalmann N. Personalised

real-time idle motion synthesis. In Pacific Graphics.

IEEE Computer Society: Washington, DC, 2004; 121-
-130.

31. Forbes K, Fiume E. An efficient search algorithm
for motion data using weighted PCA. In ACM

SIGGRAPH/Eurographics Symposium on Computer

Animation, 2005.
32. Li L, McCann J, Faloutsos C, Pollard N. Laziness is

a virtue: motion stitching using effort minimization. In
Short Papers Proceedings of EUROGRAPHICS, 2008.

33. Rose C, Guenter B, Bodenheimer B, Cohen MF. Efficient
generation of motion transitions using spacetime con-
straints. In SIGGRAPH, ACM Press, New York, 1996;
147--154.

34. Matsunaga M, Zordan VB. A dynamics-based compar-
ison metric for motion graphs. In Computer Graphics

International (CGI), 2007.
35. Wang J, Bodenheimer B. An evaluation of a cost

metric for selecting transitions between motion seg-
ments. In SCA 03: Proceedings of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer

Animation, Eurographics Association, Aire-la-Ville,
Switzerland, 2003; 232--238.

36. Safonova A, Hodgins JK. Analyzing the physical cor-
rectness of interpolated human motion. In Proceedings

of the ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, ACM Press, New York, 2005;
171--180.

37. Reitsma PSA, Pollard NS. Perceptual metrics for char-
acter animation: sensitivity to errors in ballistic motion.
ACM Transactions on Graphics 2003; 22(3): 537--
542.

38. Ren L, Patrick A, Efros AA, Hodgins JK, Rehg JM.
A data-driven approach to quantifying natural human
motion. ACM Transactions on Graphics 2005; 24(3):
1090--1097.

39. Reitsma PSA, Pollard NS. Evaluating motion graphs
for character animation. ACM Transactions on Graphics

2007; 26(4): 18.
40. Choi MG, Lee J, Shin SY. Planning biped locomotion

using motion capture data and probabilistic roadmaps.
ACM Transactions on Graphics 2003; 22(2): 182--203.

41. Sung M, Kovar L, Gleicher M. Fast and accurate goal-
directed motion synthesis for crowds. In Proceedings

of the 2005 Symposium on Computer Animation, ACM,
New York, 2005; 291--300.

42. Lau M, Kuffner JJ. Behavior planning for character
animation. In Proceedings of the 2005 Symposium on

Computer Animation, ACM, New York, 2005; 271--280.
43. Lau M, Kuffner JJ. Precomputed search trees: planning

for interactive goal-driven animation. Proceedings of

ACM SIGGRAPH, 2006; 299--308.
44. Srinivasan M, Metoyer RA, Mortensen EN. Controllable

real-time locomotion using mobility maps. Proceedings

of Graphics Interface, 2005. 51--59.
45. Pettré J, Laumond J-P, Siméon T. A 2-stages locomo-

tion planner for digital actors In Proceedings of the

2003 Symposium on Computer Animation, Eurographics
Association, Aire-la-Ville, 2003; 258--264.

46. Pettré J, Simeon T, Laumond JP. Planning human walk
in virtual environments. In Proceedings IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems,
2002; 3048--3053.

47. Kamphuis A, Pettré J, Overmars M, Laumond J-P. Path
finding for the animation of walking characters. Poster

Proceedings of Eurographics, 2005; 8--9.
48. Safonova A, Hodgins JK. Construction and optimal

search of interpolated motion graphs. In ACM SIG-

GRAPH 2007 Papers, 2007; 106.
49. Treuille A, Lee Y, Popović Z. Near-optimal character

animation with continuous control. In ACM SIGGRAPH

2007 Papers, 2007; 7.
50. Yoshida E, Laumond JP, Esteves C, Kanoun O,

Sakaguchi T, Yokoi K. Whole-body locomotion,

Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd. 77
DOI: 10.1002/cav

Combining path planners and motion graphs B. J. H. van Basten et al.

manipulation and reaching for humanoids. In Motion in

Games, Springer: Heidelberg, Germany, 2008; 221.
51. Zhang L, Pan J, Manocha D. Motion planning and

synthesis of human-like characters in constrained envi-
ronments. In Motion in Games 2009, Volume 5884 of

Lecture Notes in Computer Science, Springer: Heidel-
berg, Germany, 2009; 138--145.

52. Lamouret A, van de Panne M. Motion synthesis by
example. In Computer Animation and Simulation,
Springer-Verlag New York, Inc.: New York, 1996; 199--
212.

53. Wang J, Bodenheimer B. Computing the duration of
motion transitions: an empirical approach. In 2004 ACM

SIGGRAPH/Eurographics Symposium on Computer

Animation, Grenoble, France, August 2004; 337--346.
54. Ikemoto L, Arikan O, Forsyth DA. Knowing when to

put your foot down. In Proceedings of the Symposium on

Interactive 3D Graphics and Games, ACM Press, New
York, 2006; 49--53.

55. Saunders JB, Inman VT, Eberhart HD. The major deter-
minants in normal and pathological gait. The Journal of

Bone and Joint Surgery 1953; 35(3): 543.
56. Grassia FS. Practical parameterization of rotations using

the exponential map. Journal Graphics Tools 1998; 3(3):
29--248.

57. OGRE. Open Source 3D Graphics Engine Website.
Available at: www.open3d.org [Accessed on July 2,
2008].

58. YoYo Games. Game Maker Website. Available at: www.
yoyogames.com/make [Accessed on July 2, 2008].

59. Hodgins JK, O’Brien JF, Tumblin J. Perception of human
motion with different geometric models. IEEE Trans-

actions on Visualization and Computer Graphics 1998;
4(4): 307--316.

60. Hodgins JK, Wooten WL, Brogan DC, O’Brien JF. Ani-
mating human athletics. In SIGGRAPH, ACM Press,
New York, 1995; 71--78.

61. Gleicher M. Motion path editing. In I3D ’01: Proceed-

ings of the 2001 Symposium on Interactive 3D Graphics,
ACM, New York, 2001; 195--202.

62. Arechavaleta G, Laumond J-P, Hicheur H, Berthoz A.
The nonholonomic nature of human locomotion: a mod-
eling study. International Conference on Biomedical

Robotics and Biomechatronics, Pisa, Italy, 2006; 158--
163.

63. Lowe DG. Organization of smooth image curves at mul-
tiple scales. Proceedings of 2nd ICCV, 1988; 558--567.

64. Rosin P. Representing curves at their natural scales.
Patent Recognition 1992; 25(11): 1315--1325.

65. van Basten BJH, Egges A. Evaluating distance metrics
for animation blending. In Proceedings. of the 4th Inter-

national Conference on Foundations of Digital Games,
ACM, New York, 2009; 199--206.

66. Kovar L, Schreiner J, Gleicher M. Footskate cleanup
for motion capture editing. In SCA ’02: Proceedings of

the 2002 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, ACM, New York, 2002; 97--104.

AUTHORS’ BIOGRAPHIES

Ben van Basten is a PhD candidate at
the Games and Virtual Worlds group
at Utrecht University. He received his
MSc in Geometry, Imaging and Virtual
Environments (GIVE) in 2005 from the
same university. His research interest
include animation and motion plan-
ning.

Arjan Egges is an Assistant Professor
at the Games and Virtual Worlds group
in the Department of Information and
Computing Sciences, Utrecht Univer-
sity in the Netherlands. He obtained
his PhD at MIRALab-University of
Geneva, Switzerland on the topic of
emotion and personality models, in
combination with automatically gen-

erated face and body motions using motion capture data.
His current research focuses on the integration of motion
capture animation with navigation and object manipulation
tasks, as a part of the Dutch funded GATE project. Fur-
thermore, he heads the motion capture lab and he teaches
several courses related to games and computer animation.
Arjan is also an associate editor of the Computer Anima-
tion and Virtual Worlds journal published by Wiley and he
is one of the co-founders of the annual Motion in Games
conference.

Roland Geraerts completed his PhD
degree in Computer Sciences at Utrecht
University in 2006. His dissertation
dealt with a comparison and analy-
sis of sampling-based motion planning
techniques, in particular variants of
the Probabilistic Roadmap Method. In
addition, he also studied quality aspects
of paths and roadmaps. Since 2006, he

is continuing his work as Assistant Professor and focuses
on path planning and crowd simulation in games.

78 Comp. Anim. Virtual Worlds 2011; 22:59–78 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

