
Introduction Data structures Experiments Results Conclusion

A comparative study of k-nearest neighbour
techniques in crowd simulation

Jordi Vermeulen Arne Hillebrand Roland Geraerts

Department of Information and Computing Sciences
Utrecht University, The Netherlands

30th Conference on Computer Animation and Social Agents, May 23, 2017

1 / 25

Introduction Data structures Experiments Results Conclusion

Context

We want efficient crowd simulations.

2 / 25

Introduction Data structures Experiments Results Conclusion

Context

Large amount of computation spent on collision avoidance. Needs
several nearest neighbours.

Which method for finding nearest neighbours is most efficient?

Efficient:

I Construction

I Querying

I Variance

3 / 25

Introduction Data structures Experiments Results Conclusion

Context

The k-nearest neighbour (kNN) problem is well-known.

I Robotics

I Machine learning

I Databases

I Computer vision

I ...

Usually: high dimensionality, separation between offline
construction and online querying, disk storage.

Our case: two or three dimensions, changing data, main memory.

4 / 25

Introduction Data structures Experiments Results Conclusion

Data structures

Data structures selected on prevalence and availability of good
implementations.

We tested:

Data structure Construction time kNN query time

k-d tree O(n log n) O(k log n)
BD-tree O(n log n) O(k log n)
R-tree O(n log n) O(k log n)
Voronoi diagram O(n log n) O(k log n)
k-means O(n2) O(n)
Linear search O(1) O(n)
Grid O(n) O(n)

5 / 25

Introduction Data structures Experiments Results Conclusion

k-d tree

Split alternatingly along axes.

Try to split remaining data in
half.

https://www.cs.umd.edu/~mount/ANN/Files/1.1.2/
ANNmanual 1.1.pdf

6 / 25

Introduction Data structures Experiments Results Conclusion

Box-decomposition tree

k-d tree with extra split rule.

Split into inner and outer box.

https://www.cs.umd.edu/~mount/ANN/Files/1.1.2/
ANNmanual 1.1.pdf

7 / 25

Introduction Data structures Experiments Results Conclusion

R-tree

Point or volumetric data.

Partitions may overlap.

Insertion and deletion of data
possible.

https://en.wikipedia.org/wiki/R-tree

8 / 25

Introduction Data structures Experiments Results Conclusion

Hierarchical k-means clustering

Assign points to centroid.

Calculate new centroid and
iterate.

Apply hierarchically.

http://rossfarrelly.blogspot.com/2012/12/

k-means-clustering.html

9 / 25

Introduction Data structures Experiments Results Conclusion

Voronoi diagrams

Cells of points closest to site.

Find nearest neighbours by
examining neighbouring cells.

http://merganser.math.gvsu.edu/david/voronoi.08.06/

10 / 25

Introduction Data structures Experiments Results Conclusion

Implementations

k-d tree implementations provided by FLANN [1] and nanoflann
[2].

I FLANN: general-purpose implementation

I nanoflann: highly optimised for 2D and 3D data

FLANN also provides k-means implementation.

BD-tree is provided by ANN [3].

[1] Muja and Lowe, FLANN - Fast Library for Approximate Nearest Neighbors (http://www.cs.ubc.ca/research/

flann/)

[2] Blanco-Claraco, nanoflann (https://github.com/jlblancoc/nanoflann)

[3] Mount and Arya, ANN: A Library for Approximate Nearest Neighbor Searching (http://www.cs.umd.edu/

~mount/ANN/)

11 / 25

(http://www.cs.ubc.ca/research/flann/)
(http://www.cs.ubc.ca/research/flann/)
(https://github.com/jlblancoc/nanoflann)
(http://www.cs.umd.edu/~mount/ANN/)
(http://www.cs.umd.edu/~mount/ANN/)

Introduction Data structures Experiments Results Conclusion

Implementations

R-tree and Voronoi diagrams are provided by Boost [1].

R-tree has good update performance, test two versions:

1 Rebuild entire tree each time step

2 Update tree incrementally

Linear search and grid are own implementations.

[1] Gehrels et al., Boost Geometry Library (http://www.boost.org/libs/geometry)

12 / 25

(http://www.boost.org/libs/geometry)

Introduction Data structures Experiments Results Conclusion

Scenarios

Test on artificial and real-world scenarios.

Artificial: test specific properties.

I Density: uniform vs clustered

I Stationary agents: test with 25, 50 or 75% of agents not
moving

I Scaling: add more agents each time step

Real-world:

I Simulations of evacuation of building

I Simulations for Tour de France [1]

I Jülich trajectory data of real crowds [2]

[1] van der Zwan, The Impact of Density Measurement on the Fundamental Diagram

[2] Keip and Ries, Dokumentation von Versuchen zur Personenstromdynamik

13 / 25

Introduction Data structures Experiments Results Conclusion

Scenarios - density

14 / 25

Introduction Data structures Experiments Results Conclusion

Scenarios - evacuation

15 / 25

Introduction Data structures Experiments Results Conclusion

Scenarios - Tour de France

16 / 25

Introduction Data structures Experiments Results Conclusion

Scenarios - Jülich bottleneck

17 / 25

Introduction Data structures Experiments Results Conclusion

Experimental setup

Jülich data only available as trajectories (tuples of id, time, x- and
y-coordinate).

For fair comparison, converted all data to trajectories.

C++ testing program reads data per time step, and:

1 Builds the structure for agent positions at current time step

2 Performs kNN query for each agent

For realism, queries are performed in parallel.

We fix k at 10; collision avoidance does not need more.

18 / 25

Introduction Data structures Experiments Results Conclusion

Results

Total of 62 different scenarios: multiple instances of similar
settings.

Tested on machine running Ubuntu 15.10, with two Xeon 12-core
processors and 32 GB of DDR4 RAM.

19 / 25

Introduction Data structures Experiments Results Conclusion

Results

Overall results per agent per time step:

 0

 1

 2

 3

 4

 5

 6

U
p
d
a
te

 t
im

e
 (

μ
s
)

 0

 1

 2

 3

 4

BD-tree

Grid
k-d tree (FLANN)

k-d tree (nanoflann)

k-means

Linear search

R-tree (rebuild)

R-tree (update)

Voronoi

Q
u
e
ry

 t
im

e
 (

μ
s
)

20 / 25

Introduction Data structures Experiments Results Conclusion

Results - scaling

 0

 50

 100

 150

 200

 250

 300
U

p
d
a
te

 t
im

e
 (

m
s
)

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

Q
u
e
ry

 t
im

e
 (

m
s
)

Time step

BD-tree
Grid

k-d tree (FLANN)

k-d tree (nanoflann)
k-means

Linear search

R-tree (rebuild)
R-tree (update)

Voronoi

I Linear search quickly infeasible: 16 seconds per time step for
100,000 agents

21 / 25

Introduction Data structures Experiments Results Conclusion

Results - scaling

 0

 50

 100

 150

 200

 250

 300
U

p
d
a
te

 t
im

e
 (

m
s
)

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

Q
u
e
ry

 t
im

e
 (

m
s
)

Time step

BD-tree
Grid

k-d tree (FLANN)

k-d tree (nanoflann)
k-means

Linear search

R-tree (rebuild)
R-tree (update)

Voronoi

I R-tree and FLANN k-d tree have similar query performance,
but R-tree over 3x more expensive to update

21 / 25

Introduction Data structures Experiments Results Conclusion

Results - scaling

 0

 50

 100

 150

 200

 250

 300
U

p
d
a
te

 t
im

e
 (

m
s
)

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

Q
u
e
ry

 t
im

e
 (

m
s
)

Time step

BD-tree
Grid

k-d tree (FLANN)

k-d tree (nanoflann)
k-means

Linear search

R-tree (rebuild)
R-tree (update)

Voronoi

I R-tree update 20% faster than rebuild

21 / 25

Introduction Data structures Experiments Results Conclusion

Results - scaling

 0

 50

 100

 150

 200

 250

 300
U

p
d
a
te

 t
im

e
 (

m
s
)

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

Q
u
e
ry

 t
im

e
 (

m
s
)

Time step

BD-tree
Grid

k-d tree (FLANN)

k-d tree (nanoflann)
k-means

Linear search

R-tree (rebuild)
R-tree (update)

Voronoi

I nanoflann 2x faster than FLANN: 100,000 agents in ~35 ms

21 / 25

Introduction Data structures Experiments Results Conclusion

Conclusion

nanoflann implementation of k-d tree clearly best option.

I Fastest except when number of agents very small

I Lowest variance

I 100,000 agents in 35 ms per time step

Grid competitive for small number of agents (< 1000) due to low
update cost. Linear search efficient up to a few hundred agents.

Updating R-tree more efficient than rebuilding.

22 / 25

Introduction Data structures Experiments Results Conclusion

Future work

Currently working on extending kNN algorithm to multi-layered
environments, e.g. buildings with multiple floors.

I Euclidean nearest neighbours not enough: close x- and
y-coordinates may be on different floor

I Need to consider visibility

23 / 25

Introduction Data structures Experiments Results Conclusion

Future work

Local neighbourhood does not change much between time steps:
could update only once every few steps.

I How often should we update?

Compare performance of GPU methods, looking for people with
expertise.

24 / 25

Introduction Data structures Experiments Results Conclusion

Thanks!

J.L.Vermeulen@uu.nl

25 / 25

	Introduction
	Data structures
	Experiments
	Results
	Conclusion

